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Through a special interplay of strong and weak interactions, small but significant pieces with
"wrong" Aavor could be introduced into wave functions of mesons. Thus, e.g., not only a (us) pair,
but also a (ud) pair can be found with some probability within K+, etc. The possible importance of
such "anomalous" terms in understanding of K-meson decays is discussed in a new scheme. The
scheme is characterized by diagrammatic calculations of full amplitudes in the long-distance envi-
ronment. Two classes of models which correctly reproduce the main K-meson branching ratios and
the b I = 1/2 rule are constructed. The predictive power of the scheme is then tested in a decay of a
kaon into a pion and a light hyperphoton.

I. INTRODUCTION

The amplitude 3+0 for K+~~+~ decay is about 20
times smaller than amplitudes for two similar Kz decay
modes. Yet, almost any simple theoretical consideration
would put these three amplitudes into the same range. It
becomes even more obvious how small 3+o is when a
comparison to CP-violating Kl ~~m. decays is done.
Despite the fact that CP-violating phenomena are ex-
tremely rare, there is only another factor-20 di6'erence
between A+o and A+ (Aoo). Thus the Ao++ amplitude
lies just in the rniddle between CP-conserving and CP-
violating amplitudes. What causes such a suppression of
K+~m+m? Is the decay really suppressed, or are—on
the contrary —the decay modes of short- and long-lived
neutral kaons largely enhanced? One possible solution
was suggested in 1960, by Oneda, Pati, and Sakita. '

They realized that a direct transformation of the constit-
uent carrying the strangeness can be the key factor in
description of experimental facts. Such a transformation,
if it happened at a relatively high rate, would enhance
hI= —,

' decay amplitudes of neutral kaons, while not
aff'ecting K+~m+m. decay. (See also Ref. 2.) This idea
is still very much alive. There are many indications that
a fast, flavor-changing s~d transition within a single
quark line is indeed the major candidate for a natural ex-
planation of both the AI =

—,
' rule and the large CP viola-

tion in the kaon rnultiplet. However, the detailed mecha-
nism is still not well understood. '

One popular representation of these direct transitions
was based on "penguin" operators and diagrams, incor-
porated into the QCD-corrected efFective Hamiltonian.
Nowadays, as we learn more about the role of long-
distance QCD in kaon decays, the s ~d transitions reap-
pear in the "eye diagrams" ' which are in a way a link
between short and long distances. In the present work,
the s~d transitions are once again used to describe
E ~me. amplitudes, this time, however, set entirely in the
long-distance environment.

I will present a scheme in which a diagrammatic calcu-
lation of K (and vr) decays is possible. Quark loops in di-

agrams are closed by nonlocal meson-quark vertices mim-
icking meson wave functions. In addition to "regular"
vertices, the model also contains "anomalous" meson-
quark vertices, with unusual flavor content. The latter
are a result of s ~d transitions happening inside the light
mesons. One therefore finds not only a (us ) pair, but also
a (ud ) pair within K+, etc. "Regular" and "anomalous"
vertices will be constructed and discussed in Sec. II.
Rules for evaluation of diagrams and amplitudes will be
given in Sec. III. Sections IV and V contain a brief re-
view of the most important results. (More detailed study
of the main K decay modes is presented elsewhere. ) ' In
the concluding section the features of the model are sum-
marized, and some possible directions for further study
indicated. A difFerent representation of anomalous ver-
tices ("model B")is described in the Appendix.

Throughout the work the four-flavor version of the
standard model is used, but a generalization to more
Aavors presents no problem. The notation closely follows
that of an earlier work on the subject. (See also Refs.
9—11.)

II. MODEL

In this section the attention will be focused on the rela-
tionship between light mesons and their constituents.
The final goal will be a construction of semiphenomeno-
logical meson-quark couplings, which will serve later in
diagrammatic calculations of various processes. A di-
agrammatic approach to K decays was attempted earlier
by Pascual and Tarrach. ' There are however diA'erences
between Ref. 12 and the present work. For example, only
local meson-quark vertices were used in Ref. 12, while
here the vertices will be nonlocal. More recently, Gil-
mour' has also presented a diagrammatic study of ha-
dronic weak decays, but in a nonrelativistic framework.
Here, I will develop a fully relativistic picture.

Let H(k, P) be a probability for finding a combination
of quarks with relative momentum q&

—
q2 =2k, within a

meson carrying the total momentum P (see Fig. 1). Such
a probability distribution would clearly be related to the

40 2279 1989 The American Physical Society



2280 H. GALIC 40

p

meson = q 2
quarks

FIG. 1. Quark content of a meson in the valence approxima-
tion. The momentum of the antiquark is q, =P —q, .

H~ (k, P) =P~M~
( I 2 P2)fl

where /3 is a dimensionless normalization constant, and
M is the mass of the meson' (more on 13 in Ref. 8). One
can also introduce a naive confinement into the model.
This is most easily accomplished by sandwiching H be-
tween (It'+g/2 —m, ) and (k —p'/2 —

m2 ), where m, and
mz denote the current masses of the quarks attached to
the meson. Then, it is the equation of motion that
prevents the unwanted decay to free quarks. The result-
ing nonlocal vertex

I ~J(k, p) =$'~ g+ ——m ) H~(k, p) k' ———m2

(2)

will be used in a diagrammatic description of mesons, and
weak processes in which the mesons participate. The
vertex (2) is named the "regular vertex. " The symbol for
a regular vertex in a diagram will be a heavy dot. Super-
scripts i,j in (2) denote colors, and 5'~ refiects the color
conservation. The vertex implicitly contains all the in-
teractions responsible for keeping quarks within the
meson, and gluons hidden in the vertex are responsible
for the nonlocal structure. The situation is symbolically

wave function of the meson, and vice versa. Unfortunate-
ly, we do not know too much about meson wave func-
tions. Yet, by using some acceptable assumptions, one
can try to model the distributions H(k, P), and then to
test them in analyses of decay and scattering processes.

I will begin with the assumption that the distribution
H~(k, P) for the meson A, is proportional to
1/(k cz~p —)'. The parameter a~ has the value related
to the weak decay constant f it of the particular meson.
For all the mesons considered in this study, the relation
n~) —,

' is satisfied. The integer n is a free parameter.
There are some physical arguments for the above choice
of H,+. For example, according to the proposed form,
the situations less likely to occur are those in which the
relative (three-)momentum k is large, or when the energy
is consumed mainly by one of the quarks. An asymmetry
introduced by adding a k P piece into the denominator of
H~ would probably improve the agreement with experi-
ments, but for sake of simplicity I will not allow the
asymmetric terms. Needless to say, the presented form of
H~ is by no means unique, and readers are encouraged
to find and test different functional forms.

Once the proper Lorentz structure for pseudoscalar
mesons is added, the normalized probability distribution
becomes a matrix:

described in Fig. 2.
How and where can one use the effective vertices?

Consider m+~lv decay. To obtain the nonleptonic part
of the amplitude (see Fig. 3), we should first multiply the
probability of finding u and d quarks with relative
momentum 2k, by the probability that these quarks meet
and form a 8'meson. Next, contributions of all possible
relative momenta must be summed up. As a conse-
quence, the amplitude contains an integral

d k Tr y„(1—ys) tt'+7/2 —m„

Xrjj(k, p)
k —J'/2 —m„

(3)

~ /, ~ ~

+ ~ ~ ~

FIG, 2. Nonlocal, effective coupling of quarks to a meson.

Note that Feynman propagators of u and d quarks will
cancel similar factors in I . After the cancellation, the in-
tegral in (3) can be easily evaluated, and a straightfor-
ward calculation leads to the amplitude. More examples
can be found in Refs. 8 and 9, where regular vertices were
thoroughly studied.

Until now, the Aavor of quarks was mostly ignored. It
was implicitly assumed that, e.g. , in the case of the K+
meson, one would find u quark and s antiquark, with
probability equal to 1. However, weak interactions can
change the situation. Consider the diagram in Fig. 4. If
the 8'boson is captured by the same quark line by which
it was emitted, one would observe d instead of s. What is
the probability for such a Aavor-changing transformation
within a line? Without the gluons, for bare quarks, the
process is down by I/M~, and thus practically unobserv-
able. Miraculously, gluons (and this is true for both
"self-energy" gluons, and those exchanged between two
different quark lines) acts as catalysts. It is known"
that in their presence the probability for s~d transition
gets increased to the much more comfortable 1/M~.
Therefore, the probability distribution H(k, P) for finding
a quark with the "wrong" flavor in a meson, is of the or-
der GFsc, where s and c denote the Cabibbo angles
(s—:sinHC, c —= cosOC ). In many processes this will still be
invisible, but in certain situations even such a small con-
tribution might become very important. For example,
the probability of forming a dd pair in Kz is small, but
once the pair is formed, the meson can decay very quick-
ly through a fast, flavor-conserving process. Thus the
smallness of H could be in some cases counterbalanced
by an increased likelihood of the subsequent stronglike
subprocess.

Of course, the functional form of H(k, P) can only be
guessed. In order to keep the analysis as simple as possi-
ble, I will again assume the probability distribution in the
form of an inverse power of (k —ap ). Guided by some
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u ( k+ P/2)

cI( IK- P/2)

FIG. 3. ~+~lvdecay. Pis the momentum of the pion, k the
loop momentum.

one-loop arguments, I am proposing the following expres-
sions for the distribution H, and the "anomalous" (so
named because of the presence of the "wrong" fiavor)
ve~'. ex function I:

GFsc, I'(X+ Y) 5)
H~(k, P)= — P~M~ 'Q

2 (k2 P )2n +I

r

(4)

I ~/(k, P)=5'/ k+ ——m' H (k P) k' ———m"
L

+ ~ ~ ~

d

FIG. 4. Substructure of an "anomalous" vertex.

Here, 6 denotes the square of the momentum in the line
in which the s ~d transition occurs (Q is either k P/2—
or k +P/2). a and p are the parameters already defined
in "regular" functions (1) and (2). The numerator in
H(k, P) contains the (X+ Yy5) matrix with mixed chiral-
ity. This is a consequence of the violation of parity in the
weak transition. The model does not predict magnitudes
of X and Y. They are parameters to be determined exper-
imentally. I will, however, assume that X and Y do not
depend on JM. It is interesting that in some processes
only X contributes (e.g. , in K~vrrr), while in other de-
cays Y is important (e.g., in K err+ y r, where —y r
denotes a hyperphoton), or a combination of both ap-
pears (e.g., in K~mvv). As a consequence, it will be im-
possible to relate E ~~~ and K~vryz decays directly,
without introducing further assumptions. We shall re-
turn to this problem in Sec. V. The anomalous vertices
will be denoted in diagrams by encircled heavy dots.

Not only that the Aavor and chiral structure of the
anomalous vertices is unusual, there is also a peculiarity
related to isospin. Since in a direct s —+d transition the
isospin is changed by only —, unit, the anomalous vertices
cannot contribute to AI =

—,
' processes. ' In other words,

in the analysis of, e.g. , K + —+~+~ (which is a pure
EI =—' decay), all diagrams with anomalous vertices
should exactly cancel. This clearly provides a mechanism
for a successful description of the AI =

—,
' rule. Namely,

the hadronic K +—decays will only be influenced by regu-

lar vertices. As a rule, the regular vertices produce small
amplitudes. On the other hand, the amplitudes 3 will
mainly depend on the magnitude of X. Large X would
produce big A without increasing the 2 +—amplitudes.
Consequently, since X is a free parameter, the ratio

/2 +—can easily be adjusted to the required value of
20.

Finally, in order to get some control over the model
dependence, I have constructed another anomalous prob-
ability distribution. It is presented in the Appendix. The
expressions (4) and (5) in this section will be referred to as
"model A," and the alternative model from the Appendix
will be called "model B."

III. RULES

In this section we shall consider how the effective ver-
tices can be put to work in a diagrammatic calculation of
light-meson decays. First, one must construct all possible
(lowest-order) Feynman diagrams of a process, using

quark, lepton, and electroweak-boson lines. Gluons, ac-
cording to the scheme, should be neglected. Instead, the
regular and anomalous quark-meson vertices should be
used to close quark lines. Mesons are always on shell,
external particles, and cannot be used as intermediate
states. In closed fermion loops, a summation over Fermi
and color degrees of freedom must be performed. Ac-
cordingly, a trace calculation and the factor (

—3) will ac-
company every quark loop (the negative sign in the factor
is a consequence of the Fermi statistics). Elementary par-
ticles (quarks, leptons, . . . ) and pointlike electroweak in-

teractions are represented by the usual Feynman propa-
gators and vertices. The nonlocal effective vertices, both
regular and anomalous, should be described following the
general rules derived in the preceding section. However,
a distinction between mesons forming an isotriplet, iso-
doublet, or isosinglet should be visible in the effective ver-
tices. Therefore, each probability function H~(k, P) will

be multiplied by a Clebsch-Gordan (CCx) coefficient A, .
Instead of (2), one uses

I ~~(k, +P)=+k5" k+ ——m H~(k, P)
2

X k'+ ——m q' (6)

I (k, +P) should be used when the meson is ingoing, and
I (k, P) when it is ou—tgoing. The values of A, are +1 for
K,~+vertices, + I—/&2 for vr (uu), KL(ds), K/(sd), and

Ks(ds) vertices, —I/&2 for m. (dd) and Ks(sd) vertices,
etc. Constants a, az, . . . , in H~ could be related to
values of weak decay constants f,fK, . . . , while

p, px, . . . , properly normalize the wave functions. One
finds

' 1/2
(n —1)(n —2)'

CX~ = 7T
M~ 6(2n —1)

' 1/2
(2n —1)(2n —2)

At 3
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As discussed earlier, the anomalous vertices are a re-
sult of s~d (or d —+s) weak transitions within a meson.
Therefore, in an anomalous vertex, a d quark will be at-
tached where an s quark appears in the corresponding
regular vertex, and vice versa: an s quark instead of the
regular d quark (see Fig. 5). Where the fiavor structure
of regular vertices was, e.g. , K+(su) and vr (dd), the
anomalous structure will be K+(du), vr (sd), and vr (ds),
etc. The complete anomalous vertex function, instead of
(5), becomes

KL,

(s}

I ~J(k, +P) =+A5'J It'+ ——m H~(k, P)
2

FIG. 5. Anomalous vertices for light in-going mesons.

X k+ ——m'
2

2
1 P 1 PAa, — k+ — — k ——

v'2 2 v'2 2

The erst term originates from the s~d transition in the
upper line of the regular Kz(ds) vertex, and the second
term is related to s~d transition in the lower quark line

Again, I (k, +P) describes an ingoing meson and
1(k, P) an —outgoing meson. The convention for CG
coe%cients A, is the same as in the corresponding regular
vertices. The probability distribution H~ [see Eq. (4)]
contains the square of momentum of the quark line in
which the Aavor is changed. In ~, K, and K such a
transmutation can happen in both quark lines. There-
fore, e.g. , the full anomalous vertex Kz(dd) contains a
factor (compare to Fig. 6)

2
A„=(—)" ' —f u (t)P'(1+y5)vt(r) .v'2 (10)

This is no surprise, since the relation (7) between a~ and

f~ was determined just in a study of ALI2 decays. Also
contributing to the process is a diagram (Fig. 7) with an
anomalous vertex, but this diagram is very suppressed.
The hadronic part of the amplitude A,„, (Fig. 7) is

of Kz(sd) (Fig. 6). Factors +I/V2 are the CG
coefficients. [For the KI (dd) vertex, both terms in the
analogous expression would be positive, because CG
coefficients are different. ]

We can now return to the example mentioned in Sec.
II: namely, the ~+~lv decay (Fig. 3). Following the
rules, one can express the amplitude of the process in
terms of an integral which can be easily calculated (see
Ref. 8). With the definition (7) for a~ and P~, one ob-
tains the familiar form (note: g /8M~~ =GF /&2)

.2 d k GFSC P
( —3) j Tr. zy (1—

y&) — /3~ " k ——
(2~)'

g(X+ Yy~)

(k2 ~2)n+I

GFs' 2=( —)"icf P" — M (X+ Y)v'2 n

n 2
4na

Note that the hadronic part of the similar regular ampli-
tude (Fig. 3) is exactly ( —)"icf P" Since G~M —.10
s =sin Oc —10, and (X+ Y) is —1 (see the next sec-
tion), the anomalous contribution is many orders of mag-
nitude smaller than the regular one. Consequently, the
anomalous diagram can be ignored safely in this decay.
In the similar KI2 decay, the ratio A,„, /A„ is slightly
larger ( —10 ), but still negligible. In some other decays

the situation will be identical: because of a hidden s ~d
transition, the anomalous vertex adds a second weak in-
teraction, and the related anomalous amplitude becomes
much smaller than the first-order (in weak interactions)
regular amplitudes. However, we shall see in the next ex-
ample that sometimes the suppression is absent, and then
the diagrams with anomalous vertices become not only
important, but also dominant, overshadowing all other

KS

S

KS +P/2

—P/2

z+(P)

u( k+ P/2)

s( k- P/2)

FIG. 6. Substructure of the anomalous K&(dd) vertex. FIG. 7. The anomalous contribution to ~+ ~lv decay.
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Gy sc
A+o= A„= Mlr f„I,feg (12)

where I-—,
' is a number whose exact value' depends on

the parameter n in (1). In Ref. 8 it was also shown that
the regular contributions to the decay of Kz are of the
same order, since the diagrams are very similar:
(&+ )„,s-(Moo)„s- A,+,s. This certainly cannot de-
scribe the experimental results: we know that A ampli-
tudes should be much bigger. The diagrams with anoma-
lous vertices will make a dN'erence this time. Consider
diagrams for Ks~~ ~ sketched in Fig. 9 (a similar set
can be constructed for E&~n rj ). The anomalous con-

I

contributions.
Consider E~m.~ decays. We already know that dia-

grams with anomalous vertices should not contribute to
AI =—', decays. Indeed, it is easy to demonstrate an exact
cancellation of anomalous diagrams in E + —+m. +m . 2 +o
therefore receives a nonvanishing contribution 2„ from
the regular diagrams only. A characteristic diagram is
presented in Fig. 8. The decay is Cabibbo suppressed,
and of the first order in weak interactions. The total am-
plitude can be written as

FIG. 8. A typical regular contribution to K~~m. Other
regular diagrams are analyzed in Ref. 8.

tributions in mI2 decay were negligible. On the contrary,
by analyzing Fig. 9, one finds no suppression. Although
the encircled vertices are of the order GF, they also
change the flavor structure in such a way that no further
weak interaction is needed to complete the decay. Conse-
quently, the diagrams with anomalous contributions (Fig.
9), and the regular diagram (Fig. 8), are at least of the
same order. Moreover, parameters X and P can help to
inAate the anomalous amplitude even further, making it
dominant. Let me illustrate this by analyzing the first di-
agram in Fig. 9.

According to the rules, the amplitudes can be written
after some rearrangement as

QpSCJ(1)= (PxM~" ')(P~ "
) ( —3)&'

P Pk+ — — k ——
2 2

2

Tr k+ ——m
p' P(X+ &ys)

g n+1

P 'Ys g —g 'Vs
X k ———md k+ —m„

CP? Dn

Here, the denominators are

8 =k aI- P, C = ( k ——R /2 ) —uQ

D =(k +5/2) —o.+
(14)

FIG. 9. Anomalous vertices in Kz~~ ~ decay.

and P, R,S are momenta of K~,~,m+ respectively. It is

easy to see that the Yy& term from the anomalous vertex
does not contribute. Indeed, traces of aH terms propor-
tional to P vanish. The analytic calculation with expres-
sions similar to (13) is impractical, but after the evalua-
tion of traces, one can calculate the remaining (conver-
gent) integrals numerically. In our particular case, the
amplitude finally gets the form

G~scA(1)= Mlr f XI(1) .
2

(The tilde in this paper will always be used to denote the
anomalous contributions. ) X is the parameter from the
anomalous vertex, and I(l) a number which sharply de-
pends on the model parameter n. For n=5, one finds
~I(1)~ =8, and the ratio of the typical regular [Eq. (12)]
and anomalous amplitudes becomes

(16)

Let A+ denote the total (regular+anomalous) ampli-
tude. The famous ratio 3 + /3 + can now be expressed
in terms of X. From (16) it follows that if the model
adopts a value of X of the order of 1, the successful pa-
rametrization of the bI =

—,
' dominance is achieved (For.

a diferent parameter n, a difi'erent value of X will do the
job.) The complete result, which also includes contribu-
tions of the remaining two diagrams in Fig. 9, will be
disp1ayed in the next section. Once the n is chosen and
the constant X is fixed, the model gains a predictive
power, which should be used in analyses of other process-
es. We shall further study E~~~ and some other K de-
cays in Secs. IV and V.
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IV. DETAILED STUDY QF MAIN DECAY
MADES QF KAQNS

In the previous section some general features of the
model were brieAy illustrated. This section is devoted to
a more detailed analysis of the main decay modes of K
mesons. Parameters of both regular and anomalous ver-
tices are fixed, and the theoretical results are compared to
experiments. Finally, in the next section, the predictive
power of the theory will be tested in an interesting rare
decay.

%'e shall not spend too much time considering process-
es in which the important contribution comes only from
diagrams with regular vertices. The procedure is de-
scribed in Ref. 8, and I wiH present only the final results
here. The processes are listed in Table I. Within the
scheme, it is possible to describe all these leptonic and
semileptonic decays of K and m by adjusting only two pa-
rameters, a„and az. The results in Table I are calculat-
ed with n = 5, where n is the power in the denominators
of vertex functions. Parameters n were determined by
analyzing the ~+~p+v and K+ —+p+v decays, and were
found to be

Q,
" '=2. 38'7, (17)

The index in parentheses stands for n=5. The above
values correspond to f =13D MeV, fx =16D MeV,
p = 1998.6, and ply =28.1; see the expressions in Eq. (7).
Once the cx's are 6xed, a straightforward procedure leads
to the decay rates for other processes listed in Table I. A
look at the table reveals a fair general agreement between
theoretical and experimental numbers. For a complete
discussion of these results, see Ref. 9.

Let us turn now to the study of decays of the neutral
kaons. Though the regular vertices contribute to KL and
K& decays, then cannot account for more than 15% of
the total Aoo or A+ amplitudes. Indeed, it was shown
in Ref. 8, that

(~00)reg +
2 ~+0» (~+—)reg 2 ~+0

(18)
(~00)...=D (~~+- )...=o ~

TABLE I. Theoretical {with parameter n =5) and experimen-
tal branching ratios for decays in which only diagrams with reg-
ular vertices contribute. The first two significant digits are
displayed in the results.

Process

~p v
~e v

m. e v+ 0 +

K+ ~p+v
K+~e+v
K+ ~m'e+v
X+~m-'p+ v
r{x,+, ) yr{x„+,)

EL —+m e+v {or
XL ~~ p+v {or
EL ~K e+v (or
~«I.,3)~~«L„3)

~ e+v {or
K& ~ p+v {or

X e+v {or

'Input for o: .
Input for az.

~+e v)
~+p v)
K+e v)

m+e v)
m+p v)
K+e v)

Theory

Input'
1.3 X 10
1.0X 10

—'

Input
1.6X 10
0.035
0.023
0.66

0.14
0.10
2.7 X10-'
0.66

2.5 X 10
1.6X 10
4.7 X 10

Experiment

100%
1.2X10-'
1.0X10-'

0.64
1.5 X10-'
0.048
0.032
0.66

0.19
0.14

N.A.
0.70

N.A.
N.A.
N.A.

[Note that the second line in (18) reflects the absence of
CP violation in the four-flavor model. ] Numerically, the
(A )„amplitudes calculated with (12) and (18) are not
bigger than 50 eV, while the experimental numbers are
on the order of 400 eV. Therefore, from now on I will to-
tally neglect the regular diagrams in the analysis of the
K& ~~a decays, and concentrate only on diagrams with
anomalous vertices. The first to be considered are the di-
agrams in which only one of the regular vertices is re-
placed by a vertex with an anomalous Aavor structure.
Such diagrams for Kz~m. m decay are depicted in Fig.
9, and one of the amplitudes, A(1), is displayed in Eq.
(13). The remaining two amplitudes are

GFSCJ(2)+ g(3) — (p M2n —3)(p~2n —2 )2( 3) ~ 3

'2
d k 1 P P' +1'g P' S)3

k +— Tr k'+ ——I, k ———m„(2~)' &2 2 2 ' gn 2

g —gX k+ Pl
2 Q

g(X+ Fy, )

Dn +1

2
P P ~'Ys J'

k —— Tr k+ ——md k' ———m,
2 2 g" 2

S(X+Yy3)
cn +1

gy5I„ Dn
(19)
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The denominators 8, C, and D were defined in Eq. (14).
When contributions of all three diagrams are summed,
the total anomalous amplitude can be written as

Gpsc
A+ = — M~f XI.

2
(20)

Here, I denotes a sum of loop integrals, which must be
calculated numerically. In model A, with n = 5, one finds
I~I ~",~=5.00. (For the model B results, see the Appen-
dix. ) X in (20) is the unknown parameter, sitting in the
anomalous vertex, see Eq. (4). One also easily finds that
2 oo= 3 + . The anomalous amplitudes in terms of the
parameters X are given in Table II, for both model A and
model B. If the anomalous vertices are responsible for
the AI =

—,
' dominance, the free parameters must assume

the values

X~s) ——1.3 (model A),

X(s~ ———6. 8 (model B) .
(21)

TABLE II. Amplitudes (in eV) for E~~~ decays. The
anomalous contributions, calculated in models A and B (with
n=5), are compared to experimental results. The latter were
obtained from the measured decay rates (Ref. 36), by using

~ A,„~, ~
=(8vrMsI /~p~)'~'. The statistical factor &2 is included

Decay

A+ ~~++0
s ~+

Xs 0 0

XL ~m+~
K ~m

Model A

285X(5)

Model 8

55X(g)

Experiment

18
389
372

0.9
0.8

With these values, two Ez ~~~ amplitudes get the mag-
nitude of about 376 eV. The remaining fine splitting be-
tween (Aoo),„„,and (3+ ),„,could be achieved if the
small regular contributions (18) are added to the anoma-
lous amplitudes with a certain phase angle.

It is important to note that in Kz~~~ decays only the
parameter X can be determined, but nothing can be said
about the other parameter characterizing anomalous ver-
tices: namely, Y [see Eq. (4)]. As a working hypothesis
we can assume that this second parameter has a value not
too different from X, and set Y =X. However, this is only
a hypothesis, which still has to be confirmed (or rejected)
in analyses of other decay channels.

What we have seen so far is that the diagrammatic cal-
culation in the long-distance scheme can accommodate
all the major decay modes of E (and m ) to a good degree
of accuracy, provided the parameter X has the proper
value. What still remains is to test the model in rare de-
cays. This will be done in the next section, in an analysis
of an interesting, though not yet observed, decay mode of
K+.

V. K DECAYS AND FIFTH FORCE

Once we are convinced that some model successfully
describes the basic K decays, we usually apply the model
in a subsequent study of rare and/or unobserved kaon de-
cays. Thjs has repeatedly been done in the past, and will
also be carried out in this work. Only such a procedure
truly tests the predictive power of a scheme. Indeed,
while a theoretical study of, e.g. , K —+~~ decays is always
in one way or another affected by the well-measured ex-
perimental numbers, the real nature of a model is re-
vealed only when one is not in temptation of reproducing
some of the firmly established data.

The decay channel which will be analyzed in this sec-
tion is K+ ~~+y ~. Here, y ~ is the "hyperphoton" —an
ultralight vector particle (with a mass possibly smaller
than 10 eV) associated with the so-called fifth force. '

This force might be responsible for efFects observed in re-
cent experiments measuring deviations from the ordinary
gravity. ' Note that the deviations in some of these
experiments might also be a sign of a short-range quan-
tum fIuctuation in gravitational theory, and thus possibly
unrelated to the fifth force. It would be much easier to
distinguish between the two competing hypotheses if a
clear effect is observed also in K decays. This is the main
reason for renewed interest in K ~~+@~. Indeed, a
better experimental limit and a reliable theoretical
description of this decay could lead us to a firm
confirmation of the fifth force, and give an important
piece of information on its character and strength.
Several excellent articles about the new force were
published recently, and the reader is referred to these re-
views for further details. Presently, the experimental lim-
it " on the branching ratio for K+~~+y~ decays is
B (4.6X10 . A new experiment is expected to push
this limit to the range 10 ' in the near future. The de-
cay has also been studied by four groups of theor-
ists. An essential step in all the theoretical analyses
was to relate matrix elements of K~~yz to those of
K ~~m decays, and each group devised different
methods to achieve that goal. Surprisingly, the quoted
results for the branching ratio are spread over 2 orders of
magnitude (see Table III). It will be interesting to see
how our long-distance oriented model, with the direct
evaluation of amplitudes, compares to other analyses.

The coupling of the hyperphoton to a quark can be de-
scribed by the vertex ifC~ y', where f denotes the general
strength of the fifth force, and C is the hypercharge of
the interacting quark. For example, C„=Cd = 3,
C, = 3

C
3

etc. In the nonrelativistic limit, the
above form of the vertex corresponds to the Yukawa po-
tential V=(f /4')exp( br)lr. Note that Fisch—bach's
group ' ' uses a different Yukawa coupling, and their
constant f is 4' times smaller than the one used here.
(This fact is important in the numerical comparison of
various results, and has been taken into account in Table
III.)

Two classes of diagrams have to be considered in an
. analysis of K ~~ y z decay. In the first class, the dia-

grams are constructed without use of the anomalous ver-
tices. A typical diagram is presented in Fig. 10. When
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TABLE III. Various predictions for the branching ratio
8 = I (K+~~+y &)/I (K+ ),&~. All the results are given in
terms off normalized according to the convention described in
the text. Comments: (a) The common four-momentum in two-
body matrix elements is taken to be the pion momentum; (b)
with r =1.5 (r is an enhancement factor due to a presence of
the short-distance gluons); (c) with r =12; (d) corresponds to
x=0.29 choice (x is a correction factor required because of an
extrapolation to the zero-momentum poin); (e) model A, assum-

ing Y(, ) =X(,)
= 1.3; (f) model B, assuming Y 5) =X~&) = —6.8.

~u
~s

r'+

t u

~s.'
Ref.

Aronson et al. (Ref. 31)
Suzuki {Ref. 30)

Bouchiat et al. (Ref. 32)
Lusignoli et al. (Ref. 33)
This work

B (in 10' eV )

0.5(f /mr)
4.4(f /mr)

35.4(f /mr)
30.0(f '/m y )

3 1.0(f '/m r )

45.0(f /my)
2.5(f'/mr )

Comment

(a)
(b)
(c)
(d)

(e)
(fj

and

FIG. 11. The four diagrams with anomalous vertices.

2

J'(1)= k +— Tr y'7 k+ —8 =J'(3),P
2 2

G~sc
i —ff fK(0.042)P'+

2
(22)

three similar diagrams are added, and the amplitude cal-
culated with a's and p's as determined in (17), one finds

J'(2) = k —— Tr y'g g+ —P'P, P'

2 2

2

J'(4) = k ——+g Tr y'g k'+-P
2 2

(25)

C„J'(1)—Cd J'(2)
X M~

)4 I/n+1Un

C„J'(3)—C,J'(4)
+M ynUn+1 (23)

where

P is the momentum of the kaon. The ellipsis denotes the
part of the amplitude proportional to the hyperphoton
momentum Q'. (This latter piece does not affect the de-
cay rate. ) Had (22) been the only contribution, the
branching ratio would have been of the order
B —2X10' (f/mr) eV, which is much smaller than B
obtained in the other analyses, and beyond the
present experimental limit. However, we know that the
second class of diagrams, those with anomalous vertices,
should also be considered. They are presented in Fig. 11.

In model A, after some rearrangement, the sum of the
corresponding amplitudes can be written as

GFsc
A;„, = — (plrM~" )(p~ " )fY( —3)v'2

When all the traces are calculated, and the loop integrals
evaluated, the relevant part of the "anomalous" ampli-
tude in model A, with n =5, becomes

GFsc
i ——ff fir(4. 7116Y("~))P'+ . . (26)

2

In a similar way A;„, can be calculated in model B (for
the result see the Appendix). It is important to note that
the amplitude (26) is proportional to the parameter Y
from the anomalous vertex (4), and not to X which played
a role in the K~~~ decays. This is the place where the
assumption X= Y [discussed after Eq. (21)] enters. If one
uses Y("&~=1.3 [compare to Eq. (21)], it becomes clear
that the anomalous amplitude (26) completely dominates
over the regular one, Eq. (22). Consequently,
K+~~+yz is another process in which regular dia-
grams could be totally neglected: diagrams with s —+d
transitions contain all the important physics. (A similar
conclusion follows also in model B.) When the absolute
square of the amplitude is multiplied by the appropriate
phase-space factor, and divided by the total width, one
finds the branching ratio B. For model A, this becomes

V =k ax Mx, U = ( k—+ Q /2 ) —a~ (24)
p2

B =26.7( Y ) X 10' eV
my

(27)

i—--~ VY (Q)

FIG. 10. One of the regular diagrams for K+ ~~+y z decay.
Hyperphoton can be emitted by any of the quarks. Thus, three
additional diagrams should also be considered.

Here, rnid is the mass of the hyperphoton. In Table III,
parameters Y and Y are replaced by their numerical
values, and the branching ratios are expressed in terms of
the unknown quantity (f /m r ) .

From the theoretical viewpoint, it is significant that the
model A and model 8 results are so diferent, although
both models gave the identical description of %~a~.
Clearly, the choice of wave functions plays the major role
in a study of rare decays, and this is true not only for our
diagrammatic approach, but also, as seen from Table III,
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for all previous analyses. The big spread of the results
basically refIects our inability to deal with long-distance
physics. An optimistic view, that if we can correctly de-
scribe the main K-decay modes it automatically means
we can trust the method in rare decays, is not at all sup-
ported by the above study. Fortunately, in our example
the physical consequences are unafFected. Even the
lowest branching ratio in Table III seems to be excluded
by experiments. Indeed, an upper limit on the strength of
the fifth force can be deduced from the table, and one
finds

p2 (9.2X 10 eV =606 m m
my

(28)

VI. CONCLUDING REMARKS

This work studies the long-standing problem of K de-
cays from a new angle. Avoiding the short-distance ex-
pansion, it sets a scheme in which all QCD effects are ab-
sorbed in nonlocal efFective vertices. The so-called "regu-
lar" vertex functions were introduced in a previous
work, and were found to describe surprisingly well lep-
tonic and semileptonic K and ~ decays. In the present pa-
per a further step is taken: an analytic form for a new
kind of "anomalous" vertices is suggested. By combining
regular and anomalous vertices, a quantitative descrip-
tion of nonreptonic K decays, and a simple parametriza-
tion of AI =

—,
' dominance, become possible.

It is also demonstrated that in a long-distance environ-
ment one cannot directly relate rare decays to the well-
measured main decay modes of K. This fact was not ap-
parent in analyses based on the operator expansions, be-
cause the leading short-distance corrections were preserv-
ing ( 1+y'5) chiral structure of operators. However, there
is no reason to believe that the chiral structure will
remain so simple when the long-distance QCD is taken
into account. On the contrary, one would expect the
structure to change to (X+ Yy~), with ~X~ and

~
Y~

becoming unequal. X could be determined in K ~~~ de-

where G is the gravitational constant, and mH is the
hydrogen mass. The upper bound (28) is not in agree-
ment with findings from geophysical and other experi-
ments. Therefore, it was suggested that the fifth force
might be coupled not exclusively to the hypercharge, but
rather to a combination of hypercharge, strangeness, and
isospin. Then a window for a superlight, vector carrier of
the fifth force is still open.

As a final remark, let me repeat that the results in
models A and B were obtained with the assumption that
Y=X. With this assumption, the results more or less fit
into the broad region charted by the other studies of the
process. However, if by some reason it comes out that
Y «X, the picture changes completely. In that case, the
branching. ratio for K ~~y z process becomes very small,
and possibly even dominated by regular diagrams. As a
consequence, even the pure hypercharge coupling of the
fifth force could be saved. The option Y«X should be
considered seriously. Our limited knowledge of meson
wave functions does not allow an a priori rejection of this
possibility.

FIG. 12. Two-body weak decay of a meson. Dots indicate
gluonic corrections. The corrections in the left diagram are in-
cluded in the effective vertices.

cays, but not Y. Therefore, only a combination of rare
decay amplitudes in which Y dependence cancels, will be
related to the main two-body decay amplitudes.

Some elements of the proposed scheme still have to be
improved or better understood. For example, it would be
extremely helpful to have a theory which would shed
some light on the form and parameters of the probability
distributions and wave functions. Furthermore, although
some QCD corrections are contained in the effective ver-
tices, not ao corrections are accounted for in the scheme.
Consider, e.g. , Fig. 12. The left diagram is properly
treated by the model, but not the right diagram. Present-
ly, it is very difIicult to say anything about the impor-
tance of the diagrams from the latter subgroup. Closely
related are problems caused by consideration of only the
lowest Fock states in wave functions of mesons. It is easy
to see that this limitation jeopardizes the gauge invari-
ance of the theory. ' To enable a study of radiative K
and ~ decays, one should expand the model so that it also
includes higher states, as represented, e.g. , by Af(qq ')y
vertices.

Although a need for further improvements cannot be
denied, already in its present form the model provides a
fresh look at some interesting aspects of K physics. For
example, the precise form of the wave functions seems to
be much more important in analyses of rare decays than
previously thought. Long-distance physics and s ~d
transitions could be joined in a simple scheme character-
ized by a direct evaluation of full amplitudes. With only
a few parameters, a fair description of all main decay
modes of light mesons could be achieved, etc. Almost
every physical problem can be approached from various
starting points. Such a diversification is particularly
needed in the study of K decays, where many important
features are still not under control. The proposed new
scheme might provide a path toward a more complete
understanding of the old problem.
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APPENDIX: ALTERNATIVE MODEL
FOR ANOMALOUS VERTICES

I am repeating here a11 the calculations mentioned in
the main text in an alternative model. The goal of that
study is to learn something about model dependency. In
the alternative model ("model B"), the probability distri-
bution for anomalous vertices has the form [compare to
Eq. (4)]

GFsc p g(X + Y ys)
H ~(k, P) = — P~M~ k +—

2 2 (k —ct~P2)"

(Al)

Note that the power in the denominator is n, instead of
I

n +1 used in model A. Expressions (5) and (S) remain
unchanged, and so do the rules for evaluation of dia-
grams. Although the difference might look minor, the
values of loop integrals change considerably in some
cases.

Consider first the anomalous part of the ~+ —+Iv am-
plitude (Fig. 7). Instead of the expression in the second
line of Eq. (11), one finds

GFS e
( )ntcf pv M2 (X~+ Y23)

v'2 4o. n —3

(A2)

Equation (13), for the amplitude A(1) in %+~sr+sr de-

cay, becomes replaced by

GFsc
(p M2n —3)(p~2n —3 )2( 3) ~ 3 fv'2 (27r) &2

'2
P Pk+ — — k ——
2 2

2

X Tr It,'+ ——m
2 d

g(X +Y y5) p gys g gk' ———m„ k'+
g /1 C' 2

&xs
m

D Il
(A3)

The remaining two amplitudes, Eq. (19), get changed in a similar way, leading to the total anomalous amplitude [com-
pare to Eq. (20)]

(A + ),d„B— — M~f X I
2

(A4)

With n=5, one finds I ~I [5]=—0.97. Therefore, in order to describe the experimental value A + —376 eV, one
must choose X ~,]-——6.8.

When the decay E+~vr+y r is considered, one finds that the amplitude A,„, becomes [compare to Eq. (23)]

G~sc 4

A r F
(p M2n —3)(p~2n —3 )fYB( 3)fanom ~2 K 'r (2~)' ~3

C„J'(1)—Cd J'(2) + C„J'(3) —C,J'(4)
VnUn

(A5)

This expression gives (with n =5)

GFsc
( A anom )model B +t —ff.fthm(0 2114Y('5) )P'+

2

and the branching ratio

g2
8 =0.0537( Y ) X 10' eV

my-

Whenever masses of quarks were required in calculations, in both models A and B, the values

m, =md =0.010 GeV, m, =0.150 GeV,

(A6)

(A7)

(AS)

were used. The other numerical constants, GF=1.1664X10 eV, s=0.222, c=0.975, M+=0.495 GeV, and
M =0.140 GeV, have the standard values (see e.g. , the Particle Data Group compilation ).
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