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Z-boson bremsstrahlung in heavy-quark decay
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We calculate the rate for Z-boson bremsstrahlung in the charged-current decay Q~qWZ of a
heavy fermion Q to a light fermion q. This process may be used to test the WWZ trilinear gauge-
boson coupling of the standard model. We evaluate the branching fraction for this decay mode of
fourth-generation and E6 exotic fermions; the branching fraction increases dramatically with in-
creasing m & and may reach 1% for TeV fermion masses.

The construction of new multi-TeV hadron colliders,
such as the Superconducting Super Collider and the
CERN Large Hadron Collider, and e+e colliders in the
1 —2-TeV range will allow a search for new quarks and
leptons with masses much higher than the potential
search limits from existing accelerators. Such heavy fer-
mions (Q), if they exist, will dominantly decay via their
charged-current coupling to the 8 and a lighter fermion
q: i.e., Q~qW. As is well known, when m& ))M~ the
decay rate for Q~qW is enhanced by a factor of
-m&/M~ due to the longitudinal W coupling to the Qq
current. This enhancement is similar to that of the cou-
pling of a Higgs scalar (H) to a heavy quark and it is ex-
pected that the decay Q~qWH with an addition H in
the final state may become important at large-m& values. '

Similarly the decay rate for Q~qWZ will become in-
creasingly significant at high m& due to the longitudinal
Z coupling as long as the axial-vector coupling to Q is
nonzero. The Q-+qWZ decay proceeds through the
three diagrams shown in Fig. 1. The presence of the
graph involving the 8 8 Z trilinear gauge-boson interac-
tion means that a measurement of I (Q~qWZ) could
test the standard-model 8'O'Z trilinear gauge coupling.

There are several interesting possibilities for the fer-
mions Q and q. If a fourth family of fermions exists,

a V4

(I)
v

parameter analysis also restricts
~ mt —m „~5 330 GeV so

4

that the phase space in the case of I.—+v48 Z is also lim-
ited. The reactions v ~t8'Z and a ~b8'Z appear more
promising since in the limit of small mixing (i.e., a nearly
diagonal mixing matrix) the p parameter places only very
weak constraints on m, and m, . However, these fermion
masses cannot be arbitrarily large and still satisfy the
constraints which come from perturbative unitarity; to
this end we assume m„and m, ~ 700 GeV.

Beyond the simple four-generation extension to the
standard model (SM), there are other possibilities for
Q —+qWZ decays. As an example, we consider the two

the following decay modes could be realized:

u~(t, a ) WZ, a ~(u, b) WZ, L ~v4WZ,

with the rates dependent on mass heirachies and quark
mixing. Since data on the p parameter restrict
Irn, —m, ~

5 190 GeV (Ref. 4) for m, ) 60 GeV (Ref. 5)
and since Mgr+Mz 1'73 GeV the decays v~a8'Z or
a~v8'Z will be highly phase-space suppressed. The p-

FIG. 1. Feynman diagrams for the heavy-fermion decay
Q ~q WZ.
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charged vectorlike fermions (h and E) which occur in E6
superstring-inspired models. With suitable discrete sym-
metries applied to the superpotential, h can be a charge

3 i so sing 1et quark and E is a charge —1 iso doub 1et 1ep-
ton with T3= —

—,'. Both can decay by mixing with the
ordinary fermions via the modes

h~(u, c, t)WZ, E~(v„v„,v, )WZ . (3)

Since h and E are vectorlike to a good approximation in
the mass-eigenstate basis (if ordinary-exotic mixing is
small which will assume to be the case ) these fermions
will not have enhanced couplings to longitudinal Z's.

We consider the general decay Q ~q WZ whose matrix
element is given by

JR(Q —+qWZ)=qL
gE~z4*~w gL~w@*~z+

q
4 2 m 2

Q
8 2 m 2

Q

&w~
8* —M~

&k~zmq~w gR~wmg~z
qR „2 2 QL qL 2 2 QR

Plq Q' —mg

(4)

where ew (cz ) is the W(Z) polarization vector,

Q*=Q —Z, q*=q+Z, W*=Q —q,
with Q, W, Z, q denoting the corresponding particle four-
momenta, and QL R

=
—,'( I+y, )Q. In te~ms of

xw =sin Hw=0. 230 and c =g [2(1—xw)] ' Vg,
where V& denotes the fermion mixing matrix element,
the couplings are

xwQ )

gL R
—c( T3L R xwQ), gw=+c(1 —xw)

with the plus (minus) sign to be chosen for W+ ( W )

emission. The vector P in Eq. (4) is defined by the usual
standard-model coupling plus an anomalous magnetic
moment interaction:

integrations are both performed numerically with the re-
sults independently checked by calculations using the
algebraic-manipulation program REDUCE. The helicity
amplitude calculation is easily performed in the rest
frame of the initial heavy fermion Q, with the z axis
chosen along the momentum of q. We use the convention

+L 0
~L= 0 (8)

+R

yLR(q, A, )=+qo+A, ~q~5;i . (10)

The decay width is calculated from the sum of squares of
the helicity amplitudes. In presenting the results we will
normalize the decay width for Q ~q WZ to that for
Q ~q W to remove overall mixing-angle and coupling-
constant factors. This ratio is essentially the Q~qWZ
branching fraction.

Let us first consider the decay L —+v4WZ. Figure 2
shows I (L —+v&WZ)/I (L —+v~W) for m, =0. Data on

4

the p parameter restrict the mass of L to be ~ 330 GeV
for m =0. For this limited L mass range the ratio of
decay rates is never much larger than 10 and would be
virtually impossible to observe. The separate contribu-
tions from the trilinear WO'Z vertex and from initial-
state Z bremsstrahlung to the ratio of decay rates are also
shown in this figure. One sees that Z bremsstrahlung
from the heavy initial fermion and Z production from the
WWZ vertex yield comparable contributions to the
overall rate.

Figures 3 and 4 show the corresponding ratio of widths
for U- and a-quark decays, respectively; here the ratios
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~

I I I I

)

I I I I

The two-component spinor y of helicity A, for Q is

yL(Q, A)=yR(Q, A)=mg5, i (i, A, =+I) .

Here the left (L) and right (R) decompositions are equal
because the spinor is evaluated in the Q rest frame. The q
spinors are given by

P =em'&z Z 2
Mz

Mw

WkM 2

M~
10—2

+2(~wW'~z ~zZ ew)

+(i~z —1)[(Z + W )(ez W&w'Z &w'~zMz

~w'~zW Z)/Mw

+Z ew &z &zZ ew]

10

Here &z is the strength of the W+ W Z anomalous mag-
netic moment coupling. It is defined analogously to the
W+ W y anomalous coupling and has the value of unity
in the SM. In our analysis we neglect QCD corrections
which are expected to be small for heavy-quark decays.

The calculation now proceeds in a straightforward
manner and makes use of standard helicity techniques;
the squaring of the matrix element and the phase-space

10-4
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FIG. 2. The ratiO Of deCay rateS I (I, ~v48'Z)/1 (L ~v48 )
vs mL assuming v4 to be massless. The individual contributions
from the 8'8'Z vertex and from emission from the heavy
charged lepton are shown separately.
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FIG. 3. The ratiotio of decay rates I {v~t8Z)/I (v —t8') vs FIG. 5. The re ratio of decay rates I (h ~t8'Z)/I {h~tW) vs

Pl/, .

can be as lar e as =10-'g — for the mass range allowed by
perturbative unitarity. Branching fr t'ing ractions this large for

e t ree-body final state may be observable as will b
discussed below.

easwi e

For the case of the E6 exotic fermions h and E, whic
decay via mixing with the ordinary fermions thions, ere is no

sub'
pp ound on their masses in the limit f 11'mi o sma mixing

cal constraints. T e
su ject however to possible cosmolo ical andogica an astrophysi-

g e couplings of the exotic fermions to Z are vec-
torial, the O'O'Z trilinear au
an give rising branching fractions as the masses of E and
h increase. The width ratios for th dor ese ecays are shown
in igs. 5 and 6. For the h or E mass in T V h

'o of branching fractions exc d 10
e range t e

—1

ee s and is lar er
than 10 for masses above =3 TeV.

g

The additio'tional interesting decay channels E~IZZ and
e neutral-current interactions.h —+bZZ involve double n

eir matrix elements are given b E (4)y q. & with g~=0

(smce there is no 3Z vertex) with an overall change in
normalization given by g/&2~ /2c
o —must be includeb

'
ed in the decay rate to account for the

two identical Z's in the final stat Th 1s a e. e ongitudinal en-
chancements found in reviop vious processes are not present
in t' ese channels.

Figure 7 shows the inAuence of deviations in th 1s in e vaue
z y rom unity on the relative size of the branch-

ing fraction for the decay U~t8'Z. Note that the re a-

for ~z&1 with a factor =2.3 increase for Ib,Irz I
=1 over

alit e
e Kz 1 prediction. This result is a general f ta eaureo

a the decays we have examined. An increas

call si
e s an ard-model prediction must b te s atisti-

'g s a istics would bey significant and reasonably high st t' t'

necessary to probe ~b,a.zI =0.2 —0.3. To this end we
make some estimates for the number of t

i ional Z that one might expect.
r o events wit an

Thhe number of events at &s = 1 2 T Vor e e e collid-
ers of the kind that interest us is unfortunately not large.

rom QQ production the decays Q~qW'and Q~q8'Z
give a final state consisting of two jets, 28 s plus a Z
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FIG. 4. The ratiio of decay rates I (a ~q8'Z)/I (a ~qW) vs
m, . The case =b ass
bidden.
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FIG. 6. The ratiotio of decay rates I (E~v8'Z)/I (E~v 8') vs

mz.
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FIG. 7. Anomalous-magnetic-moment ~, dependence of the
ratio of decay rates I (v ~t8'Z)/I (v —t W) as a function of m„
with m, = 100 GeV.

FIG. 8. The ratio I (t~bWy)/I (t~bW) of decay rates vs

m, assuming Ey ) 20 GeV.

The number N of such events for a given integrated lumi-
nosity L is X=2BoLwher. e B is the Q ~qWZ branching
fraction from Figs. 3 and 4 and o. is given, for example, in
Ref. 9. For m„(m, ) =600 GeV we expect N=30 (50)
events at a &s =2 TeV e+e collider with L =100 fb
However reconstruction efficiencies may only be =10%
(Ref. 10) for the WWZ final state. For mL =300 GeV a
similar calculation for a &s = 1 TeV collider yields
N=27 events. For exotics, which can decay by either W
or Z emission, B is given by I ( Q —+q WZ )/
[I (Q qW)+I (Q /q'Z)] with I (Q —q'Z)
= —,'I (Q —qW) as m&~ ~. This amounts to an addition-
al suppression factor of —,

' in these cases, e.g. , for
m@=800 GeV at &s =2 TeV collider one finds %=40
events which is comparable to the numbers above for U

and a. Somewhat smaller X values are obtained in the
case of h production and subsequent decay.

An analysis of backgrounds to the Q~qWZ signals
would depend on the Q and q masses, which would be
determined from studies of the dominant Q —+qW signal.

It is also of interest to consider photon bremsstrahlung
in heavy-quark decay, such as t —+b Wy. Since
I (t ~b Wy ) is infrared divergent, the result will depend
on the choice of cutoff in the photon energy, E,„,. At
TeV linear colliders, a reasonable choice may be E,„,=20
GeV which we will assume in our discussion. The matrix
element is given by Eqs. (4)—(6) with the replacements
Z ~A, gL, R ~cQ gL, R ~cQ gw +c where now
c =g Qx„ /2V& . The corresponding expression for P
is given by Eq. (7) with Z ~ A, Mz set to zero, and ~z set
to unity. Figure 8 shows the predicted result. Although
the t ~Wy b branching fraction grows with I, it is never

larger than =4.7X10 for m, ~200 GeV. Hence the
t ~b Wy decay mode will not be easily observed.

In summary, we have calculated the rate for the Z-
boson bremsstrahlung process Q~qWZ in the charged-
current decay of a heavy fermion Q for several possible
choices of Q and q. When Q is a member of a left-handed
weak isodoublet the ratio I (Q~qWZ)/I (Q~qW) is
quantitati vely similar for Q =L, v, a and can reach a
value of = 10 for m &

——600 GeV. The rate is enhanced
by the axial-vector coupling of the Q to the longitudinal
Z boson. When Q is vectorlike (e.g., the h and E exotic
fermions), this axial-vector coupling is absent and the ra-
tio is smaller than that for ordinary fermions. However,
whereas the mass range of ordinary fermions are bounded
by perturbative unitarity, the masses of the vectorlike fer-
mions are not so constrained. For exotic fermion masses
in the TeV range, branching fractions for Q ~qWZ of or-
der 1% can be realized. At TeV e+e colliders, decays
of this kind are relatively background-free but do not
occur with very large rates even for integrated luminosi-
ties in the 100-fb ' range. We have also calculated the
ratio I (t —bWy )/I (t —bW) for the photon bremsstrah-
lung in top-quark decay, subject to a photon energy cut
of 20 GeV.
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