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QCD radiative corrections to electroweak-boson production
at large transverse momentum in hadron collisions
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The results of a complete analytical calculation of the next-to-leading-order QCD radiative
corrections to the inclusive cross sections parton+parton —+ V+X, where V is an on-shell 8'—or
Z with transverse momentum Qr of order Ms, or a massive virtual photon with Qr of order of
its invariant mass, are presented. Numerical predictions for 8', Z, and y production at collider en-
ergies are also presented. The dependence of the radiative corrections on the choice of renormaliza-
tion and factorization scales is discussed. The results presented indicate that the QCD-improved
parton model can be used to make firm and reliable predictions for electroweak-boson production at
large Qr.

I. INTRODUCTION

The carriers of the weak force, the 8' and Z bosons,
have been observed in proton-antiproton collisions at the
CERN SppS' and Fermilab Tevatron Colliders. These
events are probably caused by quark-antiquark annihila-
tions and by radiation off quarks that scatter from other
constituents in the colliding hadrons, production mecha-
nisms that are essentially the same as those responsible
for "direct" photons and virtual photons which decay to
lepton pairs. The cross sections for these processes are
sensitive probes of strong-interaction dynamics. Any
new massive vector bosons that are not part of the "stan-
dard theory" of strong and electroweak interactions as
it is presently understood, and which possibly await
discovery in hadron-hadron collisions, are likely to be
first produced by the same basic mechanism. It is also
possible that other types of new particles might be pro-
duced in association with electroweak bosons, and most
easily observed in such association. It is therefore impor-
tant to have precise predictions for vector-boson produc-
tion cross sections within the framework of the standard
theory.

The cross sections for vector-boson production by
quark-antiquark annihilation are proportional to the elec-
troweak coupling constant a. The QCD radiative correc-
tions to the total production cross sections are of order
aa„where a, is the QCD coupling strength at a scale on
the order of the vector-boson mass, and have been com-
puted. Most bosons produced by this mechanism have
very little momentum transverse to the collision axis. To
produce a boson with large transverse momentum Qz.
costs an additional factor of a„evaluated at a scale of or-
der Qz, required to generate hadrons which balance the
transverse momentum. The differential cross section
do /dQz falls rapidly with Qz, but it has been measured,
and the Qr dependence provides a more sensitive test of
QCD than the total cross section. The radiative correc-
tions of order aa, to large-Qr production have thus far
only been computed for "nonsinglet" cross sections

which (essentially) only receive contributions from
valence quarks and antiquarks. Nonsinglet corrections
dominate at lower energies at which the ratio ~= Q /S of
the boson mass squared to the center-of-mass hadron en-
ergy squared is not too small. Very roughly, v'r deter-
mines the momentum fraction x of the annihilating par-
tons, while the density of partons with a given x is deter-
mined by the energy scale which characterizes the hard-
scattering process. In the "Drell-Yan" process at fixed-
target energies, only the valence partons are important.
However, at the energies V'S )500 GeV required to pro-
duce 8"s and Z's, the densities of quark-antiquark pairs
and of gluons are substantial, and eventually become
much larger than valence densities in the multi-TeV ener-
gy regime. At CERN Collider energies, for example,
quark-gluon scattering accounts for approximately 30%%uo

of the cross section at large Qr. This fraction increases
with energy, rising to roughly 50% at 1.8 TeV, and 80%
at 40 TeV. Thus it is important to estimate the complete
order-a, corrections at large Qz. (Ref. 10). These correc-
tions determine the scale of 0;, and in addition alter the
leading-order cross section by a Qr-dependent "K factor"
which can be substantial not only at large Qz, but also in
the "Sudakov" region of small Qr/Q .

In this paper we present the results of a complete cal-
culation of the order-o. , corrections to y*, 8' +—

, and Z
production. We assume that Qz. is of order Q. Thus,
while the analytic form of the perturbative cross section
in the Sudakov region may be extracted from our re-
sults, "we do not address the problem' of summing large
logarithms of Qr /Q in this paper. We also assume that
the quarks involved are either effectively massless or
sufficiently heavy that they decouple at the relevant ener-
gy scales. Thus Aavor thresholds are included in an ap-
proximate way. In Sec. II we outline the parton-model
framework of the calculation and present the general
form of the parton-level cross sections with their Aavor
structure explicitly displayed. In Sec. III we discuss de-
tails of the perturbative calculation including the treat-
ment of y& couplings in the context of dimensional regu-
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larization. In Sec. IV we present numerical predictions
for O' Z, and y* production, and discuss the dependence
of these predictions on the choice of renormalization and
factorization scales. The principal conc1usions drawn
from these results is that the QCD radiative corrections
are small, which indicates that the predictions are firm
and reliable. Detailed analytic formulas for all parton-
level cross sections are given in the Appendix.

After this calculation was substantially complete, we
learned that an independent calculation had also been
performed by Arnold and Reno. ' %'e have compared
our formulas with theirs, and find that all parton-level
cross sections presented in their paper agree analytically
with the corresponding formulas in this paper. Our cal-
culation includes some additional contributions of order
a, not considered by them. These arise from the two vir-
tual diagrams in Fig. 2 which contain triangular quark
loops, and from the interference between diagrams a and
b in Fig. 4, and they do make a (numerically) small con-
tribution to Z production in regions between heavy-
Aavor thresholds.

D. THK HADRONIC CROSS SECTIONS

h)(P, )+h2(P~)~V(Q)+X . (2.1)

Here h;, i =1,2 are unpolarized hadrons with momenta
P;, and V stands for an on-shell 8'+—or Z with trans-
verse momentum Qz of order Q =Mv or a virtual pho-
ton with Qz of order Q ))Mz,d«„.

A. Parton model and kinematics

The QCD-improved parton model predicts that if the
intrinsic energy scale involved is sufficiently large, the in-
clusive cross section for the process (2.1) can be reliably
computed using the approximate factorized form

In this section we define the general structure of the
cross sections for inclusive production of an electroweak
boson V within the framework of perturbative QCD. The
experimental processes for which we will present predic-
tions are

1 2do 1 h( 2 h~ 2
Q 3 X dx2dxlf, «i M )f., (x2&M )+Q 3

(x IPI ~x2P2&M (2.2)

Here E& ——Q, a and b stand for quarks, antiquarks, or
gluons, f,"(x,M ) is the probability density for finding
parton a with momentum fraction x in hadron h if it is
probed at scale M, and 0' (p&,p2, M ) is the perturba-
tive cross section for the process

a (p, )+b(p2)~ V(Q)+X, (2.3)

from which collinear singularities arising from radiation
off massless partons have been factorized out at scale M
and implicitly included in the scale-dependent parton
densities f,"(x,M ) (Ref. 14).

To establish notation and conventions we next specify
more precisely how the hard-scattering cross section o'
depends on the integration variables x;. We de6ne Man-
delstam variables appropriate to the hadron and parton
levels as

S =(Pi+P2), T=(P, —Q), U=(P2 —Q)

s =(p, +p~), t =(p, —Q), u =(p2 —Q)

Sz=—S+T+U —Q, s2 ——s+t+u —Q

(2.4)

Here S2 and $2 are the invariant masses of the system
recoiling against V at the hadron and parton levels, re-
spectively. We wi11 express the hard-scattering cross sec-
tion o' in terms of the variables s, t, u, and $2, which can
in turn be expressed in terms of S, T, U, and Q using
p; =x;P;.

Following Ref. 8 we make a change of integration vari-
ables in Eq. (2.2) to deal with the singular behavior of o'
in the limit s2~0. These singularities, which are actual-
ly integrable, are the remnants of cancellations between
nonintegrable singularities due to soft gluon emission in

the recoiling parton system and infrared singularities that
arise from virtual-gluon exchange. The cancellation,
which will be discussed later, produces "+"distributions
in the variable $2 which are to be integrated using the
rules

1
dS2 $2

0 S2

ln(s2 )J ds, f(s, )
0

f (s2) —f (0)
ds

0
2

$2
(2.5)

A [f(s2) —f (0)]»(s2)
d$2

0 $2

where

—U
A = U+x, (S2 —U), B =

2
(2.7)

B. Contributing parton subprocesses

Let us first define the various standard-theory coupling
constants and other parameters. The vertex describing
the emission of an electroweak boson V by a quark with
fiavor f, =u, d, s, c,b, . . which the.n changes to f2 is de-
scribed by the Feynman rule

These singularities are conveniently handled by the
change of variable

I dx, dxz8(s2)8(p, +pz —Q )

dx ) A
ds@, (2.6)

& x)S+ U —Q2
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1 j 5—icy" Lf f '+Rf f
1+/5

(2.8)

Rf f 5f f ef tanO~,

Photon: If f Rf f 6f f ef

where 0~=28.4' is the electroweak mixing angle, ef the
fractional electric charge of the quark (ef =

—,
' for u, c, t

and —
—,
' for d, s, b), ~+=(r,+ir2)/2, and ~& are weak-

isospin Pauli matrices, and U is the unitary Cabibbo-
Kobayashi-Maskawa mixing matrix. We shall often ab-
breviate Lf f to L2] etc. The coupling of a quark to a

2 1

gluon is described by the Feynman rule

where the left- and right-handed couplings L and R are

1ff (+)ff ff& f f2 sln811

1

(2.9)
1Z: Lf f, (73)f f 5f f ef tan811

—igy"t, , (2.10)

where the color matrices t, and number of colors X, are
related to C~ and C~, the Casimir operators in the funda-
mental and adjoint representations of SU(N, ), by

X, =C~,
—1

2
C

g t, t, =CF=
c=1

X, —1

21',
(2.11)

1. The Compton process qG ~ V+X

The inclusive cross section has the form

Of course, X, =3 for QCD, but all formulas in this paper
hold for general X, .

We next specify the possible parton subprocesses that
can contribute to the hadronic cross section through or-
der a, in QCD perturbation theory, and display the gen-
eral form of these contributions. The invariant functions
in terms of which these general forms are written are
somewhat complicated; they are therefore relegated to
the Appendix.

d" 'Q s(21rp ) (JV, —1)(1+co)
~, '(S') r(1+~) g'

5(s2)A~ (s, t, u, g ) g (lLf1l + Rf, l )+
2m I 1+2a) 41rp~

X 5(s1) Bf (s, t, u, g )+B) (s, t, u, g ) g (I)+C'f (s, t, u, g )
f'&

+c) (s, t, u, g ) g (ILf11'+ IRf11')
f&

+5(s2)B) ( t,su, g )(L» —R») g (Lff Rff)
f&

(2.12)

where the function A represents the contribution of the
lowest-order diagrams in Fig. 1:

Aq (s, t, u, g )= —(1+co) (I+~) —+-s t

+ 2ug
st

(2.13)

and the functions 8~ and C~, which represent the con-
tributions of the virtual diagrams in Fig. 2, and the dia-
grams in Fig. 3, respectively, are given in Eqs. (A4) —(A6)
and (A10)—(A12) in the Appendix. MS denotes the
modified minimal-subtraction scheme.

The flavor structure of the cross section is explicitly
displayed in this expression. The symbol gf & stands for
a sum over quarks with masses less than an appropriately
chosen flavor threshold [e.g., g«(l)=4 if the relevant
energy scale E„to be specified more precisely later, is in
the range m, =1.5 GeV(E, &mb=4. 5 GeV]. This is a

crude way of.taking the masses of heavy quarks into ac-
count, having assumed in computing the functions 3~,
etc. , that all quarks were strictly massless.

In the above expressions, n =4+2co is the dimensional-
ity of space-time. We have used dimensional regulariza-
tion to control both ultraviolet and infrared divergences
in this calculation. ' However, the above expression is
completely finite, the infrared divergences having can-
celed or been factorized out, and the ultraviolet diver-

XN'A%4

G

FIG. 1. Diagrams which contribute to the process
qG~ V+X in leading order, and give rise to the invariant func-
tion A of Eq. (2.13). Diagrams contributing to qq~ V+X
are obtained by crossing.
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gences having been absorbed into the bare QCD coupling
constant g by use of the MS renormalization prescrip-
tion'

a, (p ) a,1+ '

P, —+ps —ln(4m. )
4n p~~ 277 CO

where yz =0.57721. . . is Euler's constant,

(2.14)

a, (p')
2' 2

Pln
A

P2ln ln p
A

2
P'ln'

A

(2.15)

FIG. 2. Diagrams yielding amplitudes whose interference
with those of Fig. 1 contribute to the one-loop virtual correc-
tions to qG~ V+X, i.e., the functions B in Eq. (2.12). The
two diagrams with triangular quark loops contribute only to Z
production. Renormalization counterterms (not shown) are in-

cluded with these contributions. Diagrams contributing to

qq ~V+X are obtained by crossing.
mined from experiment. Thus the limit cu —+0 may be
taken in Eq. (2.12), but we have retained various features
of the n-dimensional form to establish notation and con-
ventions. The renormalization scale p is in principle un-
related to the factorization scale M. In practice, both p
and M should be chosen to be of order of the typical ener-

gy scale involved in the process in order to minimize the
effect of large logarithms of energy-scale ratios in higher
orders. The effect of various choices of M and p will be
discussed in connection with our numerical predictions.

The cross sections for three closely related processes
can be obtained directly from Eq. (2.12) with the follow-
ing replacements:

Gq~ V+X: t~u, f, ~f2,
qG —+ V+X:,I,+-+—R ~,

Gq —+ V+X: t~u, f & ~fz, L~ R—(2.16)

FIG. 3. Diagrams which contribute to the process qG —+ VqG
and yield the functions C in Eq. (2.12). Factorization subtrac-
tions are included with these contributions. Diagrams contrib-
uting to qq ~ VGG and GG —+ Vqq are obtained by crossing.

p2= —", C~ —(-', C~+ —,'CF) X (1»
f &

and A is the QCD scale parameter that must be deter-

Z. Gluon gluon fu-sion GG ~ V+X

This subprocess has a relatively simple Aavor structure:

GG

Q dn —1g
aa, (p)NC

s(2~p ) (N, —1) (1+co)
a,"'(V') r(1+~) g'

2m I (1+2') 4~@

X[C (s, t, u, g )+C G( , st, ug )] g2g (~L~~, ~ +~R~~, ~
) .

f& f'&
(2.17)

The function C is given in Eq. (A13). We note that the factor of (1+co) in this formula arises from averaging over
the polarization states of the initial gluons: we have consistently used the convention that a gluon has n —2=2(1+co)
polarization states in n-dimensional space-time.

3. Quark antiquark annihila-tion and scattering qq +V+I—
These processes receive contributions from the diagrams of Figs. 2, 3, and 4. The inclusive cross section through or-

der a, has the general form
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d a~~
(2 dn —1g

cxcx (p )CF
5( s2)A qq( s, t, u, g )(IL2, I +IR2, I

)
s(2~p ) "N,

~,"'(V') r(1+~) g'
2m I (1+2'�) 4~@,2

X . 5(s, ) BP(s, t, u, g')+C~~(s, t, u, g')+[By(s, t, u, g')+D.".'(s, t, u, g')] y 1

f&

+CP(s, t, u, g )+CP( s, ut, g')

+[D„(s,t, u, g )+D„(s,u, t, Q )] g 1 (IL2, I +IR21I )
f &

+ [5(s2)B)q(s, t, u, Q )+D,b(s, t u Q )

+D,b(s, u, t, Q )]512(L,1
—R1, ) g (Lff Rff )—

f&

+[D~ (s, t, u, g2)+Db„(s, u, t, g')]512 g g (ILff I
+ IRff I

)

f& f'&

+[D„(s,t, u, g )+D,d(s, t, u, g )](IL21I + IR21l

+[D (s, t, u, g2)5,2+D„(s,t, u, g')] y (I Lf11' +IRf1I')
f&

+[D„d(s, t, u, g )5,2+Ddd(s, t, u, Q )] g ( L2fl'+ IR2f
f&

+[D d (s, t, u, Q )+D,d (s, u, t, Q )](L11L22+R11R22) (2.18)

+[D~d s, t, u, g +D~g (s&»t~g )](L11R22 11 22)

where

A«(s, t, u, g )= —Aq (u, t, s, Q ) . (2.19)

The functions D (s, t, u, Q ) in this expression represent contributions from the diagrams of Fig. 4. The subscripts fur-
entify the particular diagrams involved: for example, D,b represents a contribution from the interference of the

diagrams labeled a and b in the fgure. The analytic forms of all functions ln Eq. (2.18) can be found in Eqs. (A7)-(A 9)
and (A14) —(A27) in the Appendix.

The cross section for the process in which quark and antiquark are interchanged can be obtained from Eq (2.18)
quite simply as

qq —+ V+X: I ~—R

4. Quark quark scattering qq ~-V+X
(2.20)

The contributions from the diagrams in Fig. S take the general form

VVVVMA

FIG. 4. Diagrams which contribute to the process qq~ Vqq
and yield the functions D in Eq. (2.18).

FIG. 5. Diagrams which contribute to the process qq~ Vqq
and yield the functions E in Eq. (2.21).
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do
]z dn —1g

(P )CF tt (P ) 1"(1+co) Q
s(2np) N, 2~ 1 (1+2~) 4 p

&(1 [E (,, t, g')+E„(s, t, u, g')] y (ILf]l'+IRf]l')
f&

+[Ebb(s, t, u, Q )+Edd(s, t, u, Q )] g (~Lzfl'+ IRzfl')
f&

+E., (s, t, u, gz)(ILz] Iz+ IRz] Iz)

+E„(s,t, u, g')( IL]z I'+ IR lz I')

+[E,d(s, t, u, Q )+Eb, (s, t, u, Q )]6]zg ([Lf][ +] Rf][ )

f&

+[E,b (s, t, u, Q )+E,b (s, u, t, g )](L„Lzz+R]]Rzz)

+[E,b (s, t, u, g )+E,b (s, u, t, g )](L]]Rzz+R]]Lzz)

+ [E«(s, t, ui Q )+E,d (s, u, t, g )](L»Lzz+R»R zz )

+[E,d (s, t, u, g')+E,d (siuitiQ )](Ll]Rzz+R 1]Lzz) (2.21)

The factor of —,
' on the second line in this formula is a sta-

tistical factor: since we have integrated over the full
phase space of the two final-state quarks and summed
over all of their quantum numbers, we must divide by 2
to avoid counting each distinct event twice. [An analo-
gous factor for final-state gluons has implicitly been in-
cluded in the functions C in Eq. (2.18).] The functions
E are given in Eqs. (A28) —(A35).

The cross section for the process in which the quarks
are replaced by antiquarks can be obtained from Eq.
(2.21) as

I

here. For the virtual diagrams of Fig. 2 we have followed
essentially the same procedures as have been used' to
compute the one-loop corrections to the process
e+e ~qqG. For the real emission diagrams, we have
followed closely the procedure described in Appendix B
of Ref. 8.

For completeness we describe briefly the procedure
used to treat soft singularities, i.e., poles in the variable s2
that occur in some of the real emission diagrams. The in-
variant phase space of the parton pair recoiling against
the vector boson in the process

q q~ V+X: L~—R (2.22) a (p, )+b (p, )~v(g)+c(p, )+d(p~),

can be written in the form

(3.1)

III. THE PERTURBATIVK CALCULATION

In this section we describe the methods used to calcu-
late the parton-level hard-scattering cross sections. For
the most part we have followed the procedures used by
Ellis, Martinelli, and Petronzio to compute the nonsing-
let contributions to the production of lepton pairs at
large transverse momentum. In particular we adopt their
use of dimensional regularization to control ultraviolet
and infrared divergences in intermediate stages of the cal-
culation. Since we have also to deal with 8' and Z bo-
sons which have parity-violating couplings, we have had
to address, in addition, questions relating to the treat-
ment of the Dirac matrix y5 in the context of dimensional
regularization.

A. Dimensional regularization

Continuing the dimensionality of space-time to
n =4+2' provides one of the most convenient and
eKcient ways of regulating both ultraviolet and infrared
divergences in a perturbative calculation. ' Since the
technique is well known we will not describe it in detail

dn —1 dn —
]p

(2~)zn —24E E
m"sz 0(sz)1(1+co) dp3

8'(2' ) I"(2+2' )
(3.2)

where dp3 represents an integration over n —2 angles
which specify the direction of p3, and 0„,is the surface
area of a hypersphere in (n —1)-dimensional space. Fol-
lowing Ref. 8 we use the factor of s2 in the integration
measure to split each pole term in s2 into a pole in the di-
mensional regulator co and integrable distributions in
1/s2.

sz =5(sz) —+ln(A)+ —ln (3) +co 1 67

CO 2 s 2 A+

ln(sz )
+CO

S2
+O(co ) . (3.3)

The A + distributions are defined in Eq. (2.5), and the ar-
bitrary quantity A is conveniently chosen to be the upper
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limit of the s2 integral in Eq. (2.6). The pole in cv will

cancel an infrared divergence in the virtual-gluon-
exchange diagrams.

B. Treatment of y5 couplings

It is well known that the Dirac matrix y5 cannot be
continued to n%4 dimensions in a consistent and fully
covariant way. It is generally accepted that the nonco-
variant definition

0 1 2 3r5—= lr y y y (3.4)

which was originally proposed by 't Hooft and Velt-
man, ' and which implies that y5 has the following mixed
commutation and anticommutation relations

(3.5)

does in fact lead to consistent gauge-invariant results, '

and in particular yields the correct Adler-Bell-Jackiw
anomaly. '

This noncovariant definition introduces several compli-
cations beyond those that one would normally encounter
in a calculation with no y5 couplings. If, for example,
one performs the traces of Dirac matrices before per-
forming the loop integrations in the virtual diagrams, or
the phase-space integrations in the real emission dia-
grams, one encounters noncovariant functions of the in-
tegration momenta which are generally much more
difficult to integrate than are functions of invariant scalar
products of momenta. Since our calculation was original-
ly set up to perform the traces before the integrations, we
have adopted the following compromise which we believe
must yield the same answers as would the rigorous use of
the 't Hooft —Veltman definition.

1. Diagrams involving a single fermion trace

For such diagrams, there exists a simpler and seeming-
ly covariant definition of y5 due to Chanowitz, Furman,
and Hinchliffe, according to which y5 is required to an-
ticommute with all y". This definition has been shown to
yield consistent gauge-invariant results for any gauge-
invariant set of diagrams which do not involve the axial
anomaly. When the anomaly is present, however, this
definition leads to ambiguities which must be resolved by
fiat (so as to produce the correct anomalous terms). In
the present calculation, there is only one boson with
parity-violating couplings. If the diagram involves only
one fermion trace, that trace must contain two vertices of
the form given in Eq. (2.8). It is easy to show by anticom-
mutation that the real part of the trace is then simply the
trace one would obtain for a photon (L =R =1) multi-
plied by (~L~ +~R~ )/2. The bulk of the calculation in-
volves diagrams of this type.

2. Diagrams involving two fermion traces

These diagrams present a particular problem because
the definition of Chanowitz et al. has not been shown to

be consistently applicable to diagrams with more than
one fermion trace. We have therefore computed these di-
agrams using the 't Hooft —Veltman definition of y5. For-
tunately, these diagrams are all ultraviolet finite, and
suffer from much milder infrared singularities than do the
diagrams with a single fermion trace. We have adapted a
technique that has been used to compute one-loop radia-
tive corrections in the electroweak theory ' to perform
both the virtual and phase-space integrations. The key
ingredient in this technique is to perform the integrations
before doing the trace algebra. The integrands are then
tensors rather than Lorentz scalars. However, since the
noncovariance resides solely in y5, the tensors are covari-
ant, and the integrals can be expressed in terms of scalar
"form factors" and tensors involving only the fixed exter-
nal momenta using covariant manipulations. Gauge in-
variance implies various relations among the form factors
and these relations can be used as a check on the calcula-
tion. The integrations having been done, the traces in-
volve only the external momenta. The traces are then
performed using the noncovariant relations (3.5). Con-
siderable simplifications occur because there are only
three independent external momenta, p„p2, and Q,
which can be chosen to lie in the 4-dimensional subspace
(p=O, 1,2, 3) of n-dimensional space.

The virtual diagrams of this type are the two diagrams
involving triangular quark loops in Fig. 2. It will be
recognized that such loops are responsible for the anoma-
ly. By power counting, each diagram is infrared diver-
gent (if the fermion is massless), as well as ultraviolet
divergent. The infrared divergences are actually
suppressed if the two gluons attached to the triangle are
either on shell or coupled to conserved currents, and the
ultraviolet divergences cancel in the sum of the two dia-
grams. Considerable care must be exercised to bring
about these cancellations in a gauge-invariant fashion.
We have computed these diagrams using the technique
outlined above. In particular we have verified that our
manipulations yield the correct anomaly. The contribu-
tions of these diagrams are given in Eqs. (A6) and (A9).
As a check we have also used the manifestly gauge-
invariant and finite result of Adler' and Rosenberg for
the triangle diagram with a massive fermion in the loop
and verified that it yields the same result for the cross
section when the mass is set to zero.

The real-emission contributions with two fermion
traces arise from the diagrams of Figs. 4 and 5. These are
of two types: both y5 couplings can occur in one of the
traces, in which case the definition of Chanowitz et ah.
can be used to relate the contribution to the cross sec-
tion for photon production; or, the vector boson
V connects the two traces, in which case the
't Hooft —Veltman definition must be used. It turns out
that in the case of contributions of the second type, all in-
frared singularities cancel between contributions from
gauge-invariant subsets of diagrams. Nevertheless we
have performed a careful calculation of these diagrams in
n dimensions using the technique outlined above, and we
obtain precisely the same result in the limit n —+4 as is
obtained by simply computing these infrared finite contri-
butions in four dimensions. Reference 13 contains an
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elegant argument due to Collins that the infrared cancel-
lations occur in any dimensionality close to 4, and that
the result should therefore be independent of the precise
definition of y5: our explicit calculation bears out this
general argument.

There appears to be no reason why the 't Hooft-
Veltman definition cannot be used to compute all of the
other contributions, other than the fact that such a com-
putation is algebraically somewhat tedious. We have per-
formed parts of this calculation. We have also developed
n-dimensional generalizations of the Chisholm identities
which can be used to simplify the Dirac algebra. A more
detailed description of these techniques and the results of
the calculation will be given in a separate publication.

P (y)=CF 1+y 3+—5(1 —y)gg F (1
(3.7)

Care must be exercised in handling the + distribution in
the splitting function. It is defined by the prescription

f y f&d fy f 1—
o (1 —y)+ o 1 —y

Since o.LO contains a factor

5((yp, +p2 —Q) )=5(u +y(s2 —u)),

(3.8)

(3.9)

we transform the + distribution in y into an 3 + distri-
bution in s2 using the identity

C. Factorization of collinear singularities

1

(1—y)+
1=(s2 —u)

A+
+5(s2 )ln

$2 9

Finally, we specify the procedure we have used to fac-
torize the residual mass singularities in the perturbative
cross sections. This procedure is well known, and we will
therefore simply list the factorization subtractions that
we have made. These subtractions have been included
with the results given in the Appendix for the real-
emission diagrams.

1. The Compton process

M
4mp

Q 1 (1+co) 1

4~@,2 I"( 1+2' ) co

—+y~+ln1

Finally, we note that since we may write

M
Q2

(3.10)

+O(co),

The real emission diagrams of Fig. 3 have collinear
singularities that arise from radiation of a massless par-
ton off either the initial quark or gluon. The initial quark
can radiate a collinear gluon and lose a fraction 1 —y of
its momentum. To factorize off the collinear singularity,
we add to the perturbative cross section the contribution

Ms( 2) —+y& —ln(4~)+in
277 CO

M

p

X f dy E&, P (y) . (3.6)
«fo(ypi P2).

dn —
1Q

Here, cTLo(p&, p2) is the lowest-order cross section in pre-
cisely the form given in Eq. (2.12), and P (y) is an
Altarelli-Parisi splitting function which gives the proba-
bility that the initial quark will have its momentum re-
duced by the fraction y by emitting a collinear gluon:

(3.1 1)

the factorization subtractions do not contribute loga-
rithms of the renormalization scale p. The procedure de-
scribed above is generally referred to as MS factorization.
In principle other factorization schemes may be used.
It is straightforward to transform between different
schemes. Since we will use parton densities appropriate
to MS factorization to make numerical predictions, we
shall not discuss alternate schemes in this paper.

Collinear singularities in the Cornpton process will also
arise from radiation off the initial-state gluon. This can
happen in two ways: the gluon can decay to a qq pair and
the antiquark with fraction y of the gluon's momentum
can annihilate the initial-state quark to produce the vec-
tor boson, or the gluon can radiate a gluon and have its
momentum reduced by y before participating in the hard
scattering. The appropriate factorization subtractions
are

~MS(+2) 1 M—+yE+ln
4mp f 'dyE~

«Po pi 3'p2 & doko p»yp2
(3.12)

where the Altarelli-Parisi functions are given by

P,— (y) =
—,
' fy'+(1 —y)'l (3.13)

1
PGG(y) =2&,

3' +
—2+ —+y(1 —y) + —",X, ——,

' g (1) 5(1—y) .
y f &

(3.14)
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2. The gluon-gluon process

4~p

Collinear singularities arise when either gluon decays to a collinear qq pair, and either the quark or the antiquark
then hard scatters from the other gluon. The factorization subtractions are

—+y +ln
2& co

(3.15)

Charge conjugation implies that P G PqG in lowest order.
qG

3. Quark antiqu-ark processes

In the annihilation channel, collinear singularities arise from gluon radiation in the diagrams obtained from those of
Fig. 3 by crossing. The factorization subtractions are

(P) 1—+yE+ln
27T CO

M
4mp f dyEg

Po yp»p2 „d jI.o p yp
(3.16)

X f dy Eg, PG (y), (3.17)
dn —

1Q Gq

for diagrams c, and

Ms(+2) —+y~ + ln
2~ co

M

4'

Charge conjugation implies that P =P in lowest or-
qq

der. In the scattering channel, singularities arise when
the quark or antiquark emits a gluon which then hard
scatters from the other parton: the singularities occur in
the squares of the diagrams c and d in Fig. 4. The factor-
ization subtractions are

A. Assumptions and phenomenological input

1. Parton densities

The most important phenomenological input required
in making numerical predictions is a set parton densities

f,"(x,M ). We will use the parton distributions of Mar-
tin, Roberts, and Stirling (MRS). These distributions
have been derived from deeply inelastic scattering data
using a full next-to-leading-order analysis based on the
MS prescription. Unless otherwise noted, we use the
MRS set B with A—s=0.228 GeV. In evaluating the dis-

tributions we take M =Qr unless otherwise specified.
The MRS set E with AMs=0. 9I GeV yields cross sec-
tions that are roughly 10—20% smaller than does the
MRS set B; this difference is generally insignificant given
the normalization uncertainties in presently available ex-
perimental data.

2. Scale and scheme dependence

(3.18)

for diagrams d, where

PG (y) =P (y) =CF —+1 (1 —y)
Gq Gq F (3.19)

IV. NUMERICAL RESULTS AND CONCLUSIONS

Finally we note that the quark-quark scattering pro-
cesses which exhibit collinear singularities, i.e., the
squares of diagrams a, b, c, and d in Fig. 5 are simply re-
lated to the quark-antiquark scattering processes, and are
rendered finite by subtractions analogous to those in Eqs.
(3.17) and (3.18). I

M
S

(4.1)

The next-to-leading-order cross sections depend on the
choice of renormalization and factorization schemes and
scales. In this paper we restrict our analysis to the MS
factorization scheme appropriate to the MRS parton den-
sities. However, within this factorization scheme, we are
still free to choose the factorization scale M. This scale
should be chosen to be of order of the typical energy scale
E, involved in the hard scattering. The conventional
choice of energy scale in large-Qz. production is E, =Qz. .
However, other choices such as the boson mass squared
Q or the transverse energy squared Q +Qz are possible.
Given a choice of E, we define a factorization scale factor

In this section we present numerical results for cross
sections we believe to be of experimental interest.

In principle, the renormalization scale p is unrelated to
the factorization scale M (Ref. 28). For simplicity we re-
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late p to the same choice of energy scale E, as M, and
define a renormalization scale factor

p
E2

S

(4.2)

3. Heavy-quark thresholds

We will also take the masses of heavy quarks (c,b, t)
into account in an approximate way by inserting a step

It is well known that, in next-to-leading order, a change
in renormalization scheme is equivalent to a change in re-
normalization scale. We generally use the MS scheme in
this paper. Alternative schemes are provided by
"momentum subtraction, " which is physically some-
what better motivated than MS subtraction. In next-to-
leading order, momentum subtraction is equivalent to
MS subtraction with a slightly smaller choice of scale.
For example, for a momentum-subtraction ("mom")
scheme defined so that there are no radiative corrections
to the quark-gluon three-point function, g„' =0.21(„
Strategies have been proposed for resolving
renormalization-scheme and scale ambiguities, the most
noteworthy being the principle of minimal sensitivity,
and the method of effective charges. '

Two tests that might be applied to decide among the
various possible choices of schemes and scales are to find
which set of choices yields radiative corrections that are
consistently smallest for all values of the kinematic vari-
ables, and, of course, which choice yields cross sections
that best fit the data. In this paper we will make only a
cursory study of scale dependence, leaving a more de-
tailed study of optimizing scheme and scale choices to a
future publication. "

A technical point related to renormalization-scheme
dependence is perhaps appropriately noted here: we use
the full next-to-leading-order corrected expression for o,,
given in Eq. (2.15) in both the leading- and next-to-
leading-order cross-section contributions. In evaluating
leading-order (LO) cross sections, however, we use the
leading-order expression for n, .

function 8(E, 4—mf) into every sum over flavors gf.
Here E, is the typical energy scale of the process which
we take to equal QT unless otherwise specified. We take
m, = 1.5 GeV, mb =4.5 GeV, and we assume that
m, = ~, i.e., no more than five flavors contribute at any S
and E, . Note that the flavor sums arise both in the real-
emission and virtual diagrams. In the real diagrams,
8(E, 4m—f ) approximates the threshold factor for
heavy-Aavor pair production. In the virtual diagrams the
step function is supposed to reAect the fact that the heavy
quark decouples if the typical external momentum in-
volved is much smaller than its mass. Actually, the
only virtual contributions that are affected arise from the
renormalization counterterm [i.e., gf in Eq. (2.15)] and
the quark-triangle diagrams of Fig. 2 [i.e., the coeKcients
of B3 in Eqs. (2.12) and (2.18)]: it should not be too
difficult to test the validity of our method of approximat-
ing decoupling by including quark masses in these contri-
butions explicitly, but we have not done so. Finally, we
do not inc1ude explicit Aavor threshold factors for
initial-state quarks: we assume that these thresholds are
built into the parton distributions.

4. Normalization of cross sections

While the QCD-improved parton model predicts the
absolute normalization of the inclusive cross section
do. /dQT, it is common practice in the literature to
present experimental results for ratios of cross sections.
This is done partly to minimize the effects of experimen-
tal uncertainties, partly to minimize the dependence of
the predictions on uncertainties in our knowledge of the
structure functions, and also partly because of an ap-
parently widespread belief that this type of process is
beset with large and mysterious "K factors. " Some of the
results we present are therefore normalized to the total
cross section. The analytic form of this cross section is
known only to order o.a, . To this order, only qq and qG
initial states contribute. The analytic forms of the
parton-level cross sections computed using the MS fac-
torization prescription are

2 2

(IL,» I
+ IZ» I ) 5(1—z)+ C, .

21 21 2~
2~2

3

M—8 —31n 5(1 —z)

2) ln(1 —z)
1 —z (1—z)+

(4.3)

where z =Q /s, and

2 2

y(IL )I'+I& )I') ' C, [z'+(1—z)'] 21n(1 —z) —ln
3 Z2

+2
2 2

(4.4)



QCD RADIATIVE CORRECTIONS TO ELECTROWEAK-BOSON. . . 2255

We will choose the factorization scale I =Q, and use
the leading-order expression for a, [i.e., we set p =Q
and P2=0 in Eq. (2.15)].

o(pp~Z +X) cr(pp —+—Z +X),
o (pP~y'+X) o.(—pp~y'+X) .

(4.5)

Loosely speaking, one may think of the nonsinglet cross
section as the contribution of the valence quarks in a pp
collision. However, some valence-valence contributions
(e.g. , those involving the functions D„and Ddd) drop out
of the nonsinglet cross sections as defined above. For 8'
production we add the cross sections for 8'+ and 8' to
ensure that all valence-sea contributions cancel between
the pp and pp terms.

B. Numerical results

1. Normalized Qr distribution

The 8' transverse-momentum distribution has been
measured by the UA1 and UA2 Collaborations at
CERN. Their distributions are normalized to the total
cross section. In Fig. 6 we compare their data with our
results. The three curves in the figure represent theoreti-
cal predictions based on the full 0 (a, ) corrected QT dis-
tribution normalized to the full total cross section with

5. Xonsinglet cross sections

In the following we shall often refer to "full" and
"nonsinglet" (NS) cross sections. By "full" we mean sim-

ply that all possible contributions from valence and sea
quarks and from gluons in the colliding hadrons are tak-
en into account. By "nonsinglet" we mean the difference
between the cross sections in pp and pp collisions:

o.(pp ~8'+ +X)+o (pp ~W +X)
—o (pp ~8'++X)—o (pp ~ W +X),

the MRS B and E sets, and the nonsinglet 0(a, ) correct-
ed distribution normalized to the nonsinglet total cross
section with the MRS set B. It is clear that data are con-
sistent with the QCD predictions, but that they are not
accurate enough to discriminate between the MRS B and
E distributions or between the singlet and nonsinglet
theoretical predictions. There is a tantalizing, but statist-
ically insignificant, hint in the data that the experimental
cross section might be larger than the theoretical predic-
tion at large values of QT. If this potential discrepancy
should be confirmed by more accurate measurements, it
would represent a firm signal of new physics beyond the
standard theory with five Aavors.

2. Full and nonsinglet cross sections

In Fig. 7 we compare the "full" Qz distributions with
the "nonsinglet" distributions for 8' production. Also
shown is the leading 0 (a, ) contribution. The difference
between full and NS is due mostly to the quark-gluon
Compton process. It is apparent that this di6'erence is
quite significant at VS =1.8 TeV. Thus if the experi-
mental uncertainties in the normalization of the QT dis-
tribution could be sufticiently reduced, the absolute distri-
bution could provide striking evidence for the contribu-
tion of gluons. The figure also shows that the nonsinglet
contribution is slightly harder than the full cross section
at very large values of QT. Figure 8 compares full and
NS distributions for Z production at v'S =1.8 TeV
and 630 GeV. It is~aparent that the difference increases
significantly with &S .

Full and NS distributions (normalized to the full and
NS total cross sections, respectively) for y* production at
&S =630 GeV and 63 GeV are shown in Figs. 9 and 10,
respectively. At fixed QT the normalized cross section in-
creases with the mass Q of the virtual photon. At fixed Q
the full and NS cross sections behave similarly to the 8'
and Z cross section in Figs. 6, 7, and 8.

i-
C3
O

b
U

10

10

—410

10

10

—710

10

UA1

UA2

I
I

I

I

I
I

I

pp 630 GeV

W + W

10

—3~) 10
Q)

C3
, 4

10C

C3 10

b
O —610

10 I ) I ) I i I & I ( I

20 40 60 80 100 120
Q (Gev)

20 40 60 80 100 120 140 160 l80
Q, (Gev)

FICx. 6. 8'production in pP collisions at 630 GeV. The solid,
dashed, and dotted lines represent the full (MRS B), full (MRS
E), and NS (MRS B) predictions. The corresponding total cross
sections o. are 5.8, 5.1, and 3.5 nb, respectively.

FIG. 7. 8'production in pP collisions at 1.8 TeV. The solid,
dashed, and dotted lines represent MRS B, MRS E, and
leading-order (MRS B) predictions respectively.
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FIG. 10. y production in pp collisions at 63 GeV. The
dashed and dotted lines represent full and NS contributions re-
spectively. The corresponding total cross sections (for lepton
pair production) are 4.0 and 2.8 pb at Q = 8, and 94 and 46 pb at

=4

3. Relatiue contributions ofquarks and gluons

In Figs. 11, 12, and 13 we compare the relative contri-
butions of quarks (i.e., qq, qq, and qq), of the Compton
processes (qG, qG), and of the gluon-gluon process at
+5 =1.8 TeV, 630 GeV, and 40 TeV, respectively.
Shown separately in these figures, are the contributions of
the leading 0 ( a, ) (LO), and next-to-leading 0 ( a, )

(NLO) terms in the cross section. (The curves plotted are
smooth curves drawn through a small number of comput-
ed points: while they represent the magnitudes and gen-
eral trends of the cross-section contributions, they should
not be taken to represent their precise QT dependence. )

In general, the separation between LO and NLO is
strongly dependent on the renormalization and factoriza-
tion schemes and scales used, especially at small values of
QT, and thus it is only the sum of the two that is really
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of 0 (a, ) (LO) and 0 (a, ) (NLO) terms in the cross section from
processes with no initial-state gluons (qq), one initial-state gluon

(qG), and two gluons (GG).
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significant. It is apparent that the gluon contributions
grow rapidly with &S, reflecting the rapid growth of
the gluon density with the decreasing values of momen-
tum fraction x that then become kinematically accessible.
It is interesting that the gluon-gluon contribution tends
to be negative, which implies that the collinear singulari-
ties dominate the GG process. However, it is apparent
that the GG contribution is negligible at presently avail-
able energies.

4. Scale dependence

In Fig. 14 we illustrate the effect on the QT distribution
of two choices for the "typical energy scale" E, of the
process: namely, E, =QT and E, =Q . The choice of
the former tends to yield a smaller cross section at larger
values of QT. this is partly because the larger scale im-
plies a smaller value of a, . It is apparent, however, that
the choice of scale is not significant given the uncertain-
ties in the experimental data at larger values of QT. The
ratio of the QT distributions with the two choices of scale
has a rather complicated behavior as a function of Qr, so
we choose not to present a higher resolution plot than the
one in Fig. 14.

In Figs. 15—18 we fix E, =QT and study the depen-
dence of the differential cross section on the factorization
and renormalization-scale factors gM and g which were
defined in Eqs. (4.1) and (4.2).

We first discuss Fig. 15. The curve showing the g„
dependence in lowest order simply reAects the change in
a, as the renormalization scale varies. The 0 (a, )
corrected cross section is almost independent of g„be-
cause the next-to-leading-order terms correct for the
scale dependence in leading order (recall that the pertur-
bation series summed to all orders is independent of the
renormalization scale). The lowest-order curve in which
g =

gM shows a much stronger scale dependence thanp M
the curve with gM

= 1. The dependence on the factoriza-
tion scale M arises solely from the parton densities
fh(x, M ) in lowest order. The corresponding O(a, )

corrected curve with gM =g„also depends fairly strongly
on the scale factor. The scale dependence of the nonsing-

FIG. 14. Dependence on the choice of energy scale E, .
Dashed and dotted lines are for E, =Qr and E, =Q, respec-
tively.

let cross sections was studied by Bawa and Stirling' who
single out two scales: g at which the corrected cross
section has a maximum and P at which the leading or-

PMSder and corrected cross sections are equal. g is the
scale at which the cross section is minimally scale depen-
dent (locally). Loosely speaking, it approximates the "op-
timized" result in the sense of Ref. 30. g representsFAC

the scale at which the perturbation expansion exhibits
"fastest apparent convergence. " It is apparent from the
figure that -both of these scales are smaller than unity,
with g the smaller of the two and comparable with the
scale g o appropriate to renormalization by moinentum
subtraction. Also shown in the figure is the g~ depen-
dence of the corrected cross section with g„= l. This
curve has a much milder scale dependence than when the
two scales are varied simultaneously. Figure 16 shows
analogous curves at a higher value of Qz. . The behavior
of these curves is similar to the corresponding curves in

0 I I I I IIIII I I I I IIIII I I I I IIIII I I I I IIII
—1 210 10 1 10 10

FICx. 15. Dependence on the renormalization scale factor g„
and the factorization scale factor gM. The solid curves are for
g„=/M=/, the dashed curve for g~=g with $„=1, and the
dotted curves for g„=g with /M=1. Curves labeled (LO)
represent 0 (a, ) contributions.
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FIG. 16. Same as Fig. 15, but at QUA=80 CxeV.

Fig. 15. The g„variation is milder because the coupling
is evaluated at a larger scale.

Figures 17 and 18 exhibit the scale dependence of the
cross section at &S =1.8 TeV. The scale dependence of
the leading-order cross sections is similar to that at 630
GeV. However, the 0 (a, ) corrected cross sections
behave somewhat differently especially at lower values of
QT. Figure 17 shows that the g~=g„curve at QT=20
GeV does not have an extremum in the range plotted:
thus this curve cannot be used to determine g . Figure
18 shows that the curve does barely turn over at QT =80
GeV. This behavior suggests that the "optimum" scale
factors should be determined by looking for a saddle
point of the cross section as a function of the two vari-
ables g~ and g„. Indeed, an analysis of just this nature
ha been done for prompt photon production at large QT
(Ref. 34). The existence of a saddle point and its theoreti-
cal significance are not entirely clear when one is dealing
with singlet cross sections which mix different initial-
state partons. Since the precise choice of scale does not
appear to significantly affect the numerical comparison
with experiment, we will not pursue the question of the
optimal choice any further in this paper.

CV I—
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3
10 10 10 10

FIG. 17. Same as Fig. 15, but at &S = 1.8 TeV.
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FICi. 18. Same as Fig. 15, but at &S = 1.8 TeV and QT = 80
GeV.

C. Conclusions

We have presented complete analytical cross-section
formulas for inclusive electroweak boson production at
large transverse momentum in next-to-leading order of
QCD. The radiative corrections evaluated at an energy
scale E, =QT appear to be well behaved for all QT
~0.11/Q . The optimum choice of scale in the MS
scheme appears to be E, =0. 1 —0.5QT. We find that the
qG process contributes on the order of one-half of the
cross section at &S =1.8 TeV. The Qr dependence of
the qG contribution is slightly softer than that of the
nonsinglet qq contributions, but this difference will not be
easy to detect in the data. However, if the absolute cross
section could be measured with sufficient accuracy at
large QT, it would provide striking evidence for the qG
contribution. Ultimately, this type of measurement could
provide an independent means of determining the gluon
density in the proton.

The principal conclusion of this study is that the in-
clusive cross section do /dQ, at large QT is reliably pre-
dicted by perturbative QCD at collider energies. Any
large deviations from these predictions must signal new
physics not contained in the standard theory.

There are three important respects in which this work
is incomplete. The most important of them from a phe-
nomenological standpoint concerns the region of
QT ((Q where the cross section is large and where large
logarithms of QT/Q need to be summed to obtain a reli-
able perturbation expansion. The other two are primarily
of theoretical interest: the rigorous treatment of y~ in di-
mensionally regularized expressions, and the question of
determining the optimal renormalization and factoriza-
tion scales for the singlet cross sections. These questions
are under study: the results will be presented in a future
publication.
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APPENDIX: CROSS-SECTION FORMULAS

=ln
(s2 —t)(s2 —u)

sg (s2 —t)

[s2(2Q —u) —Q t]

sg~(s2 —u)

[s2(2Q —t) —Q u]

2f =Li1t 2 +—ln
2 Q' —t

tu —s2Q„=ln
(s2 —t)(s2 —u) (A2)

In this appendix we present analytical formulas for the
various invariant functions which were introduced in
Eqs. (2.12), (2.17), (2.18), and (2.21) for the inclusive
parton-level cross sections for production of 8' +—

, Z and
y*.

The formulas presented here are functions of the in-
variants s, t, u, Q and s2 ——s + t + u —Q . In order to
present these somewhat lengthy expressions in reasonably
compact form, we define the frequently occurring denom-
inator factors,

fzi=Li2 +—f, +f,ln

2
Q

Q —u
+—ln

1

2

+ f, +f,ln—2f2„=—Li2

s —Q

Q2

Q —u

s —Q

du
1 1

s2 —t ' "
s2 —u

1
dst s+t —s2

where the Euler dilogarithm is defined by

dsu & ds
, 1 1

s+u $2 s+Q
(A 1)

, ln(1 —z') z"
Li2(z) = — dz'

0 Z' n

(A3)

d,„=,A, =Q(u +t) 4s2Q—1

tu —szQ

and some transcendental functions:

Note that quantities such as d„ f„etc., are to be con-
sidered implicit functions of s, t, u, sz, and Q, so that in-

terchanging t~u implies interchanging d, ~d„, f,~f„,
etc.

sf, =ln f,=ln, f„=ln
Q2 Q2 Q2 A. Contributions from virtual-exchange diagrams

f, =ln &=ln, 2 =ln
g2 ' fM~ g2 ' " p2 Q2

f„=ln A f„=ln
st

Q (sz t)—
su2 s+g —S2+A.

f,„=ln, f~ =ln
Q (s2 —u) s+Q —S2—

The contributions of the one-loop diagrams in Fig. 2
wi11 be presented in this section. The formula in Eq. (A4)
is due to R. K. Ellis, and that in Eq. (A7) is taken from
Ref. 8. We have checked that they agree with the analyt-
ic continuation of the one-loop corrections to the process
e+e ~qqG, for which there exist several calculations'
including one by one of us. For convenience, we have in-
cluded the contribution of the MS renormalization coun-
terterm, Eq. (2.14), in these expressions.

We first present the virtual contributions to the Comp-
ton process, Eq. (2.12):
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2cr+C~
Bf (s, t, u, Q )=A't (s, t, u, Q )

— +—[3C 2—C f„+—",C„+C (f„f,—f,—)]—8C —C f„
CO CO

2

(C, C—„)+,'C,-(f„' f.—' f—,')+C, ( ", f—2+fi, f~—, )

u u u + t u +s 4u +2ut +4su +st t
t+u s+u s t (s+u)~ s+u

4u +2su +4ut+ts s

(t +u)2 t +u

2 2 2+ t 2

+ (2CF —C„) 2 + f„(s+t)2 s+t st s+t
T

+u +(u+s) f +f f f +77 +u +(t+u) (f f )
st

(A4)

B) (s, t, u, Q )= A~ (s, t, u, Q )
———f 2—21 1

Bf (s, t, u, Q )= u+Q
u —Q

Q2
1 — f„ (A6)

The function A (s, t, u, Q ) is defined in Eq. (2.13), B2 originates in the renormalization counterterm, and B3 is the
contribution of the two diagrams in Fig. 2 with triangular quark loops.

We next present the virtual contributions to the annihilation process, Eq. (2.18). While the Compton and annihila-
tion processes might seem to be related by the simple interchange s~u, care must be exercised in continuing the loga-
rithms and dilogarithms since s and u are of opposite sign. This accounts for the differences in the terms proportional
to ~ in these two formulas. We have

2CF+C~
Bf (s, t, u, Q )=A~q(s, t, u, Q ) — +—[3C 2C f, + —", C—„+C„(f, f„f,)]——8C —C f—,

CO 67

2

+ (4' —C~ )+ ,'C~[f' (fi+f—.)']+C~—( '6'f ~+fi~+f i. )

s s s+t s+u 4s +2st+4su +ut t
s+t s+u u t (s+u)~ s+u

4s +2su +4st+tu u

(s+t) s+t

+ (2C~ —C„) 2
s 2s Q u +t

(u +t)2 u +t ut u +t + s'+(s+u)'(f f )

+ s +(s+t) (f f (A7)

PB( ts, u, Q )= Aq (s, t, u, Q )— ——f—2
—

2 1 1

co
(A8)

BP(s, t, u, Q )=— s+Q2
s —Q2

Q2

s —Q
(A9)

B. Processes with two final-state partons

In this section we present the invariant functions which describe the contributions from the diagrams in Figs. 3, 4,
and 5.
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1. The Compton process qG —+ VqG

The most complicated cross section is that due to the Compton process, Eq. (2.12) and Fig. 3. The following func-
tions contribute to terms proportional to 5(sz):

2CF+ Cw 1C[ (s, t, u, Q )= A (s, t, u, Q ) ——[3C 2C —f„+—"C„+C(f„f,—f, )]-
Cc) CO

+CF [ ,'+2f—Mz(f„f~
—)+fg ,'(fM—~+—fg )]

1+C„+ (f, —f, —f„)'—+2f, (f~~ f& )—
A 6 2 s t u

+2f„(f, f„—f~z+—fg )
—6'fMz— (A 10)

Cf G( st, u, Q )= A~ (s, t, u, Q )——+fMz
1 1

CO

(A 1 1)

The following terms contribute for nonzero values of sz ..

Cf (s, t, u, Q )= t 2uQ
s st

(2C~+4C„)

CE +f..+2f1. 2fM~+
3 t+u
2

+C„2f„„+

+ CF—
Sp

r

s+2u t+u 2t+4u
SB tB

2

+ CF (s+Q —sq)(u t ) 1 ——+(u——t ) + +f~ 3s u p p Q z 11 z

4A, t 4s 4 t

u—2s t+ s u——(s —s ) ——3 +4s (t —u)+5su
2 2 t 2

u+C 1 —— t+u (s+Q —sz)+s(s —sz)

fx
F

t —u —2s& 11s —2u —4s&+ +—1+—(5Q +sz)—
4s 4t s

16Q sz

st

t+u u

2 2t s

u +Sp 7 us& 3 2 2 2s+ + (t —3sz)+ —(u +3sz—)
s s st

+ C~ (t —u) 1+—+ (u 3t)+ 1 —— s—z—1 3$ u $ u 7u
2g2 t 2t 4

11 3t +3u
4 2s

2$2 +C ——1 (s+s ) .
t 2

+2d, st[4C„3C„—(CF —C„)(f—, —f, )]

+d, I C~(3 sSt 4u) —C„(9s 4t +—4u)+2(f, f—p)[C~(t +u)+C„(3—s+2u)]I
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+" ' CF(f, fM2) C~ f, f~2+
f,r. +f,, f—~. f.i+f2.t

4

X 41+—u
S

u s t
1 ———2 —+—

t s
$ +2u—C (f f —2)—F s& M

s —2u 2u —3t u 2

S st
3s +2u

S S+d 2C f & f ———+C ——1u F M s&

+d, CF(f,. 2ft. f~—t) 1 ——s2 s2 —2u (s2 —u)
$2

+d,„C~ 2(f 2
—f, f,„) —(Q +2u)+t —s2+ (2u —s2)

2 t

2 2u+—(u —s2) t —2u+
S

+s2 —t+4u + 1 ——Q u t —
Q

t s

r

2u (s2 —u) —s2
+CF

st S

1 2 4u—s, (f,„—2f,„—f„)—2 ———+ f,„

u —3$2+5Q 5 1 2t 3S2f + —+—1+——
st iEt

$ u S S

s2Q

su

8 3 1+ + +
s t u

4u 2r 3s2
Q2 1

st su t2 su2

2 3

s 4t
1 3u
u st

t +$2 2 S2 1+Q'
su Su 2t

+C„2(f, f,)—6 2 2Q
s t st

3s2 15 9s2 2Q+
st 2s 2st

+2 — + +
t2 S t3

4Q2 Q2

st t
2s2Q s2+ 1—

t2
Q2

fM2+f ~)

1 2u $2+—4—
S

f t+f,. 1 uf +f +— 1 ——
s~ stu 2 $

r

1 2u 3 1 2 1+— —1 f,„—2 + + (u —s2) f2,s t tu t t 2 kt
2S2+

t st

3Q2+—3Q +4s2 1—t'
2 $+
t2 S

2Q2 Q2

st

r

12s2Q s21—
St

Q2
(A12)

We note that the terms proportional to 1/s2 on the fourth line in Eq. (A12) are finite in the limit s2 =0, i.e., all singular
terms which need to be defined as 3 + distributions are proportional to the lowest-order cross section.
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2. The gluon fu-sion process GG ~ Vqq

The following function contributes to the gluon-fusion cross section, Eq. (2.17):

GG z dsfx t 3 t —uC (s, t, u, Q )=C~ (2s t——u)(u t—)+2s 3t—+u +
2A, '

3s
' 9+ 5t 3u

2 2 s s

+C~ (u t )—+1
2g2

11 2(Q —sz) —4 1+—
4$ s

+CF [2d, (t + u —2s)+6]+C„z 3(t —u)'
1

t+u
2$dz

2$

u sz(t u)
+d, (2s —3t +3u) —1 ——+

s s

+ d, —1

2$

(t —u)

+4C~d,„(f, f +f,„—) —+2t 1+— —t 1+

dzt u
d (C 2CF) (f +fz( )+CFd ((f fz&

—2f&„) —s+2u
S

d, 2C f„—3+ f, 4+ f,.—+ (f, +f ) 2+
s s s

t(t —u)
s 2

+2CFd„(2f,„+fz,, f,„) 2+ — +8td, [CF(1 f,, +fMz)+Cg ]—

+ (4C~ —2C„)d,d„(f, f,„+f„„)—
+d, (C~ —2C~) 2+ (f„+fz„,)+ (u —t)(f—, +f„„f,„)—

—8CF(f, f z 1)+4C„—2+—u —t

szQ'
u+

st t
+CF ' 2(f, fM,)—2 4 2 1 szQ+ (f, +f„„)——2+ ——u+

+—4Q 1+1

st
2u 2(f, +f„„)+ + fz,+— (A13)

3. The process qq ~ VGG

The following formulas for the qq annihilation cross sections are taken from Ref. 8. We have recalculated them our-

selves. They contribute to Eq. (2.18):
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C'P(s, t, u, g )=A~ (s, t, u, Q ) (2C +C„)——[3C 2C—f, + —",C„+C (f, f„—f—, )]

+C~ ( —",, —",f„—+f„)+CF(2f, +2f„4f—~
—3 )f

+ C— +(2fg+f. f~ —f.—)' (A14)

CP(s, t, u, g )=——+—+2 1 u t 2gs
2 t u tu

E

$2 3+
(8CF —2C„)

s
, 3+

[——", C„+2CF(f,„—2f 2)+ (2C~ —C„)(2f„„f,„)]—

2Q (u —s2)+CF sdt +2dt +dtu $2+2
2 1 1—2d, g

u t

s dt s 3s 2d(s Q
2

+ —2 + +
6 tu u 2t u 3t~

1 s+(2CF —C„) (Q —u) d„——(f„„+f, f,„)+-
tu

(f„„+f,, )

+f~. CFd~.
4 2 $2 2$ ~2

(Q —t) +2(Q +s)—s2 +CF —C„~
tu tu tu

4 2

+C~(f 2 f, ) d,„4(u——
Q )

—s2 — (u —
Q ) +d, (Q u) — —(2Q —u)

2+ Q +4Q
t t2 tu

(A15)

4. The process qq ~ Vqq

The functions D (s, t, u, Q ) represent contributions to Eq. (2.18) from the quark-antiquark processes in Fig. 4:

1 5+fD',,'(s, t, u, g )= 3 (s, t, u, g )
2 1

1 u t 2sg 1 1D„(s,t, u, Q )=——+—+
2 t u tu 3 s2

1 s+
3 tu

Q
2

t 2

(A16)

The following interference only contributes to Z production:

1 fag 2s+t +u 3s(t —u) +u —t —s —1
2 At,A,

2 2

2s+t +u
2X t 2

(s +Q —s2)(t —u) +3t —u +2s —2s2 (A18)

Th«ol»wing function is taken from Eq. (Cl) of Ref. 8 which contains two misprints: the group-theory factor should
be —, and not CF, and the sign of the —2t term on the first line is incorrectly given:
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1 ds
Dbb(s, t, u, g )=— u 5 I——1 — + ud, —2s+ (t —u)+4u 2—t + (2s+2sz+t —u)

3u u

s 4s g2 ' 2s 2$

+
~ (u t) —d (2s —u —t)—3u s+sz fx 2u 5u 3s 3 u+ d, + + +—+——

s 2 2 4 s
$2

2$

f~, u' t' u
3

u d, 3u —t — +——2s +—2s 2 t —u t —2s 2 +4us 2
—3u +2ss 2

—us

3 2 2

+ 3d, u (u —t )(s —Q )+ (u —t)(u+t -2sz)
S

(A19)

C
D„(s,t, u, Q )= CF

f~ 3s'Q'
& 1+ 1 + sg'

t —u —+—+
g4 t u

7s 4u
u

1 2s Q (2s+u) us-

s2 u

+ (2sz —u —t)(t —u) +
z s(s —sz)3sQ 2 1 7 5

A tu g2 u t

d]$+
u

3 f,~

1 t u u+————(10s+t+3u —2sz)+2s —2sz 1 ——
2 u t t

2s'+2 + 2Q'
u t

1 3 3Q+——
2u 2t

(A20)

This expression is actually finite in the limit sz =0 and hence the I /sz factors do not have to be interpreted as + distri-
butions:

Db, (s, t, u, g )= CF— f, 6ss, Q'
4 (t u)

X t
r

1 u 3$ u+ 2su+ sz 1+— — (t+u) (t+u) 1 ——+ (t —u)
A,

2 s 2$ 2

—4s~g 1+ +d 6$ +2u+
2s

s +4u —2s2+ '+
2t

3t +2u —6s2 u —2us2+4s 2

st

u 2Q+ (t —u) 1+——
g4 t t

+ 1

A,
2

t —u——+3u +s2+
2 S

——(u +6sz)
u

2t

T

2+ 3 " 2sz far
2 t s st 2

2

2$

2 1——+——
t s st

1 1 1 4szg+——+ 2u-
2t s st

D,d(s, t, u, g )=D„(s,u, t, g ),
Dbd(s, t, u, g )=Db, (s, u, t, g ) .

(A21)

(A22)

(A23)
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The combined contributions of D„,D,d, Db„and Dbd agree with Eq. (C3) of Ref. 8 in the case of y production. For
D«we have

f~
D„(s,t, u, Q )=—.

t +u —2s2 4s 2u(u' —t')+ + 1 ——+d (f f —» sdt+ +
g2 t p M

(s+s2 —Q )+(f fM+f ) 2
+

st

2
'2

2s2Q 4 g2+— —1
2

u 2 u 1 1—d, sd, —1 ——+——+s2 —+——
s st st

Q2
u

(A24)

Ddd(s, t, u, g )=D„(s,u, t, g ) . (A25)

In contrast with all the other D functions, the interferences between diagrams c and d yield different contributions de-
pending on whether the handedness of the quark and antiquark are the same or opposite:

Dcd (s, t, u, Q ) = 1 f2 3s +2s2
(t —u) +2d, (s —t)+ —1

A, 2t

u 2$2 u ds dst+ ——1 + (f,„fz,—2f,„)[—2s(s+u)+u j

u 2t 4s(Q +s2)+d, (f„f,„) 1+——+—+
u ., tu (f2,t+fi. ) 1+—

+d„(2f,„f,„+f2, )
—1+ + + (s+s2) ——f„+fg,+1——2s+u t fthm 1 s

u tu t u

D,'d (s, t, u, g')= d„—(f,. f2' 2ft. )+ (f—,t ft—.) +d—,t(2fi—. f;+f2,t) —1+

+ (f,„—f,„)(s+s2—u) — (f,„+f2, )—2 2

5. Quark quark seatterin-g qq ~ Vqq

The following functions E (s, t, u, Q ) represent contributions from the quark-quark processes in Fig. 5:

E„(s,t, u, Q )=E„(s,t, u, g )=D„(s,t, u, g ),
Ebb(s, t, u, Q )=Edd(s, t, u, Q )=Ddd(s, t, u, g ) .

(A28)

(A29)

The two following equations are a consequence of the fact that when the antiquark in Fig. 4 is replaced by the quark in
Fig. 5, the handed couplings change with the replacements I.+-+—R ~. Thus the vector-vector contribution to the in-
terference changes sign in going from Fig. 4 to Fig. 5, which is in accordance with Furry s theorem, while the axial-
vector —axial-vector contribution does not. Thus the relationship between the quark-antiquark and quark-quark bd in-
terferences given in Table 2 of Ref. 8 is in error by a minus sign:

E,b (s, t, u, g ) =E,d (s, t, u, Q ) = D,d (s, t, u, Q ), —

E& (s, t, u, g )=Ed (s, t u, g )= Dd (s, t, u, Q ) . —

(A30)

(A31)

The following two functions, when combined together, yield a result for y production in agreement with Eq. (Dl) of
Ref. 8:
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E„(s,t, u, g )= CF—
2

4dtdss u 4 4Q—21 I ————+ ft st (A32)

z
C

E,d(s, t, u, g )= CF—
2

252+ (Q —s)
u tu

2+ —+ 2s2Q —+2 u t 2 1 1

s t u
' t2 u2

Eb, (s, t, u, g )=E,d(s, u, t, Q ),
Ebd(s, t, u, g )=E„(s,u, t, g2) .

(A34)

(A35)
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