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New tripreon models with semisimple metacolor groups
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A systematic analysis of the ehiral tripreon models with SU(X) X SO(M)-metacolor symmetry is
made. Unique solutions to the t Hooft anomaly-matching condition with the Bars constraint are
obtained for SU(3) XSO(5) models which also satisfy complementarity. Both the metacolor group
and the gauged color-Aavor subgroup of the metaflavor group are asymptotically free. A model
which has a low-metacolor-energy scale and three generations of composite fermions with the quan-
tum numbers of quarks and leptons of the standard model is obtained.

I. INTRODUCTION

Among the various proposed preon models, ' the one
we eall the chiral tripreon model, in which quarks and
leptons are composed of three spin- —,

' valence preons, are
particularly interesting because of the field-theoretical
constraints established recently. Tripreon models are
characterized by their local and global symmetries and
associated energy scales. One symmetry is the metacolor
(MC) group GMc, which describes the local gauge in-
teraction among the preons. The other, called the
metaAavor (MF) group GMF, is the global symmetry of
the preon. Depending on the symmetry-breaking pat-
tern, an invariant subgroup GcF of GMF, called the
color-liavor (CF) group, may be needed. In this case, two
energy scales are used to describe the breakdown of the
global symmetry of the preons and the appearance of lo-
cal symmetry of the bound states.

The MC interaction is associated with a confinement
scale AMc above which physics is described by preons
and their local gauge interactions and all other interac-
tions are negligible. Below AMc preon condensates as
well as preon bound states, which are singlets under GMc,
are formed to break the GMF into an invariant subgroup
Gc„. The Gc„ is subsequently gauged at a lower-energy
scale Acp. The gauged GcF becomes the local symmetry
of the composite fields. Therefore, the standard-model
symmetry SU(3)z X SU(2)L X U(l) i is either identified
with or contained in Gcp.

One can further imagine the existence of a grand
unification scale AGUT, above which all the interactions
are unified. The three energy scales satisfy the hierarchy
relationship

CF +MC +GUT

In such a scenario, the composite model could be made
relevant to physics in the TeV energy region. Despite
this very appealing picture, it is dificult to construct
preon models which posses a simple dynamics and lead to
a realistic description of quarks and leptons.

Important progress in restricting possible theories for
tripreon models has been made recently. Weingarten,
Nussinov, and Witten (WNW) have shown that in a vec-
torlike theory containing spin- —, constituents P, such as
the tripreon model, the masses of the low-lying bound
states satisfy an inequality of the form

M (Py sP) ~ kM (PPP), (2)

where M(PysP) is the mass of the lightest, nonsinglet,
pseudoscalar bound state, M(PPP) that of the lightest
spin- —,

' fermionic bound states, and k is a constant of or-
der unity. Since there are no pseudoscalar bosons as light
as the electron, or the up and down quarks, the WNW
condition eliminates vectorlike MC interactions, invali-
dating some of the tripreon models proposed early in the
literature. For example, all the type-I models of Ref. 3
based on a single irreducible representation of the SU(N)
MC group are ruled out.

Progress along the same line was made in the proof by
Vafa and Witten (VW) that in a vectorlike gauge theory
the associated chiral symmetry is necessarily broken.
Then the constituent fermions gain masses of the order of
AMc and so do all the bound states. This is in contradic-
tion to the fact that quarks and leptons are practically
massless in comparison with the composite scale, which
is at least of the order of a few TeV. Thus, vectorlike
theories are again ruled out as candidates of the MC in-
teractions. This leaves only the possibility of chiral in-
teractions among preons, such as in some of the type-II
models of Ref. 3.

In addition to the above rigorous results, two general
principles have been used in the construction of preon
models. One is the by-now-classical 't Hooft anomaly-
matching condition. The MC currents are required to
be free of anomalies, while the anomalies of MF currents
in the composite sector must be identical to those in the
preon sector. With the help of spectator fields, the
gauged group Gc„ is also free of anomalies. In addition
to ensuring the renormalizability of the MC and CF in-
teractions, this anomaly matching is a necessary condi-
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tion in the preservation of chiral symmetry at the com-
posite level to guarantee the existence of massless bound
states.

A second principle which has been applied recently is
the complementarity principle. This principle, based on
results of lattice gauge calculations, asserts that a certain
type of gauge theories that undergoes spontaneous sym-
metry breakdown (the Higgs phase) is equivalent to that
of the corresponding confining theories without spon-
taneous symmetry breakdown (the confining phase).
More specifically, this is to assert that a gauge theory
which is spontaneously broken by scalar condensates in
the fundamental representation of the gauge group can be
continued analytically into the confining phase of the
theory. The relevance of complementarity to preon mod-
els is that it allows an analysis of the symmetry structure
of the preon dynamics, which produces bound states and
is, therefore, in the confining phase, in terms of the
simpler Higgs phase.

In the Higgs-phase analysis, condensates are allowed
to form with nontrivial MC quantum numbers and,
therefore, break both the MC and MF symmetries. A
final global symmetry is obtained, in the way of a tum-
bling gauge theory, when the MC group cannot be bro-
ken down further. The MC-singlet sector of-this surviv-
ing global group Gc„can be used to identify the quantum
numbers of the massless composite fermion. A detailed
analysis of simple chiral MC groups in terms of com-
plementarity and tumbling can be found in Ref. S. .Re-
cently, Georgi' proposed a moose notation, in which the
MC group of a given preon is simple, to facilitate the
analysis of the Higgs phase. It should be emphasized that
the actual physics of preons occurs in the confinement
phase. The Higgs phase is a method used to identify the
final unbroken global symmetry which will be gauged as
the local symmetry of the composite fermions.

The decoupling requirement originally proposed in
Ref. 5 is probably too restrictive as a general principle in
the construction of preon models. " In spite of this, be-
cause of the chiral invariance which is maintained in the
confinement phase of the MC-singlet sector, the models
considered in this paper satisfy the decoupling require-
ment, as will be discussed later.

In this paper we make a systematic analysis of chiral
tripreon models with semisimple MC groups of the form
GMC =SU(N) X SO(M), where all preons are taken to be
left handed. The use of semisimple MC groups in the
construction of preon models has been considered in Ref.
12 where several interesting models were investigated.
An interesting feature of this class of models is that -the
MC interactions have two mass scales, a higher scale
AMC and a lower scale AMC, for the SO(5)Mc and
SU(3)Mc, respectively. In the intermediate-energy range
between AMc and A~&, the model can behave like a
fermion-boson constituent model. This may help simplify
the preon dynamics. However, the gap of the two MC
scales cannot be too large. Otherwise the gauge interac-
tion associated with AMc may be very weak at AMC. In
such a case the gauge group associated with the lower
MC can be treated as global there. Then the model con-
sists practically of a simple MC group.

In Sec. II we m'ake a brief summary of chiral preon
models discussed in the recent literature and motivate
our model of semisimple groups for the MC symmetry.
In Sec. III, we analyze models with 6MC
=SU(N) XSO(M) which consist of at least one set of
preons transforming nontrivially in both MC groups.
These models can potentially produce interesting corn-
posite fermion spectra. The complementarity analysis
applied to semisimple MC interactions is presented in
Sec. IV using model A of Sec. III as an illustration. In
Sec. V we make complete analysis of another
GMC=SU(3)XSO(5) model with a MF group which
reproduces the quark-lepton spectrum of the standard
model without exotic fermions. This model has a low
MC energy scale and satisfies the criteria of a realistic
preon model. Discussions are made in Sec. VI, where we
will brieAy discuss, among other things, the two MC
scales in terms of their associated running coupling con-
stants. Some technical details needed are given in Ap-
pendixes A and B.

II. SUMMARY AND MOTIVATION

Since vectorlike tripreon models are ruled out by the
WNW condition, only complex MC-group representa-
tions are allowed in theories of the SU(N) type. If we re-
strict ourselves to simple groups, the possible candidates
for GMC are SU(N) for N ~ 3, SO(4M+2) for M ~ 2, and
E6. If we further limit ourselves to a single representa-
tion of a simple GM~ group, only E6 is allowed. Howev-
er, if we abandon the limitation which restricts all preons
to a single representation, SU(1V) groups in which preons
occur in at least two complex representations are also vi-
able.

Several chiral tripreon models with the group structure
[E6]MCXSO(10)c„(Refs. 13—16) have been proposed re-
cently, where the CF group SO(10) originates from global
MF groups GMF =SU(N), N = 16, 18, and 27. However,
in the GMF=SU(27) case, the metacolor sector is not
asymptotically free. The GM„=SU(16) case predicts an
excessive number of exotic composite fermions and con-
sequently loss of asymptotic freedom in the CF sector.
The GM„=SU(18) case predicts a MC scale higher than
the grand unification scale, violating Eq. (1).

Another class of models' with the symmetry groups
SU(N)MCXSU(N+IC)MFX U(1)MF for K =4 and 5 does
not admit realistic composite particle spectra. What we
mean by a realistic model is that (a) the model is asymp-
totically free in the MC and CF sectors, (b) it predicts a
minimal composite spectrum of three or four quark-
lepton families without an excessive number of exotic fer-
mions, and (c) the model possesses a low metacolor scale
satisfying Eq. (1). Recently, Geng and Marshak' suc-
ceeded in constructing such a realistic model. However,
some of the composite fermions there are composed of
five preons. This will make the preon dynamics very
complicated.

The above summary shows that it is difficult to con-
struct chiral preon models with relatively simple MC dy-
namics which can produce a realistic quark-lepton spec-
trum when the MC symmetry is restricted to a simple
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group. A different approach is called for. A possible
route is to extend the MC symmetry to semisimple
groups. An apparent argument against using semisimple
groups for the metacolor is that it contains more than
one coupling constant. However, the merit of consider-
ing more complicated structures for the MC group has
been emphasized by Georgi. ' Georgi argued that, be-
cause of our ignorance of strongly coupled quantum
fields, interesting features may be revealed and better un-
derstanding gained if we consider the fundamental fer-
mions transforming simultaneously in more than one
group.

III. GENERAI. ANALYSES OF SU(jn ) XSO(M)
MKTACGLGR GRQUPS

Consider the MC symmetry group 6~c=SU(N)~c X SO(M)~c, where the preons are taken to be
left handed and their SO(M) representations are restricted
to be either the vectorial or the minimal spinorial form.
The composite fermions are singlet under both SU(N)„&c
and SO(M)~c. The MF groups are formed by the direct
product of special unitary groups as determined by the
MC anomaly cancellation and by the required low-energy
physics.

In general, preons can occur in various representations
of Gmc denoted by J'] J'2 -. Ps. The case with only
one representation of preon s =1 is not possible for
anomaly-free chiral MC interactions. Models construct-
ed with s ~ 3 in general violate Eq. (1). We will concern
ourselves in this paper only with the case s =2.

First we note that we can associate two energy scales
A~~z and Ax'ic' with the Gxic. one with SO(M)~c and the
other with SU(N)~c. Let us consider the following
scenario. At the higher scale A~& preon-preon bosonic
bound states start to form. These bound states are sing-
lets under the group associated with A~&. Then the bo-
sonic bound states combine with a third preon to form
the desired composite fermions at the lower scale A~c.
This requires that the bosonic bound states transform
under the MC group of the lower scale as the conjugate
representation of the third preon. In the models con-
sidered below, the coupling constant of the SO(M)~c
evolves faster than that of the SU(N)~c. (See Appendix
8 for more detail. ) We can further imagine that the two
coupling constants coincide at a super-high-energy scale,
e.g. , a grand unification scale ABUT. Then SO(M)~c is
associated with A~& and SU(N)~c with Asic.

We choose the GNic =SU(N) XSO(M) representations
of the two species of preons to be

N, =N2M, independent of n. Two MC singlets of
tripreon states with different fermion-number assign-
ments can be formed: (P,P,P, ) and (PiP2Pz) (Ref. 19).
We will discuss in the following the simplest cases of
n =1,2, and (M, N„N2)=(8, 16,2) and (5, 15,3).

We have already commented in Sec. I that the two MC
scales and, hence, their associated interaction strengths
cannot be too drastically different. This requirement also
makes the model satisfy the decoupling theorem since no
mass term can be formed due to invariance under both
MC groups. For example, the mass term of the form

(P2Pz) transforms like (0,1) or (~~~~, 1) which is not in-

variant under SU(N) and hence is not allowed.

A. n =1 andM=5

The MC group is Givic=SU(3)~cXSO(5)~c and the
minimal global MF group that produces interesting com-
posite spectrum is G~F =SU(15)~X SU(3)F. So the left-
hailcled chir al pr coIls are in the 6~c representation
P& =(3, 1) and Pz=(3, 5) with the multiplicities Ni =15
and Nz=3, respectively. The quantum-number assign-
ment of the preons and composite fermions can be found
in Table I by setting M =5.

The anomaly-matching condition involving three
SU(15)F currents is

54I) +189(i +216li+3$2+6l3=3

and that of three SU(3)„currents is

15(l2 —7l3)=15 .

(4a)

(4b)

On the other hand, if we take GcF=SU(3)
X SU(2) XU(1) as the gauged low-energy subgroup of the
G~„, the solution contains the following representations
of the GC„=SU(3)X SU(2) XU(1):

Relevant expressions of anomaly coefTicients can be found
in Appendix A. With the Bars condition, ' which as-
sumes minimal values for the 't Hooft indices, i.e.,
~l;~ ~ 1, we obtain a unique solution 12=1 and all other
indices are zero. This solution predicts the massless com-
posite fermions to be (P, P2Pz) in the (Cl, C3) representa-
tion of the MF group SU(15)F X SU(3)F, corresponding to
45 composite fermions.

If we gauge the subgroup GCF =SU(5) of G~„(Ref.
16), then the composite fermions are divided into three
families of 5+ 10 representations of the SU(5):

15—+5+ 10 .

P, =([n]3„,1) and P2=([n]3„,M), (3) (3, 1)( —2)+ (1,2)(3)+(1,1)( —6)

where N =3n, [n]~ is a representation of SU(N) with n

totally antisymmetric indices, and [n]z is the conjugate
of [n]~. Therefore, unless n =1 (N=3), the preon will
not be in the fundamental representation or the conjugate
of SU(N). Let the multiplicities of P, and P2 be N, and
Nz, respectively. This corresponds to the global-
symmetry group G~F =SU(N, ) X SU(N2 ). The
anomaly-free condition in the MC sector requires

+(3,1)(4)+(3,2)( —1), (5)

where numbers in the first set of parentheses of each term
denote the SU(3) X SU(2) representation and the number
in the second set of parentheses is the U(l) quantum
number. These particles can be identified with the three
generations of quarks and leptons and the 6cF is
identified with the standard-model group. There are no
exotic composite fermions.



226 LU, YOUNG, ZHANG, AND WAN

TABLE I. Quantum-number assignment of the preons and composite fermions in model A; M =5.
(All preons are left handed. )

Preon
Pi
P2

SU(3)Mc X SO(M)Mc SU(3M) X SU(3)
't Hooft

index

Composite

PiPiPi

P)P2P2

8. n = 1 and M = 8

The GMc =SU(3)MCXSO(8)Mc assignments of the two
preons are P, =(3, 1) and P2=(3, 8) with multiplicities
16 and 2, respectively. This leads to the global MF group
GMF =SU(16)FXSU(2)~. The particle content of the
model is given in Table II. Anomalies occur only in
SU(16)z. the 't Hooft anomaly-matching equation from
three SU(16)F currents is

65l ) +209l i +247l
&
+ l 2 +3l 2 (6)

Taking into account the Bars condition, ' we obtain a
unique solution l2+ =1, and all the other indices vanish.
This solution predicts that the massless composite fer-

mions transform in the (CI, ) representation of the

GFM =SU(16)FX SU(2)F. If we take Gc„=SO(10)as the
gauged CF subgroup of the G~~, the above solution cor-
responds to three families of the 16 representation of the
SO(10)CF.

The MC symmetry contains another CF group
Gc„=SU(4) c XSU(2)I X SU(2)z as the low-energy
gauged subgroup of the GM„. Then the solution gives the
following representation of G&„=SU(4)cXSU(2)L
XSU(2)it:

3[(4,1,2)+ (4, 2, 1)],
which corresponds to three generations of quarks and

leptons of the Pati-Salam ' type with massive neutrinos.
There are no exotic fermions.

C. n =2and M=8

65l
&

+209l &+ +247l
&

+3l2+ +l2 = 15 (8)

We found that l, , l,+, and I
&

are zero and the pair, lz+

and l z, can have the values

(12+,l2 ) =(5,0), (4, 3), (3,6), (2,9), (1, 12),(0, 15) . (9)

All sets of solutions in Eq. (9) can potentially give rise to
fifteen generations of composite fermions which are in-
cluded in fifteen 16 representations of the SU(16)F. If we
impose the Bars condition, ' there are no solutions to Eq.
(8).

The case n =2 and M =5 will not be discussed here.
We just point out that the solution of the 't Hooft
anomaly-matching condition consists of fifteen 15 repre-

The MC and MF symmetries are

GMC X GM„=SU(6)MC X SO(8)MC X SU(16)F X SU(2)F .

The preon and composite fermion representation con-
tents are similar to those given in Table II with the (CI)

and (CI) representations of the SU(3)MC being replaced by

the 15 ( H ) and 15 ( EI ) representations of the SU(6)MC,

respectively. The 't Hooft anomaly-matching equation is

TABLE II. Quantum-number assignment of the preons and composite fermions in model B. (All
preons are left handed. )

Preon
P,
P2

SU(3)Mc X SO(8)Mc SU(16)„XSU(2),
't Hooft

index

Composite

P, P2P2
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sentations of the SU(5). However, there are no solutions
when the Bars condition is imposed.

To summarize, we note that models A and B with
n = 1 have nontrivial solutions under the Bars condition'
and can give rise to three generations of quark and lep-
tons. Furthermore, they have all the required properties
of a realistic preon model: (1) The MC dynamics of the
preons is chiral and free of MC anomalies; (2) the n =1
models can produce reasonable composite fermion spec-
tra; (3) as discussed in Appendix B, both the MC and CF
sectors are asymptotically free. This is contrast with
some of the [E6]ivic X [SO(10))c„models' ' which are
not asymptotically free.

IV. CGMPLEMENTARITY ANALYSIS

= [SU(3 ) X SO(M) ]xicX [SU(3M) X SU( 3)]~F,
where representations of the two species of preons are

Pj =(3,1;3M, 1) and P2=(3,M;1,3) . (10)

The complementarity analysis of the [E6]Nic and
SU(N )~c models has been done by several au-
thors. ' ' ' The symmetry structures of the preons in
our model is more complicated than that considered in
Ref. 10 but is not more complicated in performing the
complementarity analysis. In the following we will con-
sider model A of the preceding section as an illustration.

We will first consider the SO(M)~c with a general M
and then set M =5. The symmetry of the preons is given
by the MC and MF groups

Gz-=G~c X G~F

P, ~P„(1;3M,3),
P2~Pz, (M;1, 1) and P22(M;1, 8) .

(12a)

(12b)

Note that the original P2 branches into P2, and Pz2 ac-
cording to the 1 and 8 representations of SU(3)F ob-
tained from the QXO of the SU(3)ivicXSU(3)F. Accord-
ing to Georgi's survival principle, the Pz, and P22,
which belong to real representations of Gz, become mas-
sive, leaving P» =(1;3M,3) as the only surviving mass-
less fermion. The tumbling is ended here.

2. Con+ning phase

The group representation content of the preons and the
composite fermions are similar to that of model A of Sec.
III and can be found in Table I. , The 't Hooft anornaly-
matching conditions are

3=l,+A( ~ ~ ~ ~ )3~+i, A

r

+l, A
3M Lj 3M

e=(P,P, )eo
which is produced via the SO(m) interaction is in the rep-
resentation (ni, 1; I,nz) of the Gr, where ni=3 or 6 and
n2 =3 or 6. The ( 3, 1; 1,3 ) representation preserves the
maximal allowed symmetries which agrees with the re-
quirement of complementarity. This (3, 1;1,3) represen-
tation breaks the SU(3)~c and SU(3)F into a diagonal
SU(3)F. Thus, the group Gz. breaks down to
6~=SO(M)ivicXSU(3M)F X SU(3)F. The preons P, and
P2 are then decomposed according to the representations
of the Gz.

We will show that the Higgs and confining phases lead to
the same composite particle spectrum and therefore this
model satisfies complernentarity.

+!,D(CI), +l,D( « i),

for three SU(3M)F currents and

(13a)

1. Higgs phase 3M =3M[i~A (Q)2+13 A( « ~)3] (13b)

As already noted in Sec. I, the Higgs phase does not
correspond to a physical situation. The Higgs-phase
analysis is a method used to identify the final unbroken
global symmetry.

The appearance of condensates will generally break
some of the preon symmetries. We will look for the con-
densate channel which preserves maximal allowed sym-
metries. There are two ways to form two-preon conden-
sates: (p,p2) and (p2pz). The (p,pz) condensate is
obtained via the SU(3)ivic interaction and is an SU(3) sing-
let. However, this condensate breaks all the symmetry
except the SU(3)ivic. Only the (p2p2) condensate can
produce interesting results. This situation is consistent
with the following dynamical consideration. We imagine
that the SU(3)~c and the SO(5)xic coupling strengths are
comparable at some superhigh energy. As energy de-
creases to A~& the SO(M) interaction becomes strong and
reaches its critical value. On the other hand, the cou-
pling of the SU(3) which evolves more slowly is still
below its critical value at A~z. Hence, condensates will
first appear in the p2p2 channel.

The condensate

for three SU(3)F currents. In the above expressions
A ( )z and D ( )~ denote the anomaly coefficient and the
dimension of the indicated representations of SU(X).
Their values can be found in Appendix A. The solution
is lz =1 and a11 other indices are zero. Then the massless
fermions belong to the (3M, 3) representation of the
G~„=SU(3M)F X SU(3)F, identical to the massless parti-
cle spectrum in the Higgs phase, i.e., Eq. (12a). Thus,
this model satisfies complementarity. In the case M =5,
the model can give rise to three generations of quarks and
leptons under gauged color ffavor Gc„=SU(5) or
SU(3) X SU(2 ) XU( 1 ) (Ref. 16). This second possibility
leads directly to the fermion spectra of the standard rnod-
el and can potentially have a low-energy scale satisfying
Eq. (1). However, the first possibility which leads to
SU(5) as the color-ffavor group violates Eq. (1).

V. A REALISTIC LOW-ENERGY-SCALE TRIPREON
MODEL WITH COMPLEMKNTARITY

In this section we make a complete analysis, including
the 't Hooft anomaly matching and complementarity, of
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a model similar to model A of Sec. III but with a different
MF group. We will show that this model has a low-
energy scale and satisfies all the criteria of a realistic
preon model stated in the Introduction.

Consider a chiral model with GMC =SU(3 )Mc
XSO(5)Mc and GM„=632,F XSU(3)F, where
G3z, F =SU(3)F XSU(2)F XU(1)F. The preons are denot-
ed by P11 12 P13 14 Pls, and P2 Thei«epresenta-
tion content are given in Table III.

61', +31,+(613+313)—2(6l4+314)+ . . =0,
Sl I + 1 i

—(5l2+ l2 ) —2(513 + l3 )+(Sl4+ l4)

(15b)

+(Sl5+l5) =0, (15c)

[SU(3)CF] U(1), [SU(2)LF] U(1), and [U(1)r]:
3I ) +2(2+ 3I3+614+I5

—7(3l I +2l2+ 313 +614+l5 ) = 15, (15a)

2. Higgs phase

Following an analysis similar to that in the preceding
section we argue that condensates appear in the P2P2
channel

2lt+li —2(2l3+13)+(21~+l4)+ =0,
6l2+3l2 (61~—+3l4)+ =0,
6(6lI +31) )+9(6l2+3l2) —32(6l3+3l3)

(15d)

(15e)

C'=(P, P, lao (14) +(614+3l~)+36(6ls+l5)+ . =0 . (15f}

which has the representation (3, 1;1,1,0;3) under the
preon symmetry group

The solutions are

l] = l~ = l3 = l4 = l~ = l (16)

[SU(3)X SO(5)]MC X [G32]F X SU(3)F]M„.
The SU(3)MCXSU(3)F breaks down to the diagonal
SU(3) due to the condensate Eq. (14). The original
preons branch into seven states, pI, j =1, . . . , 5, @2&,
and @22, according to the remaining invariant group

SO(5)MC X SU(3)F X SU(2)F XU(1)F X SU(3)F .

The representations of the seven preon states are shown
in Table IV. The preons P2& and P22 become massive and
all other preons remain massless. Since all the massless
fermions are SO(5)MC singlets, the tumbling is completed.

2. Confining phase

There are six constraint equations on the anomaly in-
dices obtained from triangle graphs which involve Aavor
currents [SU(3)Fj, [SU(3)cF], [SU(3)F] U(1),

and zero for all other indices. There are five massless
composite fermions: (P&.P2P2), j=1, . . . , 5. Their rep-
resentation contents under SU(3)F X SU(2)F X U(1)F
X SU(3)F can be found in Table III, where they are all in
the fundamental representation (CI) of the SU(3)F. Since
these composite fermions are identical to those in the
Higgs phase, complementarity holds.

The standard-model identification of the composite fer-
mions are given in Table III, where uI, d&, v&, and I&,f = 1,2, 3, denote the three generations of quarks and lep-
tons. The superscript c means charge conjugation; hence,
u&i, etc. , f = 1,2, 3, correspond to the three right-handed
up-type quarks, etc. In this identification, the global
groups SU(3)F XSU(2)F XU(l)F are gauged at the scale
Ac„ to become the standard-model group
SU(3)c XSU(2)L XU(1)r.

We summarize some of the important features of this

T~I3LE III. Quantum-number assignment of the preons and composite fermions for the SU(3)Mc X SO(S }cX G32iF X SU(3}F™d
el. (All preons are left handed. )

SU(3)MC X SO(5)MC X SU(3)CF X SU(2)LF XU(1)y~ XSU(3)F
't Hooft

index
SM

particle

Preon

Plz

Pls
Pz

G
1

G
G
1

1

1

G
1

G
1

1

2
3—1

4
3

1

3

2

1

1

1

1

1

G

Composite
PliP2Pz
P)2PzPz
P I3PzPz
PI4P2P.
PlsP2Pz

1

G
1

G
1

2
3—1

4
3

3

2

ca,G
ca,G
m, G
CQ,G
EZ3,G

1

ll, l,
I2, lz

l3, l3

l4, l4

ls, ls
I) ~ ~ ~

dfL

vfI p lfL

QfL

QfL ydfI

le
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model. (1) The MC dynamics of the preon is chiral and
anomaly-free. (2) Using the treatment of Sec. III, we can
show that the gauged CF group is asymptotically free in
both the preon and the composite sectors. (3) Since the
gauged color-flavor subgroup is asymptotically free and is
weak at the MC scale, this model is a low-scale model
satisfying Eq. (1). (4) The model satisfies complementari-
ty. Therefore, this model is a possible candidate of a real-
istic preon model.

VI. DISCUSSIQNS

We have discussed in detail preon models with the
semisimple MC group SU(3) X SO(5). The models satisfy
complementarity and possess unique solutions to the
't Hooft anomaly-matching condition subject to the Bars
constraint. Their composite fermion spectra consist of
three families and each family contains 15 composite fer-
mions which have the standard-model quantum numbers
of quarks and leptons. There are no exotic composite fer-
mions. In addition, these models have the following in-
teresting features. (a) There are two MC energy scales:
AMC and AMC. The models can behave like a fermion-
boson model in the energy region between the two MC
scales. Hence the dominant confining forces are two-
body forces. A detailed analysis of two-scale models will
be presented in a separate publication. (b) The models
are minimal in the sense that they contain a relatively
small number of preon degrees of freedom.

We have argued in the preceding sections that the gap
between the two MC energy scales should be reasonably
close so that the coupling strength of the gauge interac-
tion associated with the lower-energy scale is not negligi-
ble at the higher-energy scale. It is straightforward to
demonstrate that our models possess this property. Con-
sider the case GMC=SU(3)XSO(5) with their fine-
structure constant denoted by a3 and o.'5. Take the super
energy scale ABUT, where the two simple MC groups are
"unified, " i.e., a3( AoUT) =a~(AoUT) =0. 12. At their
respective MC energy scales AMC and AMC the two cou-
plings reach their critical values a'= m. /[3C2(R ) ]:
a5 = rr/6 and a3 =n/4. Then we have AoUT/
A' '=3X10 A' '/A' '=6X10 and a [(A' ') ]
=0.28o;5=0. 15. Taking, e.g. , AMC=10 TeV, we have
AMC=6X10 TeV and AGUT=2X10 TeV. Hence, we
have reasonable gaps among ABUT, AMC, and AMC.

(H) (L)

Furthermore, the SU(3) MC interaction is not negligible
in comparison with that of the SO(S).

Counting particles and antiparticles, helicities,
metacolor, and metafiavor, the two SU(3)Mc X SO(5)Mc
models considered in this paper have 180 degrees of free-
dom each in the preon sector. In contrast, in a minimal
model proposed, for instance, in the first paper of Ref. 22,
there are 240 degrees of freedom. The standard model of
quarks and leptons has 90 degrees of freedom for three
generations and massless neutrinos. This feature of a
large number of degrees of freedom is common to all re-
cently known preon models which can produce a reason-
able composite fermion spectrum. It has been argued
from cosmological considerations that the preon de-
grees of freedom Dz is greater than that of the quark lep-
tons D&L (including both fermions and gauge bosons) if
the transition from the preon phase to the quark-lepton
phase is of first order. Hence in the context of the cosmo-
logical argument, DJ )D&L is not unreasonable.

There exists a class of models' ' which requires an
intermediate invariant global-symmetry group
HM„C GM„and an additional energy scale A,„. In these
models the anomaly-matching conditions are not satisfied
at the level of the MF group. The preon condensates is
assumed to take place at A,&&AMc to break the global
symmetry of the preon. At A,z the MF group GM„ is
broken into an invariant subgroup HM„ in which the
anomaly matching is enforced. In our model, as in some
other models, the anomalies are matched at the level of
GM„, the group HM„and the scale A,z are not needed,
and the energy scales of preon condensates and preon
confinement are expected to be the same order of magni-
tude, which is a property shared by QCD.

APPENDIX A

The dimension and the anomaly coe%cient formulas
for several representations of the SU(N) group used in our
calculation are given by

D(Cl)=N, D(« i)=
2

The anomaly coefficients are normalized to A (H)=1,
the, n

(N+2m)(N+m)!
(N +2)!(m —1)!

g(r s & ~ ~ P)= —g (i i &
~ Q)

Preon SO(5)MC XSU(3)F XSU(2)F XU(1)F XSU(3)F

TABLE IV. Preon decomposition in the Higgs phase for the
SU(3)McXSO(5)M~X G»&F XSU(3)~ model. (A11 preons are left
handed. ) A

(N —2m)(N —3)!
(N —m —1)!(m —1)!

Pl( 1

PI2
Pl3 1

PI4 1

Plq 1

P2I 5

P22 5

0
1

O
D
1

1

1

1

0
1

U

1

1

1

2
3—1

4
3

1

3

2

where the above representations are made of m funda-
mental representations (C1), and

A ~ ' =D(CI)A g +D H A(H)

A =1 —9
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APPENDIX 8

To lowest order, the p function is given by the well-
known formula

P= — 11C~(G)—2 g T(R) 48rr2 .

For SU(N), Cz(G) =X,T(R)=
—,
' for the fundamental rep-

resentation, and T(R)=(X—1)/2 for the antisymmetric
rank-2 tensor representation. For SO(M), Cz(G) =M —2,
and T(R)=1 for the M representation. The sum in
T(R ) is over all the "Aavors" and all participating repre-
sentations R of the fermions involved.

In the model being considered, each species of preons
or composite fermions occur only in one representation
(including the complex-conjugate representation) of a
given group. The condition of asymptotic freedom (ASF)
is, therefore, determined by the multiplicity, i.e., the
number of Aavors, of a given representation. We
enumerate the maximum multiplicities X. of fermions of
each relevant representation which ensures ASF: %2 =21
for fundamental representation of SU(2); N~ =32 for the
fundamental representation of SU(3); X5 =16 for SO(5) in

the 5 representation; X6 = 16 for the 15 representation of
SU(6); and Xs =32 for SO(8) in the 8 representation.

The above condition on the multiplicities of the preons
and composite fermions can be compared with the actual
multiplicities of models A and 8 in Sec. III: X& =30 and
X5-9 in model A; Xz =32 and %6=6 in model B. The
ASF of the CF groups of model A is obvious since the
composite fermion spectra are similar to that of the
quarks and leptons of the standard model. For model 8,
the CF group has %4=12 and %2=12 for both the left-
and right-handed SU(2). Hence both the CM and CF
groups are asymptotically free.

We also note that in model A of Sec. III and the model
of Sec. V, p= —1/16m. and —5/16m for the SU(3)MC
and SO(5)MC, respectively. For model B of Sec. III,
p= —1/48~ and —11/48m . Hence, the SO(M), M=5
and 8 will evolve at a faster rate than SU(3) as energy
changes.

ACKNOWLEDGMENTS

This work was supported by U.S. Department of Ener-

gy Contract No. W-7405-Eng-82, 05ce of Energy
Research (KA-01-01), Division of High Energy and Nu-
clear Physics, and by the National Natural Science Foun-
dation, China.

*On sabbatical leave from the Department of Physics, Henan
Normal University, Xinxiang, Henan, China.

~Present address: DESY, D-2000, Hamburg, Federal Republic
of Germany.

'For a review of early literature, see L. Lyons, Prog. Part. Nucl.
Phys. 10, 227 (1982). For a more recent development, see W.
Buchmiiller, Acta Phys. Austriaca Suppl. XXVII, 517 (1985);
R. D. Peccei, in Selected Topics in Electromeak Interactions,
proceedings of the Second Winter Institute on New Frontiers
in Particle Physics, Lake Louise, Canada, 1987, edited by J.
M. Carneron et al. (World Scientific, Singapore, 1987); H.
Harari, in Proceedings of the XXIIIrd International Confer
ence on High Energy Physics, Berkeley, California, 1986, edit-
ed by S. C. Loken (World Scientific, Singapore, 1987).

~D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983); S. Nussinov,
ibid. , 51, 2081 {1983);E. Witten, ibid. , 51, 2351 (1983).

~C. H. Albright, Phys. Rev. D 24, 1969 (981).
4C. Vafa and E. Witten, Nucl. Phys. 8234, 173 (1984).
5G. 't Hooft, in Recent Deuelopments in Gauge Theories, edited

by G. 't Hooft et al. (Plenum, New York, 1980).
S. Dimopoulos, S. Raby, and L. Susskind, Nucl. Phys. 8173,

208 (1980).
K. Osterwalder and E. Seiler, Ann. Phys. (N.Y.) 110, 440

(1978); E. Fradkin and S. H. Shenkar, Phys. Rev. D 19, 3682
(1979); T. Banks and E. Rabinovici, Nucl. Phys. 8160, 349
(1979).

8J. L. Goity, R. D. Peccei, and D. Zeppenfeld„Nucl. Phys.
8262, 95 (1985).

9S. Raby, S. Dimopoulos, and L. Susskind, Nucl. Phys. 8169,
373 {1980).

~OH. Georgi, Nucl. Phys. 8266, 274 (1986).
~ J. Preskill and S. Weinberg, Phys. Rev. D 24, 1059 {1981).
' I. Bars, Nucl. Phys. 8208, 77 {1982).

~J. M. Gipson, Y. Tosa, and R. E. Marshak, Phys. Rev. D 32,
284 (1985).
V. Silverira and A. Zee, Phys. Lett. 157B, 191 (1985).

'5Y. Okamoto and R. E. Marshak, Phys. Lett. 162B, 333 (1985).
~6xiaoyuan Li and R. E. Marshak, Nucl. Phys. 8268, 383

(1986).
'7C. Q. Geng and R. E. Marshak, Phys. Rev. D 35, 2278 (1987).
tsC. Q. Geng and R. E. Marshak, Z. Phys. C 35, 513 (1987).
' Singlet representations are contained in the products

3 X 3 X 3= 1+2(8)+10 for SU(3),
15X 15X 15=1+2(35)+175+3(189)+280

+490+896 for SU(6),
8 X 8 = 1+28+ 35 for SO(8},

5 X 5 = 1+10+ 14 for SO( 5 ) .

~ Equations (4a) and (4b) are special cases of Eqs. {13a) and
(13b).
J. Pati and A. Salam, Phys. Rev. D 10, 275 (1974}.

2~T. Kobayashi, Phys. Lett. B 180, 107 (1986};H. P. Hill and S.
Raby, Nucl. Phys. 8189, 93 (1981);J.-M. Gerard, Y. Akamo-
to, and R. E. Marshak, Phys. Lett. 169B, 386 (1986).
The representations (3, 1;1,6) and (6, 1;1,3) will break all the
symmetries except the SO( m )M& XSU(3M) MF. The represen-
tation (6, 1; 1,6) which has the symmetry SO{M)Mc
XSU(3M)MFXSU(3) similar to the (3,1;1,3) case would leave
too many Goldstone bosons not absorbed by gauge bosons.

24H. Georgi, Nucl. Phys. 8156, 126 (1979).
25H. Nishimura and Y. Hayashi, Phys. Rev. D 35, 3151 (1987).


