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The next-to-leading-order jet cross section is calculated for the simplified case in which there
are only gluons. Numerical results of this calculation have been presented elsewhere. Here, we
describe the calculational method in some detail, deriving all of the formulas that are necessary
for the numerical evaluation of the cross section. The calculation is based on the matrix elements
of Ellis and Sexton. In a future paper, we will extend the calculation to include quarks as
well as gluons. When quarks are i&eluded, the algebraic complexity of the problem increases
-substantially. However, the method to be applied is essentially the same as in the gluon-only
case, since there are no new singularities in the amplitudes that are not present in the gluon-only
amplitudes.

I. ORGANIZATION

A. Introduction

One of the dramatic features of the recent datai from
hadron colliders, both at CERN and Fermilab, is the ob-
vious appearance of hadron jets2 as a characteristic fea-
ture of a sizable fraction of the final states. These jets
are an essential tool for organizing and analyzing the data
and are potentially important as a test of our quantitative
understanding of the underlying strong-interaction the-
ory, QCD. This is particularly true if one wants to looks
for a breakdown of the standard model due, for example,
to the possible composite structure of the particles now
thought to be elementary. One would like to analyze the
scattering of these elementary partons at the largest pT
scale possible. The signal for hard parton-parton scat-
tering is jet production and the most straightforward jet
cross section is that for the inclusive production of a jet.

Unfortunately, there remain important ambiguities
which limit our ability to perform detailed quantitative
studies with the observed jet cross sections. One source
of ambiguity is the experimental error in the measure-
ment of the jet energy in a calorimeter. Another source
is the uncertainty in the parton distribution functions, 4

which will be improved only by further deeply inelastic
lepton scattering data and, for the gluons, by the sort
of jet analysis discussed here. This paper addresses an-
other class of ambiguities. These ambiguities are related
to perturbation theory beyond the Born level and to the
fact that a jet is not intrinsically well defined. At the
Born level, one looks at a cross section for parton scat-

tering, and assumes that each outgoing parton material-
izes into a narrow jet of particles. However, for reasons
of color, energy-momentum conservation, and quantum-
mechanical interference, a jet of hadrons cannot be the
residue of a single parton. One first sees the diflicul-
ties in a calculation at one order beyond the Born level.
Here, one finds that a careful definition of jet measure. —

ment is necessary. 3 The differences in jet definitions are
presumably responsible for at least some of the approx-
imately 50% difference between the reportedi jet cross
sections from UAI and UA2. Further issues related to
higher orders of perturbation theory are the choice of the
renormalization/factorizations scale pz and the value of
the so-called "I4 factor" (characterizing the uncertainty
in magnitude of the cross section due to higher-order can-
tributions). Thus we can improve the situation by per-
forming a complete calculation at one order beyond the
Born approximation (i.e., at order ns), leading to a theo-
retical uncertainty smaller than the current experimental
error.

In earlier theoretical studies, only incomplete QCD
matrix elements at order a3 were available. Recently
the full order-n, matrix elements in 4 —2e dimensions
have been calculated. "In the present paper we describe in
some detail a calculation of the inclusive jet cross section
using these full matrix elements, applied to the simplified
case of gluons only. Results from this calculation have
been presented elsewhere. We find that the uncertainty
associated with the choice of the renormalization scale
p2 is reduced compared to the Born cross section, while
a significant dependence on the cone size R used in the
jet definition appears. In a subsequent publication we
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will present the results of a full analysis of pp collisions
including quarks.

An analysis based on the Ellis-Sexton matrix elements
and focused mainly on single-particle inclusive produc-
tion has been given by Aversa, Chiapetta, Greco, and
Quillet. ii These authors also calculate a jet cross sec-
tion, but only in the limit in which the jet cone size R is
much smaller than 1.

In this paper we describe the calculation of the jet cross
section, deriving all of the formulas that are necessary for
the numerical evaluation of the cross section. The essen-
tial problem is to carefully treat the collinear and soft
singularities in the matrix elements. These singularities
lead to integrals that are divergent when e —+ 0, but the
divergences cancel between real and virtual graphs when
the physical jet cross section is calculated. Thus one must
isolate the divergent contributions and perform the diver-
gent integrations analytically, while leaving only finite
integrations to be performed numerically. An important
feature of the calculation is that, in contrast with ear-
lier theoretical studiess and to the calculation of Aversa,
Chiapetta, Greco, and Guillet, i we do not assume that
the cone size R that appears in the jet definition is much
smaller than 1 rad. This is important because the ex-
perimental groups, with good reason, use cone sizes in
the range z ( R ( 1, and there is no reason to believe,
without performing the calculation, that the small-angle
approximation R «1 is good anywhere in this range of
R.

We are currently engaged in a calculation of the
jet cross section with quarks and antiquarks included.
In this calculation, there is some added complication
compared to the gluon only case because there are so
many processes to consider (gg ~ ggg, gg —+ gag, qg -+
qgg, . . .). It is important to realize, however, that there is
no new physics when quarks are included: the singular-
ity structure of the amplitudes is the same (or sometimes
less singular) as in the gluon-only case. Thus the method
described in this paper will work for quarks also.

The quantity that we wish to calculate is the inclusive
cross section

dygdPgdpg

for production of a jet with rapidity y~, azimuthal angle
Pg, and transverse energy pg plus anything. Through-
out this paper, we use p with an appropriate subscript to
denote the magnitude of the transverse momentum of a
gluon —that is, its transverse energy. In the case that two
gluons make up the jet, pg denotes the sum of the magni-
tudes of the transverse momenta of the gluons —that is,
the total transverse energy of the jet. The rapidity y of a
particle is defined as

& ln[(E+ p~)/(E —p, )]. In the anal-
ysis of jet experiments, one would neglect particle masses
compared to their transverse momenta. Then the parti-
cle rapidity is equal to its pseudorapidity, —in[tan(g/2)j.
In our calculation, only massless quarks and gluons ap-
pear, so there is no distinction between the rapidity and

pseudorapidity of a particle. The mass of a jet consisting
of several particles is not always negligible, so one must
specify a definition of the jet rapidity. This definition is
included in our jet definition below.

At the Born level, the cross section is computed using

graphs such as that shown in Fig. 1(a). Strictly speaking,
the cross section at this level is not a jet cross section
but is rather just the parton cross section. At higher
orders in perturbation theory, the parton cross section is
infinite unless a finite jet size is introduced. At the Born
level, the parton cross section is strongly p2 dependent,
and it has no jet definition dependence to match that in
the experimental cross section. Only at truly enormous
values of pg, where the size of a jet due to perturbative
effects is small compared to the experimental resolution;
is the Born cross section a reliable estimate of the jet cross
section. Because of the ambiguities in the Born cross
section, the so-called "I4 factor" is also poorly defined
for the jet cross section —in contrast with the situation
for lepton pair production (the Drell-Yan process), where
the Born level process is essentially a QED process and
is fairly well defined independent of a, and jets.

At order as graphs such as those in Fig. 1(b) are
allowed and there is an explicit dependence on the jet
definition. In the calculation, one must decide when two
partons count as two jets and when they count as one.
The calculation at this order allows us to account for the
power of the "experimental microscope" to resolve one
parton into two. It is exactly this careful treatment of
the finite size of the jet which renders the jet cross section
finite at all orders in perturbation theory, in analogy to
what happens for similar quantities in e+e physics. iz

Also, when two partons do count as one jet, one must
define the resulting jet axis and jet transverse energy. In
the experimental measurement, the differences between
jet definition algorithms are now expected to matter, in
that they can change the measured cross section at the
same level as the ns corrections in the theory.

I et us consider for a moment the criteria which char-
acterize a "good" jet definition. In general it has the
following properties: (1) it is simple to implement in an
experimental analysis; (2) it is simple to implement in
the theoretical calculation; (3) it is defined at any order
of perturbation theory; (4) it yields finite cross sections
at any order of perturbation theory; and (5) it yields a
cross section that is insensitive to hadronization.

FIG. 1. (a) A Feynman diagram at order o, ; (b) subset
of Feynman diagrams at order a, .
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The definition we use is as follows. Let the calorime-
ter consist of cells i, in which transverse energies p; are
measured. Define a jet cone of radius R in y-P space,
centered on a cone axis (y„P,):

smaller jets.
Note that in the case

R & (Qi —Q2( & — — R,
max(pi, p2)

(1.12)

(y —y )'+ (& —& )' «' (1.2)

The cone radius R can be anything we like, subject to
the restriction

R & x/3.

(Certain complications would occur in the calculation if
this bound were not imposed. ) The transverse energy pg
of the jet is then

PJ = Pi
i in cone

The jet axis is defined by the weighted averages

(1 4)

y~=„— ). p*
i in conePJ

1
y. Wz — ). I

PJ i in cone
(1.5)

PJ —Pl +P2 )

while the jet angles are

1
yJ = (Plyi + P2y2))

PJ

1
O'J — (P14'i + P24'2)

PJ

To determine if the two partons are to be combined,
we see if the two partons fit in a cone of radius R about
the jet axis. The condition that parton 1 fits into the
cone is [denoting a two-dimensional vector Q = (y, P)]

IQi —Q~l' = (yi —y~)'+ (4i —4~)' «',
or

p2
iQi —Q2i & R.

p&+ p&

The condition that parton 2 fit in the cone is

P1+ p2

Thus the combined condition is

(1.10)

iQi —Q2[ & R.
max(pi, p2)

If the parton angles satisfy this condition, then we count
one combined jet as specified above, but not the two

Finally, the cone axis (y„P,) must agree with the jet axis

(yg, P~) determined by Eq. (1.5).
With this definition, a single isolated parton with pa-

rameters (p, y, P) will be "reconstructed" as a jet with
these same parameters. Two partons with parameters
(pi, yi, Pi) and (p2, y2, $2) may be combined into a sin-
gle jet. When two partons are combined into one jet, the
jet transverse energy is

the two partons might with some logic count also as sep-
arate jets, but they do not in our calculation. In this re-
spect, we differ from the jet definition of Furman, s which
is also used by Aversa, Chiapetta, Greco, and Guillet. ii
In the Furman definition, when Eq. (1.12) is obeyed one
has three jet choices that contribute to the inclusive jet
cross section: {1),(2), (I and 2). In our jet definition,
the only choice retained is (1 and 2).

It is probably also informative at this point to briefiy
compare the jet definition we are using to the jet defi-
nitions being implemented by currently running experi-
ments as described in the literature. i The basic jet struc-
ture can be pictured as a set of calorimeter cells in which
energy has been detected Th.e energy measured in a spe-
cific cell is often characterized in terms of the transverse
energy E2 (denoted as pg above), defined by projecting
the measured energy onto the transverse plane (i.e., by
multiplying by a factor of sin 8 corresponding to the an-
gular location of that specific calorimeter cell). The jet-
reconstruction algorithm of the UA2 Collaboration in-
volves the clustering together of all configuou8 cells with
individual energies in excess of 400 MeV. The clusters
(of cells) formed in this way are then tested for multiple
local energy maxima within a single cluster. Two local
maxima separated by an energy "valley" of depth greater
than 5 GeV are split apart into two clusters. The result-
ing sample of clusters are labeled as jets. The UA1 algo-
rithm involves the concept of an "initiator" cell. Among
cells with E2 & 2.5 GeV, the largest E~ cell initiates
the first jet. In decreasing order in E~ each subsequent
cell (with E2 & 2.5 GeV) is either included in the near-
est (in y, P) existing jet, if it is within a cone of R=l
of that jet s initiator direction, or it initiates a new jet.
The remaining cells (with E2 & 2.5 GeV) are included
in the nearest jet if the cell's momentum transverse to
the jet direction is & 1 GeV/c and the angular sepa-
ration from the jet is less than 45'. The CDF group,
with somewhat smaller cell size, uses the following al-
gorithm. Contiguous cells (towers) with Eg & 1.0 GeV
are associated together as preclusters (initiators). For
each precluster with E2 & 2.0 GeV an Ez weighted cen-
troid in y, p is computed and all cells with E2 & 0.2
GeV within a cone of R = 0.6 about the centroid form a
cluster. The process of recalculating the centroid of the
new cluster and redefining the cluster within R = 0.6 of
the new centroid is iterated until the cluster list is sta-
ble. Clusters which overlap are merged if they share more
than 50%%up of their energy. The common cells of unmerged
clusters are assigned to the nearest cluster. The resulting
clusters are the jets. The final jet E~ is defined as the
scalar sum of the cell energies in the jet times sin 8 of the
jet centroid. Clearly the latter two algorithms are closer
to that used in the present theoretical analysis. In the
present analysis we will not discuss how the differences
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in the various jet algorithms affect the magnitude of the
jet cross section. Nor we will discuss the related issues of
fragmentation effects, underlying event contributions, or
perturbative contributions at even higher orders.

The jet cross section calculated in this paper is ex-
pressed as the convolution of a hard-scattering cross sec-
tion with parton distribution functions. At the order of
perturbation theory that we use, one must make a choice
of definitions of the parton distribution functions. We
have chosen the modified minimal-subtraction (MS) def-
inition, in which the parton distribution functions are
defined as the proton matrix elements of certain sim-

ple operators. iz Graphs for the operators are ultraviolet
divergent, and the divergences are removed by the MS
renormalization. This definition leads to a simple pre-
scription for subtracting the divergences corresponding
to collinear parton emission from the incoming lines in
the jet calculation. This prescription is applied in Eq.
(4.56). A general discussion of the relation of the calcu-
lational prescription to the definition of the parton dis-
tribution functions can be found in the literature.

The organization of this paper is as follows. In Sec. I B
we discuss the gg —+ gg hard process, which includes the
virtual corrections to the Born amplitude. In Sec. IC
we discuss the organization of the calculation for the

gg -+ ggg hard process. The rest of the main body of
the paper follows the singularity structure of the ampli-
tude. In Sec. II we discuss the singularity in which the
softest gluon is very soft or is collinear to the gluon in
the jet direction. Most of the key ideas of the paper
are introduced in this section. In Sec. III we discuss the
singularity in which the softest gluon is very soft or is
collinear to the gluon opposite to the jet direction. In
Sec. IV we discuss the singularity in which the softest
gluon is very soft or is collinear to one of the incoming
gluons. In Sec. V we demonstrate the cancellation of the
e —+ 0 divergences. Finally, in Sec. VI, we state some
conclusions. There are two appendixes, one concerning
the definition of the jet axis in 2 —2e transverse dimen-
sions, the other concerning the analytical calculation of
the integrals that arise when the softest gluon becomes
very soft.

B. The 2—+2 hard process

First consider two gluons, A and B, scattering to two
gluons, 1 and 2. let us suppose that gluon 2 makes
the observed jet. We shall use light-cone coordinates in
which vectors are given by components gP = (p+, p, p),
with p+ = (po + ps)/~2 and p = (pi, p~). Through-
out this paper, we shall take momentum components in
the hadron-hadron center-of-mass frame, with the z axis
aligned with the beam direction. With this notation, we

denote the outgoing gluon momenta by1„,'1
pre"', pre "',—pz I,

2 2

p2 ~pJe ) ~pJe & pJ

where py denotes the absolute value of the transverse
part p~ of p~&. We have used the fact, which follows from
transverse-momentum conservation, that

P1 = -P2. (1.14)

Note that yi is not fixed. We will express the other vari-
ables in the problem in terms of the observed jet vari-
ables, the hadron-hadron center-of-mass energy s, and
also yi, which we will retain as an integration variable.

Let us now look at the momenta of the incoming par-
tons. They may be written in terms of momentum frac-
tion variables z~, zB as

p~ = (z~gs/2, 0, 0), p~ = (O, z~gs/2, 0).

Let us define another set of momentum fraction vari-
ables X~, XB as functions of y1, yg, and p~ so that
X~gs/2 is the plus component of the momentum of the
system formed by gluon 1 and the jet and X~gs/2 is
the minus component of the momentum of this system.
Thus

X~ —~ (e"'+ e"'), X~ —~ (e "'+ e "').

(1.16)

In the 2 ~ 2 hard scattering, which we are now discussing,
momentum conservation implies that X~ and XB are the
momentum fractions of the respective incoming gluons:

z~ —X~, zB ——XB.

S = 2pJ [1+cosh(yg —yi)],
T = —p~(1+ e"' "'),
U = —p~(l+ e"' "').

A A A

(We use upper-case letters for S,T, V in order to avoid
confusion with, for instance, the center-of-mass energy
squared s of the two incoming gluons in the 2 ~ 3 pro-
cess.

It is useful to have a catalog of all of the invariants:

p~ p~ = ~S = pJ[1 + cosh(yg —yi)],

pi p~ = ,'T = -'p'(1+ e»—-&—')

p'p~ = --'~ = -'p'(1+" -")
P1 P2 —PA PB ) P1 PB —P2 PA )

P2 ' PB —P1 PA-

(1.19)

However, this relation is modified when there is an addi-
tional gluon in the final state.

We also introduce variables S, T, V formed from yi,
yg, and pJ in such a way that, when we are discussing
the 2 -+ 2 cross section, these are the Mandelstarn vari-
ables s, t, u of the elementary gluon scattering. Thus [cf.
Eq. (1.19) below],
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Let us now express the contribution to the one-jet in-
clusive cross section in terms of the invariant matrix el-
ement for the 2 + 2 process. We denote the invariant
matrix element squared and summed over final spins and

averaged over initial spins in 4 —2e dimensions by (iM i ).
We denote the distribution functions for the incoming
partons by fA(zA) and fB(zB) T. hen the cross section
in 4 —2e dimensions is

~~~f~(*~)f&*afa(~a)q u"
q

q', '„y"~ q, , „(l~l') I "(&~)' "&' "(pi+ad~ —u~ —ua)
2E'

d+AfA(+A) f~* f ( ) ",„(I&l') &vi du~ @2~(PA l I l 2)~(JB Jl 12), ('»)zAzB s

where, as usual, the dimensionful parameter p, is intro-
duced in order to maintain a dimensionless coupling g.

The delta functions for conservation of the plus and
minus components of momentum can be used to perform
the z~ and z~ integrations. We use

~(p.' p', p-,') =-~(* V"/2 p', -p')-
= Q2/s b(zA —XA),

6(pB —pl —p2 ) = 6(zB/s/2 —p). —p )
= Q2/s 8(zB —XB).

(1.21)

dP2 = ps dpi' d 4'2i (1.22)

where di ~'P denotes integration over a (1 —2e)-
dimensional sphere. We identify the p2 variables with
the jet variables. We thus obtain [with s = S/(XAXB)]

For the remaining transverse-momentum integration we
use

pz
~&

pg
dp+ dy+ dl —2eP& (4~)2 i47r2p2 )

x dy1 X~ ~ X~ Xa a Xa

x (iMi ). (1.23)

This result will enable us to calculate the contribution
from the 2 ~ 2 hard process to the one-jet inclusive
cross section from M. At the Born level, we just need
one numerical integration. At the next order, the matrix
element will have I/e and 1/e terms. We will have to
extract these terms in the cross section do/dpJdy~ and
show that they cancel. Only then can we set c = 0 and
perform the numerical integration.

We denote the cross section of the 2 —+ 2 subprocess
as I(~ ~). It can be written as an integral over yi of a
function G (yi, pj, yq, Pg),

(g g)
do'

"pz Az"

dyl y1& I J) yJ) J (1.24)

The function G(~ sl is simply related to the quantities
calculated by Ellis and Sexton as follows:

G (yg, pg, yg, PJ) = C(e)I(XA, XB)
2

(S,T, &; )+ ' ~, i Fz( )[& (S,T, &;&)+DNS(S T +)]2n- i Es)
(1.25)

Here

&() =
(4m~ ps ) 4s~(l —e)~ U~ '

where

(1.20)

V=% 1, (1.27)

with N = 3 being the number of colors. The function L
describes the parton luminosity:

fg/A(XA) fg(B(XB)
A) B)— (1.28)

The function I' (ea) denotes the product of gamma func-
t10ns:

I (e) = = 1+O(~). (1.29)I'(1 —2e)
Finally, QEs is an arbitrary scale parameter introduced
by Ellis and Sexton, called simply Q~ in their paper. The
cross section is independent of QE~s.

The invariant function d( l(S, T, U'; e) is
d(')( S,T, U;.)

A A

~( )~
I UT US ST

S2 T2 U2)

g2 + T2 + U2 g4 + T4 + U4
4UN (1 —e) S2T2 t'I2

(1.30)
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Ds(S, T, U;~) = d(4 (S,T, V;e) Dsi+Dsz,

Ds~ =—4N ST~ —22K 20T~ —67M +Nx
3E'

11N —4TR ( pln1
Es

{1.31)

The first form is the form given by Ellis and Sexton. The
second form is equivalent (using S+T + U = 0) and is
more convenient for algebraic manipulations.

In the next-order piece, Ds denotes the terms that are
singular as e -+ 0 (together with some simple nonsingular
terms) and DNs denotes the remaining finite terms. In
general, the function Ds has the form

i4+ U4
fs(S, T, U) =3-

(T'+ V')(S4+ i'+ V')
2S2T~Uz

(1.32)

Here T~ is half the number of fiavors, which is zero in our
present calculation, in which we use QCD with gluons but
not quarks. The first form of fs in Eq. (1.32) is the form
given by Ellis and Sexton. The second form is equivalent
(using S+T+V = 0) and is more convenient for algebraic
manipulations. Later in the calculation, we will make use
of an identity relating fs(S, T, U) to d(4)( S, T, U;e):

4VN (1 —e) [fs(S,T, U) + fs(T, U, S) + fs(V, S& T)]
= 4 ~(S,T, U;~). (1.33)

16VN
Ds2 =

where

ln
1 z fs(S, T, U)

as)

+ln 2 fs(T, U, S)
ES)
V)

+ln ~ fs(U, S,T)
k Es)

In this paper, we use the symbol p to denote both the
renormalization scale, which arises from the removal of
ultraviolet divergences, and the factorization scale, which
arises from the removal of collinear divergences. If one
wishes to distinguish the two scales as pUv and p,ou,
then the p in Dsi above is pUv.

The nonsingular part is

DNs(S, T, V) = 4V N [ fNs(S, T, U) + fNs(T, U, S)
+fNs(U, S,T)], (1.34)

where

fNs(S, T, U) = N ln
) .

4TU 14T + U~

3 S2 3 TU
(1.35)

C. Organizing the 2—+3 ealeulatian I4z —&~ I
( 1@i —4~ 1. (1.38)

We now consider the case of three final-state gluons,
numbered 1,2,3. We shall follow the same notation used
for the 2 -+ 2 hard process and define

Paps =
l pa& pa~ " pa)2 2

(1.36)

P3 & P&) P~. (1.37)

In addition, we shall differentiate between gluons 1 and 2
by saying that the azimuthal angle of gluon 2 is nearer to
that of the jet axis than is the azimuthal angle of gluon
1

for k = 1, 2, 3.
We must integrate over the momenta of the three final-

state gluons. However, we can make the calculation more
eFicient if we integrate over each event topology only
once. This amounts to defining which of the three iden-
tical gluons is to be labeled with each index 1,2,3. We
shall define gluon 3 to be the gluon with the smallest
transverse momentum:

Let us consider the implications of this choice on which
singularities can occur in the integration region. The
singularities are (a) gluon 3 soft, (b) gluon 3 collinear
with gluon 1, (c) gluon 3 collinear with gluon 2, (d) gluon
3 collinear with gluon A, and (e) gluon 3 collinear with
gluon B Other .singularities do not occur with these
definitions. Transverse-momentum conservation does not
allow two gluons to be soft or collinear to one of the beam
gluons, A or B, at the same time. Gluon 1 or gluon 2
cannot be soft while gluon 3 is hard because of condition
(1.37). Similarly, gluon 1 or gluon 2 cannot be collinear to
one of the beam gluons while gluon 3 is hard because the
transverse-momentum of gluon 1 or 2 would have to go
to zero, contradicting condition (1.37). Finally, gluon 1
cannot be collinear with gluon 2 because then transverse-
momentum conservation would imply that gluon 3 had
the largest transverse momentum, contradicting (1.37).

Let us now consider the implications of the conditions
(1.37) and (1.38) for the question of which gluons can
be in the jet. The possibilities are (i) gluon 3 is the j«,
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pisin(Hi) = plain(H2), (1.39)

pi cos (H i ) + pg cos(Hz ) = ps. (1.40)

Eliminating p~ from these equations gives

sin(Hi)
p» cos 8» + . Cos Og = p3

rs&n 82

or

sin(Hi + Hq) = sin(Hz) —.P3

pl

(1.41)

(1.42)

We use these equations to map a region from which

(Hi, Hq) is excluded, as illustrated in Fig. 2(b). The first
boundary arises from the requirement (1.37) that ps be
less than pi. Using Eq. (1.42), this gives

(ii) gluon 2 is the jet, and (iii) gluons 2 and 3 are the
jet. Other possibilities do not occur. Gluon 1 cannot
be the jet because of condition (1.38). Gluons 1 and 3
cannot be the jet because of condition (1.38): transverse
momentum conservation would imply that gluon 2 was
in the opposite half-circle from the jet axis, while gluon
1 is in the same half-circle. [Recall from Eq. (1.3) that
we assume R & z'/3. )

Finally, gluons 1 and 2 cannot be the jet. To see why
not, we suppose that gluons 1 and 2 do constitute the
jet and show that the jet cone size would then have to
be bigger than the maximum allowed cone size:
= ~/3.

The argument is illustrated in Fig. 2. We suppose that
gluons 1 and 2 constitute the jet. I.et Hq be the absolute
value of the angle between pI, and —p3 ——p» + p~, for
k = 1, 2, as indicated in Fig. 2(a). Then conservation of
transverse momentum gives

Similar reasoning with the roles of gluons 1 and 2 inter-
changed give

28g + Og & x. (1.46)

The two excluded regions are indicated by shading in
Fig. 2(b). By adding the two inequalities (1.45) and
(1.46), we obtain

2x
8»+8~ & (1.47)

where the minimum value of Hi + H2 is realized at the
black dot in the figure. Since gluon 1 and gluon 2 are
supposed to constitute the jet, we have

8»+ 8g & 2R. (1 48)

pA p3 pfA p3
(1.49)

where n, m = A, B, 1, 2 with n g m. Denoting the coeffi-
cient of this denominator, after extracting some common
factors, as f„~, we have

16~ n, - f„
&I I & =(1,) y ).„ (1.50)

This contradicts the condition R & z/3 that we have
imposed. We conclude that, contrary to our hypothesis,
gluons 1 and 2 cannot constitute the jet.

We now discuss the decomposition of the matrix ele-
ment &IMlz& for the 2 ~ 3 process. As we have seen, the
only singularities that we have to worry about are those
connected with gluon 3 becoming soft or collinear with
one of the other gluons. Each term in &IMI ) as given by
Ellis and Sexton contains singular factors of the form

or

sin(Hi + H2) & sin(Hq)

7r 7r——Hz & Hi+ Hz ——.
2 2'

8»+ 202 ) x.

(1.43)

(1.44)

(1.45)

Strictly speaking, the f„~ are not uniquely defined by
Eq. (1.50) away from pz

—Q. For instance, one could
add pi ps to fi z and subtract p~ . ps from f~ q with-
out changing &IMlz}. However, this lack of uniqueness
does not aA'ect the result of our calculation. We have
performed the decomposition (1.50) following the highly
symmetric form for &IMI2) given by Ellis and Sexton, in
which the denominator structure of Eq. (1.50) is explicit.

Each denominator factor in Eq. (1.50) can be rewritten
in the form

82 K
2

». pap». (». +» )».». ».
+

(p + p ) .ps p .ps
(1.51)

(a)

I

z/2

0,

Since (p„+p~)" is a timelike vector, the factor 1/(p„
+p ) ' p3 gives a singularity only when ps is soft. In this
way we decompose &IMI~} into

&I~l'&& s —&l~l }&+&l~l'}a+ &l~l'&i+ &l~l'&&,

(1.52)

FIG. 2. Demonstration that gluons 1 and 2 cannot be the
jet. where (denoting f„~ = fm, „for n ) m)
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1 7I Ck(l~l') = .' ).(1-~)2~2 P. P. - (P-+P-) P3

16m a,(I~ I')A —(,
16m 30,3

(I~l')B = (, ,) y
16+30,3

(1 —e)2V2

16m n,
(I I')2 = (1,),~2

&l~l') =

PAB fA

PB3 PA 3

PAB fB
PA3 PB3

Pi fi
P3 P13

P2 f2
P3 P23

'

(1.53)
We see that (I~I2)„contains a 1/p„. ps collinear singu-
larity and a soft singularity for gluon 3. Each of these
four terms is treated separately in the calculation.

In much of our computation, we write the reduced ma-
trix elements (IMI )„ in terms of functions f„ in a form
that displays both the p„ps -+ 0 singularity and the
ps -+ 0 singularity in (I~I2)„,

where p;i denotes the dot product

P
pQ —p~ppj- (1.55)

[To avoid confusion, we note that this definition gives
fA a zero when ps becomes parallel to pB. Similarly,
fB has a zero when p3 becomes parallel to PA and fi
and f2 have zeros when the transverse components of p3
becomes zero with nonzero p+ or p . We also note that
these functions fA and fB are not related to the parton
distribution functions fA(z) and fB(z). The distinction
between these two sets of functions should be clear from
the context. I

We have computed the functions fA, fB, fi,and f2 us-
ing MACSYMA, starting from the matrix elements given
by Ellis and Sexton. These functions are needed in our
calculation only with e = 0 or with e g 0 but with the
kinematic variables evaluated at certain singular points.
The results that we will use are as follows.

Full expressions at e = 0:

2X'V 1
fA(~=0) = ) p„ +

AB "' ( PA1 PB1 PB2 PA3 + P23 PB3 PA2 PB1 PB2 (PA3 + P13)/PB3
nanna

1 1+ +
P12 PA1 PB2 (PA3 + PB3)/PB3 P12 PAB PB2 (PA3 + P13)/PB3

1 1+ +
P12 PA2 PB1 (PA3 + PB3)/PB3 P12 PAB PB1 (PA3 + P23)/PB3)

(1.56)

fB(~ = 0) = fA(e = 0) with A ~ B) (1.57)

2+3V 1 1fi(~=0) = ).P +
1 "' E PA1 PA2 PB2 PB3 + P13 P3 PA2 PB1 PB2 PA3 + P13 /P3

ng ra

1 1+ +
P12 PAB PB2 (PA3+ P13)/P3 PA1 PAB PB2 (P13 + P23)/P3

1+ +
P12 PA2 PAB (PB3+P13)/P3 PA2 PAB PB1 (P13 + P23)/P3)

f2(C = 0) = fi(f = 0) with 1 ~ 2.

(1.58)

(1.59)

Collinear limits: I et gluon 2 be the jet, p2
—

p~z where
we denote

p&
——(p~e" /~2, p~e " /~2, P~ cosPg p~ sining)

(1.60)

where Pss(z) is the Altarelli-Parisi kernel for g ~ g, but
without the usual regulation for z —+ 1. Specifically

Pss(z) = 2N
I + + z(1 —z) I, (1.62)
l'1 —z z

1- r'
whereas

fA = d( )(S,T, U; ~) Pss (z), (1.61)

let gluon 3 be collinear with the incoming gluon from
hadron A, p3

—(1 —z)p~&. Then

Pzs(z) =2K
I + + z(1 —z)

Iz 1 —z +
+-,'Po b(1 —.),

11K—4T~
Po =

3

(1.63)
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(Again, TIr is half the number of fiavors, which is zero
in our gluon-only calculation. ) Similarly, when p2 = p&
and ps —(1 —z)pB we find

fB = d( l(S, T, U;~) Pgs(z). (1.64)

Let gluon 2 be the jet, p~2
——p~J, and let gluon 3 be

collinear with gluon 1, ps
——[(1 —z)/z]pl. Then

f, = d&4~(S, T, U; e) Pss(z).
z

(1.65)

Finally, let gluons 2 and 3 be collinear and together
constitute the jet, ps ——(1 —z)p&, p2 ——zpz". Then

f2 —d(4)(S, T, U; e) Pgs(z).z
(1.66)

Soft limits: Let gluon 2 be the jet, P~2
—

p&, and let
ps

——0. Then the functions f„~ defined in Eq. (1.50) are
given in terms of the function fs defined in Eq. (1.32)
by

fAB = f12 ——4VN (1 —~) S fs(S, T, U),
fA1 —fB2 —4&&'(1 —~)' (—T) fs(T, U, S),
fA2 = fB1 = 4&& (1 —~) (—U) fs(U) S, T).

(1.67)

II. TERM 2

A. Kinematics

In this section we are concerned with the term (IMI )2
in the decomposition (1.53) of the invariant matrix ele-
ment. We are thus interested in the integration region in
which gluons 2 and 3 may become collinear, or in which
gluon 3 may become soft.

There are nine variables needed to describe the mo-
menta of the final-state gluons, and these are restricted
by two conservation equations after the other two con-
servation equations are used to determine zA and zB.
Thus seven variables remain as integration variables. (Of
these, three will be eliminated later by the delta func-
tions that define the jet variables pJ, yq, g~.) We take
the seven variables to be

yl I P2) y2) 4 2 j P3|y3) $3 (2.1)

Here, as before, pp denotes the magnitude of the trans-
verse part py of p~&.

We shall need to express pi and Pl in terms of these
seven variables. We have pi ——(p2+ p3) so

pi [p2 + p3 + 2p2ps cos($2 —$3)] . (2.2)

Far the evaluation of invariants involving Pl, we use

( )
P2 Cos($2 —Qg) + P3 COS($3 —Qg)

P1
Thus the required condition is

(pi + p2) cos($2 —pg) + p3 cos($3 —pg) ) 0. (2.4)
The other conditions, p3 ( p2 and p3 & p1, are ex-
pressed in terms of the integration variables, once we
have Eq. (2.2).

We can determine zA and zB from the final-state mo-
menta using momentum conservation, as before:

zA V"/2 = p; + P2 + P3, (2 5)
so

1
(pie '+ p2e '+ pse"'), (2 6)gS

and similarly

1
(pie + P2e + pse ) (2.7)QS

In the numerical integration program, the invariants
are be expressed in terms of the integration variables us-
ing the previous results and Eqs. (1.15) and (1.36). Using
the notation of Eq. (1.55), the invariants are

pAB —zA zB s/2 pA1 —zAVs pl e /2

pA2 —zAV p2 e /2 pA3 —zAv s p3 e /2

pB1 —zB i/s pl e /2i pB2 —zBV s p2 e /2
pB3 —zB+8 ps e ~ /2, (2.8)
P12 —P1P2 cosh(yi y2) + P2 + P2P3 cos(A —A)
pi3 pip3 cash(yi —y3) + ps + p2ps cos($2 —p3) i

p23 —p2ps cosh(y2 —ys) —p2PS sco(4' —2 43).

We will be especially interested in the invariant p2. p3.
We have expressed it in terms of the variables we have
chosen as

p2 ' p3 —p2p3[cosh(y2 —y3) —c s(o4'2 43)]~ (2.9)

Now let us consider the relation between the cross sec-
tion and the invariant matrix element. We have

transverse-momentum conservation:
—Pi P2 —(P2 + P3) ' P2 —P2 + P2P3 cos(4'2 4'3) i

(2.3)
Pl ' P3 —(P2 + P3) P3 —P3 + P2P3 c os(4'2 —4'3).

Of particular importance is condition (1.38), I/2 —

QADI

( I/1 —

QADI,

or cos($2 —pz) ) cos(pl —pz). To express
this in terms of the chosen variables, we write

Pj ' P2 PJ ' Pl PJ P2 PJ ' (P2+ P3)
PJP2 PJP1 PJP2 PJP1

f ( ) ( 2,- ~ 2(2 ), „ V 2(2 ), „ ~ 2(2 ), „ (I I )

XP' (2+) ~ (Pl + P2 + P3 PA PB)0(P3 (pl) ~(P3 ( P2)
x e((pi + p2) cos($2 —pg) + p3 cos($3 Q J) ) 0). (2.10)
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Here the theta functions enforce our chosen division of the integration region, as discussed above.
We now use the transverse-momentum delta function to perform the pi integration, the plus momentum delta

function to perform the z~ integration, and the minus momentum delta function to perform the z~ integration.
Following the results of the previous section, this gives the replacements

We write the integrations over the transverse momenta of gluons 2 and 3 as

dP2 ~ P2 'dp2 d '$2, dps ~ Ps 'dps d

These replacements give

—26

«2=dyi dy2 dysdp2dpsd' "02 d' "43z~f~(z~) zafa(za) x "' ', , I, 2 I
{I~I')2

x8(ps & pi) 8(ps & p2) 8((pi + P2) cos($2 —pz) + pscos($3 —Qz) & 0). (2.11)

In what follows we shall denote the angular variables y and P for each particle by a single (2 —2e)-dimensional
vector variable A = (y, P), where, we recall, P denotes a point on a (1 —2c)-dimensional sphere. We shall have
to be careful of the definitions in a nonphysical number of dimensions. Although we use a vector notation for the
angular variables, this notation is to be interpreted in a spherically symmetric sense in the case of P. Thus we use
the notation ~A, —Aq~ to denote [(y, —yt, ) + (P,q)2]i/'2, where P, y is the arc length between P, and P(, . Similarly,
cos{P —P(,) denotes cos{P (,). The linear combination (1 —z)A~ + zA~ = A, with 0 & z & 1 denotes the variable
A, = (y„P,) where y, = (1 —z)y~ + zy~ and P, lies a fraction z of the way along the arc joining P~ and P~. Other
manipulations in the following are to be given a similar rotationally invariant interpretation. See Appendix A for the
precise definitions.

We adopt a notation that displays the 1/p2 . P3 singularity in {)M~ )2, while summarizing everything else as a
function F2. We define F2 by

(Ps/S)
" —2E

F2(yl P2 A2 Ps A3) f ( ) f ( )
P2P3

(
P2P3

p3[cosh(y2 —ys) —cos($2 —$3)] 8(2z ) s ((2z ) p )
«(ps & pi) 8(p3 & P2) 8((pi+ P2) cos(42 ~~)

+p3 cos($3 Q J) & 0), (2.12)

where s = z~z~ s.
Using Eq. (1.54), we can express F2 in terms of f2

B. Jet definition

F2 ——H2 f2,

where

(2.13) With the notation established so far, we can write the
cross section in the form

(2.14)

Here, C(e) and I(z~, z~) are defined as in (1.26) and
(1.28) and 0 is the product of theta functions appearing
in (2.12),

O = 8(J 3 & pi) 8(P3 & P2) 8 ((pi+ P2) cos(42 —4z)
+ps cos($3 —Qg) & 0).

(2.15)

d = dy dp d' "A, d' 'A
P3 (P)

F2(yi; P2, A2; ps A3)
X

cosh(y2 —ys) —cos($2 Ij53)
{2.16)

Now we have to insert the jet defInition. Consider 6rst
the possibility that gluons 2 and 3 together constitute
the jet, which happens if both A~ and A3 are within an
angle R of the jet axis A~ —(y~, (f)~). Then, the jet axis
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is related to the parton momenta by the definition Since ps ( p2, this latter condition is the more restrictive.
Thus the jet condition is

P2A2 +P3A3
J2+ J3

(2.i7) lA2 —nsl & R.
P2

(2.21)

The jet transverse momentum is then defined to be

PJ =P2+P3 ~ (2.iS)

n, l

p. l

I J
(2.ig)

The condition that A3 is within an angle R of the jet
axis is

~) ln. -n, l="'l"'-"'l.
PJ

(2.20)

I

The condition that A2 is within an angle R of the jet
axis is

Let us also consider the possibility that gluon 2 by
itself is the jet: A J ——A2. Then, according to the jet
definition, we have to demand that gluons 2 and 3 cannot
form a legitimate jet:

P2
(2.22)

Finally, we consider the possibility that gluon 3 by
itself is the jet: n j = A3. Then we have to demand that
gluons 2 and 3 cannot form a legitimate jet, as specified
by the condition (2.22).

We thus have, for the contribution to the jet cross sec-
tion,

d02

dp july jdi-2aP j d2 —2 A d'2 2 A +2(Vr j P2 I A2 I P3& A3)
cosh(y2 —y3) —cos($2 Q3)

x b(p2 + p3 pj) l5
l (p2A2 + p3A3) n j, „ri
&pj

P2

+~(» —pj) b (A2 —n j) 01 ln2 —A31&2—2c r P2+P3 &

P2

+b(ps-») ~
— (n, —n, ) el ln, —n,

l
&2—2f P2+ P3

P2 )
(2.23)

C. Extraction of the singular contribution

We now manipulate the expression in (2.23) in order to make the cancellation of the collinear singularity manifest.
Let us define sum and difFerence variables for the angular integrations:

1A=A3 —A2, A= (p, n, + p, A, ).
P2+ P3

Then

(2.24)

A =A — A, A =A+I2+I3 I2+I3 (2.25)

We use the first of the jet-defining delta functions to perform the p2 integration in the first two terms of (2.23) and
the p3 integration in the third term.

In the first term of (2.23), we change variables to n and n. The Jacobian for this transformation is 1. This would
follow trivially from (2.,24) if there were exactly two transverse dimensions. In 2 —2c dimensions, some care is needed
to specify exactly what the definitions (2.24) mean and then to evaluate the Jacobian. This analysis is given in
Appendix A, where we find that the Jacobian remains 1, even in 2 —2e dimensions. We complete the manipulation
of the first term by using the delta function that specifies the jet axis to perform the A integration.

In the second term of (2.23), we simply use the angular delta function to perform the A2 integration, then change
variables from A3 to n for the remaining integral. Similarly, in the third term, we use the delta function to perform
the A3 integration, then change variables from A2 to A for the remaining integral.

These operations give
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cosh(y) —cos(/))/)

++2(»;pz, nz, p3, nz + n) ~l In l
&

]'- PJ+Ps &

pz j
—2E

+

dory

P2 0 1

cosh(g) —cos(P)

xs;(»;», n, —n;», n, ) ol lnl &
( — PZ+P3

p2

P3 — Pj P3 —l ( PgR l Vi/Pz —P3/nz ——n, P3/nz+
p~ PZ ) & PZ —P3

(2.26)

Let us erst rewrite this as a nonsingular contribution with theta functions plus a singular contribution in which the
theta functions have been eliminated:

where

and

(EO2
2, S + 2,NS)

PJ PJ O'J

P3 — PZ —P3 -')
— Fs

l ui; pz —ps, nz ——n; ps, nz +
cosh(i]/) —cos($) ( pz pJ

(2.27)

(2.28)

13,Ns = d»
p3 & p ) cosh(g) —cos(p)

P3 -. PZ —P3-& & — PZ
& —+~

I » p~ ps n& n p3 n~ +
pJ PZ ) I PZ —P3

+~.(»;p. , n', p. , n. +n) el lnl &
PZ+ Ps

p~ )
/ ) 2E

d 'n —I—
pJ (p) cosh(y) —cos(P)

X/2]///, //2, AJ —//;2/J, AJ) //(]A] ) //. '] .
P2

(2.29)

Notice that I2 Ns has no collinear singularity when 0 —+ 0 because of the theta functions. Furthermore it has no soft
singularity when p3 ~ 0 because of the subtraction.

D. Decomposition of the singular contribution

Now let us consider the singular piece. We write it in the form

I2,S —12icoll + 12isoft + 12,double + I2,finite ~ (2.30)

Here the first term contains the collinear singularity and is obtained by setting n = 0 everywhere in (2.28) except in
the denominator and subtracting the same term with p3 also set equal to zero except in the denominator:

dp3 t p3')
I2, 3:22(/) f d/// I I IF2(2//i //2 33 AJi//3 AJ) —F (// 2/2 2AJ/; 0 BJ) E(33 3. Q2)],(P)

where

(2.31)

X2(3) = J d 'E/',

dP (sing)

1

cosh(y) —cos(P)

( — )
I'(1 —2~) 3

1
d']II

cosh(y) —cos(P)
27r 4, , 1(1—e)3

I'(1 —2e) 3 ' (2.32)
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Here

(2.33)

is the area of a (—2c)-dimensional sphere.
In the second term in (2.31), we have inserted a 0(p3 & Q2) since the theta function contained in I"2 that limits

the p3 integration was lost when we set p3 —0 in I'2. An upper limit on p3 is necessary to make the integral finite,
although the actual value, Q2, of the limit will cancel from the calculation. One might choose Q2 —pj/2 as the upper
limit because that is the limit in the first term in (2.31): ps & p2

—pj —p3.
The next piece I2 os, rejects the infrared singularity and is obtained by setting p3 ——0 in Eq. (2.28) everywhere

except in the denominator and subtracting the same expression with A also set equal to zero except in the denominator:

2gA F2(glj pJI A J j 01 Aj + A) +2(V1 j pJI AJ j 01 AJ) (2.34)

where

{
0 Ps kP) ~~ EP) (2.35)

The next piece is obtained by setting both 0 and p3 to zero except in the denominator:

I2,d tt = X2(E) Z2(E) f dVI F2(V1;PZ, AJ; 0, AJ).

Finally, I2n„;i, is simply the remainder defined by Eq. (2.30):

(2.36)

I2 finite = dory
— d A

cosh(g) —cos(P)

r Ps — Pj —Ps- )
x I2

I yi, pj —p3, AJ ——A, ps, AJ+ A
~pj pj )

E2(gi pJ p3 AJ p3 AJ) EQ(gi pj AJ 0 Aj + A) 8(p3 & Q2)

++2(ui; I j,A j, o, A j) ~(p3 & Q2) (2.37)

VVe see that because of the subtractions, I2 fi t has neither collinear nor infrared divergences.
%e now introduce a notation for I2 s that is analogous to that for the 2 —+ 2 cross section. We write it as an integral

of a function G2 (yi, pj, yj,Pj) over yi.(2~3)

do
I2,S =

dp

july

jdi —2EQj (gi pj gj Pj) (2.38)

Here G2 is given by a three-dimensional integral over (p3, g, P). It is divided into pieces:

G(2-+3) G(2-+3) G(2~3) G(2~3) G(2~3}
2icoll 2isoft 2,double 2,finite (2.39)

as specified in this section. The finite term, as given in Eq. (2.37), is computed by numerical integration with e = 0.
In the following sections, we extract the 1/e and I/e pieces from the collinear, soft, and double integrals, so that they

can be canceled against I/e and 1/e terms in G( )(yi, pj, yj, pj). We will be left with contributions to G2
(2-3)

that are finite as e —+ 0 and are expressed either analytically, or as one-dimensional integrals that can be computed
numerically.

E. The double singular contribution

From Eq. (2.36), we have for G2 & „b)„ the simple expression

G2 golub)e —~2(E) J2(E) II2(V1 j pJ, A J j 0, AJ) f2(yi j p j& AJ', 0, AJ).

When evaluated at the double singular point, the function II2 [Eq. (2.14)] is simply

(2.40)
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»(yitpg&Az&0&Az) = (4x )' L(X~&X~)~ ~ G(~)
2' 2'

The function f2, when evaluated at the double singular point, is also very simple:

fg(yi& pg& Ag'& 0& Ag'& e) = 2Nd (8& T& U& e).

(2.41)

(2.42)

[This relation is a consequence of the more general relation given in Eq. (1.66)].
We now assemble these ingredients, extracting an e-dependent factor that appears in the 2 -+ 2 cross section,

Eq. (1.25). (This extracted factor includes a factor QE~&, where QEs is an arbitrary scale factor, as in the 2 -+ 2 cross
section. ) We obtain

E

Grado bg, = G(~) L(X~ X&) I ~ I
I'x(~) d' l(~, &, U;~) —

2 I s I
I'2(~)

2n ( Es )
vrhere

(2.43)

(2.44)

Expanding the factor in square brackets gives

2

G2 do„b„=C(e) L(X&&Xa), l I'Ii(~)d '
(&&&& ~I ~)

7I Es

x —&+ —ln~
&

I+&&& —&n
I &

——+O(~)).
N N ~QEs1 1 2 &QEs

(16Q', j 2 i16Q', 3
(2.45)

F. The collinear contribution

From Eqs. (2.31) and (2.13), we have the following expression for G~2,
&i

.

(2~3) dps (ps'
G2,coii = ~2(&)

~

—
I (»(yi; p~ Js, A—~; ps, Az)f2(yi; p~ —ps, A~; ps, A~)

P3

»(yl & pJ &
Aj I 0& A J)f2(yl I pJ &

A J & 0& AJ)~(ps & Q2)}. (2.46)

In the singular configuration at which the rnomenta are evaluated in the first term of Eq. (2.46), gluons 2 and 3 are
parallel and make up a jet with lightlike momentum

1 1
pz =

I
p~e"', pre "',pz I

.
2

'
2

Let us change integration variables in Eq. (2.46) from ps to z defined bZ

ps = (1 —z)pj.
Then pz ——(1 —z)p& and p~z

—z p~z.

Then H2 is given simply by

(2.47)

(2.48)

»(yl&, zpz &
A J & (1 —z)pJ & AJ) = z (4x )' L(Xg

& X~) O(z ) -)
27r

' 2 27r
' (2.49)

where X& and X& are determined from yi, y~ and p~ according to Eq. (1.16), as in the 2 ~ 2 process. The restriction
that z ) z comes from the factor 0(ps & pq). From the explicit form (2.32) of Zq(e) we have

22(~) = — (16') ' I'ge) [1+O(e )]. (2.50)

E f

1

x (1. —z) jz g(z ) 2) f2(yi' , zpg& Aj; (1 —z)pJ &
A j)

f2(yi & pJ &
Ag—, 0& g) |( ) —Q2/pg)}[ + o(~ )]& (2.51)
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At the collinear point, the function f2 has a very simple form given by Eq. (1.66):

f2(ylIzpg, Ag, (1 —z)pg, Ag& e) = d (S,T, U;e) P~w(z),
z

(2.52)

where Pww(z) is the Altarelli-Parisi kernel for g —+ g, but without the usual regulation for z —+ 1, as given in Eq. (1.6'2).
Thus

E

G", ,-.,', & = -C(.) L(X~,X~), ' I, I'g~) d'&(S, T, U;~) — j,6", I S2(~)tl+ 0(")]
7l ES

where Z2 is the integral

(2.53)

Z2 — dz Oz&2 z 1 —z P~~ z —Oz&1 — 2 pJ (2.54)

and where we have denoted

P' '—:lim (1 —z)P~w(z) = 2¹
The integration can easily be performed, yielding

11 1 (Q22') 67 vr' 1 2 ('Q22')
Zx(e)=2M( ————lnl x ~+c —+ —+ —ln

~ x ~
+O(e)

12 2 (P2J y 18 3 4 ),P2~y

Expanding in powers of (.' in Eq. (2.53), we obtain

G2 „„=c(~) I (X~,XE) '
i 2 i Fge) d~ l(S, T, U; e)

)l ES

1 ll 1 /Q22) 11 1 ('Q22') ( QEs ') 67 7r 1 2 (Q2 )

xaam — —+ —lnl x ~

+ —+ —lnl x ~
ln~ x I

+»
I x I+O(~)).12 2 (, P2J y 12 2 qp2~) (, 16P2~& 18 3 4 (, P2~ j

(2.55)

(2.56)

(2.57)

G. The soft contribution

In this section we wish to calculate G2, &, , which is given by Eqs. (2.34) and (2.13). Making use of the fact that
the function II2 as given in Eq. (2.14) is simple in the soft limit, we have

G~'.-.;,l =(4. )
C(') ~(X., X.)," g, (,)2x 27r

x dy d
1

— [f2(yl, pg, Ag, 0, A J + A) —f2(yl., Pg, Ag, 0, Ag)].
cosh y —cos P

(2.58)

According to Eqs. (1.53) and (1.54), the function f2 has the structure

f2~ f2a f21
d2a

where the f„are defined in Eq. (1.50) and

PJ= —(I 2 Ps+ P Ps).
P3

(2.59)

(2.60)

In (2.60), we evaluate the dot products and divide by ps, then take the limit ps -+ 0 with constant (y3 Ps)
(yg + y, Pg + P). This gives

d2A PJD1(y 4' yl yj) 2B —PJD1( y (t' yj yl) d21 PgD2(y, yl yJ)
2

(2.61)

where

Di(y, 4, yl yJ) = —,'(2+ e"' "')e " + —,
' e" —cos 0

(y y y ) (1 + ewe —
w )(ew + ewa wz w)

(2.62)
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The functions f„with ps ——0 are given by Eq. (1.67):

f2~ = 4VN (1 —e) (—U) fs(U, S,T), f2a = 4VN (1 —e) (—T) fs(T, U, S),

f2i ——4VN (1 —~) S fs(S, T, U).
(2.63)

Finally, we use Eq. (2.35) for J~(e) and show explicitly the factor V ~„given in Eq. (2.33), that appears in the
relation

d 'P = V q, dP[sin(P)] (2.64)

Assembling this, ere obtain

G~" ~= ——C(.) 1.(X,X )
'

l l
I

2ir (, Q~ ) (4Q2$ I'(1+ c)I'(I —e) 2sp

x[—U fs(U S T) Vi(yi —yz) —T fs(T, U, S) Vi(yz —yi) + S fs(S» U) Vs(yi —yJ)I. (2.65)

Here I'Ir(c) is given in Eq. (1.29), and we note that the factor 1/[I'(1+a)I'(1 —e)I will not enter the final result because
it equals 1+O(e ). The functions Vi (yi —yg) and Vq(yi —yg) are the integrals of 1/Di and 1/D2. These integrals are
defined more precisely and are evaluated in Appendix B. Using the results of Appendix B together with Eq. (1.18)
relating (pg, yg, yi) to (S,T, U) we have

U ( U)-
2 Vi(yi —yz) =», + ~Piiv(yi —yz) + O(~),

2xp J t, 16p')

s Vi(yg —yi) = in~i s +~Pifv(yg —yi)+ O(e),
&16p~)

(2.66)

S /Si
V2(yl yz) = »

I ~ + ~Priv(yi —yJ) + O(E).
2&pg (16p~ )

The functions Pi)v(yi —yg) and P2fv(yi —yg) are rather complicated, and are given in Eq. (B7).
Using these results, G&, «becomes(2~3)

)

E

G, , = —C(~) 1(X~,X~) '
l l

I'Qe) 4VN
2')r

xl — fs(U, S, T) ln ~ + fs(T, U, S) ln 2 I + fs(S, T, U)»

+fs(U, +,T)»l 4,' l

—2», . i +PllV{21 2J)I4', & . ~16J', ~

+fs(T, U 8)» ~ l

—2»~ ~ I + Py~(yg —2g)I4 ', ) il6 ', )

+fs(S, T, U) ln
l 2 l

2 ln g + P&N(yi yz) + O(&)
&Q,'sq ( S )

i &4 sr . (16Hy
(2.67)

In order to make the cancellation of divergences easier to see, we add and subtract logarithms of the scale factor QE~s

in the singular terms. Then we use the identity (1.33) relating fs(s, t, u) to d(4~(s, t, u; e) to obtain our final result:
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4x0,',-.,',& = —C(.) 1,(X,X ) ~," I g.)
ES

2 4VN'
x

i

—cd ~i(S, T, U; ~) ln
16pg

V'I --- & i)
fS(U, S,T) ln 2 1+fS(T,U, S) ln

ES ES

&s)
+fs(S, T, U) 1

Es)

+4VN fs(U&S, T) ln 2 ~

—2 ln4', g I 16P2~)

+4VÃs fs(T, U, S) ln 2 ~

—2 ln
4 2) . I 16pz)

+4VN fs(S, T, U) In~ 2 ~

—2 ln

+ Pl~(Vi —VZ)

+ Pl&(VJ Vl)

+ P2N(91 VJ)

2

+2K 4 &(S,T, U;~) in~ 2 ~ + O(~) ~.
q16P2~ ) (2.68)

III. TERM &

A. Kinematics

In this section we are concerned with the term ((M( )i in the invariant matrix element with a 1/ps pi singularity.
We are thus interested in the integration region in which 1 and 3 may become collinear, or in which gluon 3 may
become soft Our . treatment will be similar to the treatment above of term 2. However, there are some differences,
which arise ultimately from the definition (1.38) that gluon 2 always lies nearer the jet axis than gluon 1.

As in the case of term 2, we take the seven integration variables to be

Plip2& P2&4'2ips) Ws) 0s

The crucial denominator factor pi .ps has a form analogous to that given in Eq. (2.9):

(3 1)

pi ps ——pi ps[cosh(ys —yi) —cos($3 Qi)],

where pi and Pi are to be expressed in terms of the seven integration variables, as discussed below. In order
to simplify the notation for the manipulations to follow, we shall define the integrand to be a function Fi times

(p./V) "/»[c»h(Vs —ui) —cos(&s —&i)l:

(Ps/V)
" &I~I')

2E

f ( ) f ( )ps[cosh(ys Wl) —cos(4 i —A)] 8(2~)'s' 0( )'V' 2
x~(ps + Pl) 0(ps + P2) |()42 —4~! & 14 i —4z I). (3.3)

Using Eq. (1.54), we can express I"i in terms of fi..
&i(Vi; p2, &2;ps, &s) = IIifi,

where

(4~ )' I,(z~, z~) O
P21' ' 2, C(~) —n,
pg p

' 2T 2n'
(3.5)

The variables pl, z~, z~, and p; .
Pz can be expressed in terms of the seven integration variables of Eq. (3.1) as in

Eqs. (2.2) and (2.6)—(2.8). In particular, we shall want to be able to express the denominator pi . Ps/pips in terms
of the seven integration variables. We name this denominator function Dqa and find

Dis(pi p2 A2 ps As) = cosh(ys —yi) —cos(Ps —Pi)
Pl 'Ps cos(4s —4) + (ps/p2)
pi ps [1+(ps/p2)'+ 2(ps/p2) cos(ps —$2)]'~2
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B. Jet de6nition

With the notation established so far, we can write the cross section in the form

dP3 d2 2q d2 2~ p31 +1(yl iP2& A2i ps& A3)( —2E

01 — gl P2 2 3
Ps & V g Dis(yi;P2, A2;Ps, As)

Now we have to insert the jet definition. This is just the same as for term 2. We find

—2E

Js & p p Dis(yi; p2, »;pa, As)

1
~(P2 + P3 PJ)~ l (p2A2 + P3A3) AJ

kPJ

(3.7)

+t~(P2 PJ)~ '(A2 AJ)01 IA2 A3I &2—2E P2+ Ps

P2

+~(ps PJ)~ (As A J)HI IA2 —A3I ) — R2—2E' r P2+P3
l P2

(3.8)

C. Extraction of the singular contribution

We now manipulate the expression in (3.8) in order to separate it into a nonsingular piece with theta functions plus
a singular piece in which the theta functions have been eliminated.

We make use of the variables defined in Eqs. (2.24) and (2.25). We use the jet defining delta functions to perform
3 —2e of the integrations in (3.8), as in Sec. II B. This gives

dy d 'A
dpJdyJd 'QJ Ps ( Ii )

&i(yi; PJ —J s, AJ —(ps/PJ)» ps, AJ + (1 ps/PJ)A—)
D13(yl PJ P3 AJ (Ps/PJ)A Ps AJ + (1 ps/PJ)A)

g I(IAI PJ ~'lI I"i(yi;PJ, AJ pa AJ+A)
g

I IAI
PJ+ps~

I

Pa ) Dls(yli PJ) A iJps~ AJ + A) 4 PJ )

I p 2
~ ~ ~~ ~ ~ ~

?I
1

~
j

~~i ~~~I
I

)J

7

)

~—2c
d2 —2~/ && & &&~P» & 2P» &

g / P& +P2/
PJ 4 P Dls(V1 p2 AJ A PJ AJ) 4 P2 j

We now separate this into a singular piece with no jet defining theta functions plus a nonsingular piece:

(3.9)

where

do'j
l, s + 1,NS) (3.10)

and

Ijs = dory

1&,Ns = diaz

,A I(P& (y P, ;P, + )
D s(yi; pJ, A J;ps, A J + A)

—26
I(P31I
&I )

Fl (Vl, pJ —ps, A J —(pa/p J)A; pa, A J + (1 —ps /p J)A)
X

D13(V1 PJ P3 AJ (P3/PJ)A; ps, A J + (1 ps/PJ)A)—

(3.11)

+

dory

dP2

PJ P3 ) Dls(VliPJ IAJiP3)AJ + A) 4 PJ )
(nz

" |(yi;s~, z —;sr, z) g((@ si+n~~)
PJ 0 8 Dl (yl3ip iAJ2AipJ) AJ) 4 P2

(3.12)
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Notice that I~ ~s has no collinear singularity when gluon 3 becomes collinear with gluon 1 because of the theta
functions, including (for the third term) the theta function in the definition of Fi that guarantees that gluon 2 is
nearer to the jet direction than gluon 1. Furthermore I~ Ns has no soft singularity when p~ ~ 0 because of the
subtraction.

D. Simplification of the denominator

We must now extract the singular terms from Ii 3 in the form of integrations that can be performed analytically.
Our first task will be to simplify the denominator.

Let us examine the crucial denominator factor D13. We recall from Eq. (3.6) (with ps ——pj A2 —A j) that

D13(V1 I pj ) 0j t ps) A3) = cosh(» pl) cos($3 $1)
cos($3 —Pj)+ (ps/pj)

[1+(»/»)'+ 2(»/») cos(&3 —&j)]'~' (3.13)

This expression is rather complicated. We are, however, primarily interested in the behavior of this denominator
near the collinear singularity at » —yi ——0, $3—pj —x. Let us therefore rewrite the right-hand side of (3.13) in a more
convenient form that has the same expansion about the collinear point to second order in (» —y, ), (p3 Ijkj m):

[1 —(»/»)1 —[1 + cos(&3 —&j))
([I —(» 3/»)]'+ 2(ps/») [1+cos(&3 —&j)l)"'

Let us define

P(P3 /Pj» —Pi 4'3 —A)

1 + cos($3 —p j)

1

[1 —(»/»)]', (cosh[[1 —(»/»))(» —»))+ cos(&3 —&)). (3.14)

(3.16)

(3.17)

'o'h([1 —(p3/p j))(» —Vi)) + cos(43 —0 j)
[1 (ps/p j)) cosh(» yi) cos($3 $1)

(3.15)
('os"&[ —(»/»)](» —») & + cos(&3 —&j))/[I —(ps/p j)]'

cosh(» pi) + [cos($3 $j)+ (p3/pj)]/[1 + (p3/p j) + 2(ps/p j) cos($3 Qj)]
where we have used Eq. (3.13) to express p explicitly in terms of the variables p3/pj, » —yi, $3 —Pj. Then the
analysis given above shows that p has a smooth limit at the collinear point, with

p(p3/pj, 0, x) = 1.
Inspection of Eq. (3.15) shows that p is also simple in the soft limit

P(0, » —Pi, $3 —Pj) = 1.

E. Decomposition of the sint ular contribution

[I —(»/»))'

We can use the results of the previous section to rewrite our singular integral as

—2

P3 &»)
+i(V;Pj, &j,P3 &3)

h[[ ( / ))( )) (& &)
where we have used A3 as the angular integration variable. An alternative form with a simpler denominator is
obtained by changing variables from A3 to 0 = (y, P) defined by g = [1 —(ps/pj)](» —yi), P = $3 —Pj. This gives
a Jacobian factor [1 —(p3/pj)], with the result

Ix,s = dgx [1 —(p./p. ))
(Ps l
&»)

1(yiiPj) jI Ps) yi + V/[ (P3/P j)l) 0'j + 0')
( / -/[1 ( / )] ~)

cosh(g) + cos(P)
PP3 PJ~ 9 P3 P& ) ~ (3.19)

Vfe now extract the singularities from Iz s by writing it in the form
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I1,S —Il,coll + Il,soft + I1,double + Il,finite. (3.20)

The first term in (3.20) contains the collinear singularity and is obtained by setting A = (0, x) in Fi and p in (3.19),
so that Aa lies in the singular direction Aa ——A„where

y. = yi, 4. = 4 j + ~. (3.21)

We subtract from this the same term with pa also set equal to zero except in the 1/pa denominator in order to
eliminate the soft singularity. This gives

1|,-u =&|(~)J 4| I

—
l

(f& —(J3/pJ))+i(vi;nz&z;, vs&. ),
—+i(wi;nz&z, ;0, &.) e(s3( Ql)),dp )pl"

pa ES)
(3.22)

where Zi(e) is the integral already encountered in Eq. (2.32) except for a change of sign from —cos P to + cos P, which
does not change the result:

X, (e) =f d~ ~'0 1

cosh(g) + cos(P)

. 1'(1 —~)

r(1 —2~),2s, , I'(1 —e)a

I'(1 —2e) ~

dy
cosh g + cos P

In the second term in (3.22), we have inserted a 8(pa ( Qi) since the theta function contained in Fi that limits the pa
integration was lost when we set p3 ——0 in I'1. An upper limit on p3 is necessary to make the integral finite, although
the actual value of the limit will cancel from the calculation. One might choose Qi ——p j/2 as the upper limit because
that is the limit in the first term in (3.22): pa ( pi —pj pa.

The second term in (3.'20), Ii fg reflects the infrared singularity and is obtained by setting pa
——0 in Eq. (3.19)

everywhere except in the 1/pa denominator and subtracting the same expression with Aa also set equal to A, except
in the denominator:

d2-2 A i(yi pj, Aj, o yl +y 4'j +~) i(yi pj j» )
cosh(g) + cos(P)

where Pq(c) is the same integral encountered in Eq. (2.35):

~()
'

pa
)

pal)
(

Qil(
o pa 4 Ij ) 2~ 4 p )

(3.25)

The final term in (3.20), Ii d „bi„ is obtained by setting both Aa ——A, and pa ——0 except in the denominator
factors:

Il d bl = Xl(E) gl(E) f dl/I El(ill ipJ, AJi 0, A ) ~

Finally, Ii n»q~ is simply the remainder defined by Eq. (3.20):

(3.26)

dpa &pa'l
Il,fini te — dy1 d

— 'A.
pa &S)

[1 —(pa/p j)1'
cosh[[1 —(pa/p j)](ya —yi)] + cos(ga —Pj)
&& [Fi(yl pj Aj pa Aa)p(pa/p j ya yl 4'a 4' j) Fi(yl pj A j pa A )]

+ ~(pa ( Qi)
[ Fi(yi, pj, Aj., 0, A—a)

cosh(ya —yi) + cos(Pa —Pj)
+Fi(yi; pj,Aj o A.)] I. (3.27)

%'e see that because of the subtractions, I1 fi„;t, has neither collinear nor infrared divergences.
We now introduce a notation in which I1 s is written as an integral over y1.

I1S= ~y 1 y1 pZ yJ
(2~3) (3.28)
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Here Gl is given by a three-dimensional integral over (ps, y, p). It is divided into pieces:

G(3 3) G(3 3) + G(~ 3) g(2 3) + G(3 )
1 1lcoll 1,soft 1,double 1,finite ~

as specified in this section. Vfe analyze the pieces, other than the Rnite term, in the following sections.

(3.29)

F. The double singular contribution

From Eq. (3.26), we have for Gl d „b&, the simple expression

Gl doUb)e = Xl(C) gl(E) Hl (yl) pJ ) AJ', 0, Ag) f1 (yi ', pJ, A J', 0, Aq).

When evaluated at the double singular point, the functions Hl and fl [cf. Eqs. (1.65) and (3.5)] are simply

Hl(yl pJ AJ 0 A ) —(4K ) L(XA XB)2, C(~) n,
27r

' 2' '

(3.30)

(3.31)

f1 (yl I pJ, 0J ) 0) A J., e) = 2N d (S)T) U I e).

We now assemble these ingredients and obtain

(3.32)

E

G, „„=C(~)1,(X&, XB)
~ ~

I'Jc( )d( )(p, p, p; ) —
~ ~

I'1( ) (3.33)

where

I'(I —e)
I'(1+ e)1'(1 —2e) T (3.34)

Expanding the factor in square brackets gives

E

, U;

2

(3.35)

C. The collinear contribution

From Eqs. (3.22) and (3.4), we have the following expression for Gl, &&).

= ~1(&)
~ I [ (1 p3/pJ)H1(ylt pJ ~ AJi p3) As)fl(yl ~pJ~ AJi ps) As)

{2~3) dps t'p31

J3 ES)
Hl(yl, pJ, AJ,—0, A, )fl(yl, pJ, AJ, 0, A. )&(p3 ( Ql)]. (3.36)

In the singular configuration at which the momenta are evaluated in the first term of Eq. (3.36), gluons 1 and 3 are
parallel and recoil against the observed jet. Let us change integration variables in Eq. (3.36) from p3 to z defined by

p3 = (1-z)pJ

Then pg = [(1 —z)/z]p", .
The function H1 at the collinear point is given simply by

Hl(yl)pJ)AJ', p3, A, ) = (41r )' I(X~, XB)e(z & 3)
3,C(~)

(3.37)

(3.38)

where X& and XB are determined from yl, yJ, and pJ according to Eq. (1.16), as in the 2 ~ 2 process. The restriction
that z & 2 comes from the factor 8(p3 ( pl). From the explicit form (3.23) of Zl(e) we have

~1(~) = (16~) F4~) [I+0(~ )]. (3.39)

At the collinear point, the function fl has the simple form given by Eq. (I.65):
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fi(yi, pg, Ag', (1 —z)pg, A» e) = d (S,T, U; e) P&&(z),z

where Pzz(z) is given by Eq. (1.62).
Combining these results, we obtain

E

G", ,".,", =-C(.)L,(X,X )
' ~," ~

I (.)d(')(S, T, ir;.) -'~ ",
~

Z, (.)[I O(")]
pg&

where z1 is the integral

(3.40)

(3.41)

1 PJ ~ ~ +gg (3.42)

and where we have denoted Pso« = 2N as in Eq. (2.55). The integration can easily be performed, yielding

Zs(e) = 2M (
———ln

~ ~
+ a' — ——ln(2)+ —+ —ln

I
~

+O(e )
ll 1 t'Q, & is7 ii 2r 1 z (Q, l

72 s 4 kpJ &.
(3.43)

Expanding in powers of e in Eq. (3.41), we obtain

2

Gi, &&

—C(e) 1(X~,X~)
~ z ~

I'ge) d (S, T, U;e)
Es )

+ + lln(2) ————ln
l ~ ~O(e)).137 1 1, t'Q', ')

72 6 4 Epz)
(3.44)

H. The soft contribution

In this sec ion we wish to calculate G(i r„), which is given by Eqs. (3.24) and (3.4). This task is very easy. We
2

invite the reader to check that G(i r
) is the same as G2, rt, Eq. (2.68), with the substitutions yi ~ yg, T ~ U, and

Qq ~ Qi. Furthermore, G2, « is syrrirnetric under the interchange yi ~ yz, T ~ U. Thus(2~3) ~

(~ s) i (2 s)i
j,soft '\ 2,so«)Q2 Q2 '

IV. TERM A

A. Kinematics

In this section we are concerned with the term in the invariant matrix element with a 1/ps p~ singularity. We are
thus interested in the integration region in which gluon 3 may become collinear with hadron A, or in which gluon 3
may become soft. For this purpose, we define integration variables W, ( for gluon 3 as follows:

ps" = ($y s/2, $W /~2s, (W) .

Note that W is a vector in 2 —2~ dimensions. Its magnitude gives the rapidity of gluon 3:

$ /8/2 S

gw~/~~.

(4 1)

(4.2)

I et us investigate the appearance of the singularities corresponding to pz being parallel to p& and to p being soft.
The collinear singularity corresponds to W ~ 0 at fixed (. Using p~& ——(z~ gs/2, 0, 0) we find that

ps. p~ = 2&~4~

The soft singularity corresponds to g -+ 0 at fixed W', that is, just scaling ps. It arises from factors such as ps (p&+p&)
in the matrix element (after rewriting by partial fractions). Using p& as above and p~&

——(0, z~gs/2, 0), one finds,
for instance,



2210 STEPHEN D. ELLIS, ZOLTAN KUNSZT, AND DAVISON E. SOPER

P'(PA+ P~) = -(»s+ zA~')
2

We shall therefore extract a factor
1

(2+72

from the matrix element to account for the collinear and soft singularities.
Let us now look at the needed integrations. We can adapt Eq. (2.11), using

1-2e d dl —2ey d d2-2e (d2-2e (1 2e—g d2 —2m~d&

(4.4)

(4.5)

(4.6)

This gives

(l~l')A0(pa & pi) 0(pa & p~) ~(142 —4~1 & 141 —4~1) .

doA ——dyi dya dp2 d 'y3 ( 'd( d 'w' zA fA(zA) zzi f/)(zip)

Pa ( P2
8(2x)as~ q(2n)2@3)

(4 7)

I et us de6ne a function E~ to be the integrand with the singularities factored out:

3g +A(yliP2) y21 42i ()~) P2 i P2
I g,~, = AfA( A) Hfzi( B)8(2 ),

x~(pa & pi) 0(pa & p2) ~(IA —4JI & ldi —Pal).
Using (1.54), we can express FA in terms of fA. One finds [cf. Eq. (2.13)]

+A(ylip2i y21 0'2i() ~) —~AfA

(l~l')A

where

li'A(yi;p2, y3, A;(, ~) =1
1

(«)' L( A, a) o-
(P3&' ' 2, C(e) - n,
&p~) 27r

' 2~

We shall want to express the variables of the problem in terms of the chosen integration variables

yi, p~, y3, 4», (,~, 43 .

The required relations are similar to those in Sec. II A:

y. ~s
pi = [p2 + p3 + 2p2p3 cos($2 $3)] i zA: (pi e"' + pae"' + pae"'),

W ' s

(4.8)

(4 g)

(4.10)

(4.11)

1
-(pie +p2e +p3e ) pAD =zA zest s/2, pAl ——zA~spl e "'/2, pA3

—zA~&p3 e & /2,+8
pA3

—— A+s pa e "'/2, p~i —z~+s pl e+"'/2, p~3 —z~Qs pa e+"'/2, p~a ——z~+s pa e+"'/2, (4.12)

p12 —plp2 cosh(yl y2) + p2 + p2pa cos($2 —$3) ) pla = pips cosll(yl —ya) + pa + p2p3 cos($2 $3)
p23 —p2p3 cosh(y2 y3) p2p3 cos($2 —$3)

It is useful for computational purposes to rewrite the dot products involving p in a form that makes it explicit
that they contain a factor ( as g -+ 0. One finds

l( „,p~s „,pW'
Pia —& I

e "' + e"' + (~' + P2~ cos($2 4'3)
r

„,P30&p23=(1 e "'
2

+e"' 2~ -p2~cos(42 —A)1.

(4.13)

B. Jet definition and extraction of the singular contribution

With the notation established in (4.8), we can write the cross section in the form

d~A = dyi dp2 dye d '42 —p ', ( 'FA(yi;p2, y2, 43;(,~) .
d( 3d 'W

(4.14)
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As we argued in Sec. I C, there are three possibilities for which gluons constitute the jet: gluon 2, gluon 3, or gluons
2 and 3. Following Eq. (2.23), we find the following contribution to the jet cross section corresponding to these three
possibilities:

1-2c ~ 2e —2r.dyi dP2 dy2 ~ '4» —
V

'
W, & '&~(yi; P~, y2, 0~;4,~)

p. +ps )" ~(p2+ps —pz) ~
I

—(p~n~+psns) —n&
I el inc nsI &

&pz p~

+&(p2 —pg) b '(A2 —ng) el lns —nsl & R
I

2—2E' r p2+p. &

P2

+~(p, —») b
— (n, -n, ) el ln, n-.

l
& R

I

2 —26 p. +p. ~

P2
(4.15)

In the erst and second terms here, we use the delta functions to perform the integration over the momentum of gluon
2. In the case of the first term, this gives

(4.16)p2=pz —4W 42=
W A —

W 4s, y2=
W yz — W»gs/W',pz

pg — W pg — W pg — W pg — W

and a Jacobian equal to [pg j(pg —(W)] ~'. In the third term, we use the delta functions to perform the integrations
over ( and W so that

4=e"'p~/v~, W=e "'v~, 0 =4~
with a Jacobian equal to (pg/() '. Thus Eq. (4.15) becomes

(4.17)

dye ~ps d' "4z -( W' &» —&W J
pg yg —

/Win i/'s/ W2 pz Qg —$Wps

xe[(yg —In/s/W2) + (pg —ps)~ ( R~]
2—26'~

+ 9& P 2 +A P&iP&~ P&~ &i

x8 (yJ —In/s/W~) + (Pg —Ps)2 2 t'p. + &Wl',
R

p~ )

—IA NS + IA, S

where

2E

+ dye dP2 dy2

xFA(yl p2 y2 P2 & pJ/V s, e ~8 cosgg, e ~8 slll Qg)

xel ln, —n, l&"' "'R
I

. (4.18)

The only term with a collinear singularity here is the second. In this term, let us fj.rst eliminate the theta function
by adding and subtracting a piece with the opposite theta function. In this way, we divide the cross section into a
singular piece with no theta function plus a nonsingular piece:

dye dpi' Q1i
(4.ygl

( pqyq —(Winy s/W pqPq —(Wgs

xe[(yg —Ings/W~) + (Qg —Qs) (R ]
d( d 'YV

dyi p q 4 +A(yi'pz yz 0J'( ~)
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pj+ W«(» —»V"/W')'+(4J —4s)' & i

"'
2E

+ F1 dP2 (A@2
PJ (Pj)

xFA(yi , P2,.y2, $2, e"'pj/~a, e "'~s cosgj, e "'~a sin()))j)

xe~ ~n2 —nj~ & P2+Pja
[

.
P2

(4.20)

Notice that there is no collinear (W ~ 0) singularity in IA Ns because the theta functions now do not allow it A.lso,
there is no soft (( ~ 0) singularity because the first and second terms cancel when g —+ 0.

The remaining term is

d(
IA S = Gg1 —p

d2 2'W
0 "I"A(yi;pj, VJ, 4 j;(,~) . (4.21)

C. Decomposition of the singular contribution

Now we separate our integral IA s into pieces. The piece containing the collinear singularity is defined to be

IA c&&11 —ZA(c) Al —( [FA(gl j PJ)») 4j)() 0) () (4 & ~A) +A(Vl jPJ) Vj) 0J j 0» 0)] ) (4.22)

where

&1-c 2

(4.23)

We have inserted a theta function 8(W2 & QA2) to provide an upper cutoff on the W integration. The final result will

not depend on the arbitrary parameter QA2. A sensible choice might be QA2
——s, which corresponds to yq

—0. Note

also that there is a subtraction at ( = 0 to remove the soft singularity from I, )). In this term, we have also inserted

a factor gg' & =A) to provide an upper cutoff on the ( integration. For instance, one might use "A ——1 —4p j/s. The
final result will not depend on =A.

We define the soft-gluon subtraction IA ft as

&~,-n = z~(~) f &vi I
" d2 —26'~

p'A(Vi; pj,», A; o, ~) —0(W' & QA) +A (yi; pj,», 4 j, 0, 0)], (4.24)

(4.25)

The Anal subtraction is for gluon 3 being both collinear to the beam and soft. It yields

EA d bl = ZA(E)ZA(E) J dpi FA(Ill;PJ, Vi, PIJ;0, 0) . (4.26)

We have now treated the singular terms and can turn our attention to the finite remainder. We define IA fi it by

IA, S —IAicoll + IA, soft + IA, double + IA, finite ~ (4.27)

IA, finite — g1 I

x[I"A(vi Pj, uj, d j,( ~) —~(W' & QA) I"A(ui Pj», 4J, (,o)

0(( & ~A)+A(V1 jPJ)») 0 jj 01& ~) + t (W & QA) () (4 & A) +A(Vl j PJ)» &
(t'j j 0~ O)] ~

(4.28)

One easily checks that the subtractions remove the singularities, so that IA finit is indeed finite.
We now introduce a notation in which IA s is written as an integral over y1..
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IAS = ga A Pa&PJ&QZ Z
(2~3) (4.29)

Here GA is given by a three-dimensional integral over (ps, (, W, ps). It is divided into pieces

s) + G(2 s) + G(2
A Aicoll A, soft A, double . A,finite &

as specified in this section. We analyze the pieces, other than the finite term, in the following sections.

(4.30)

D. The double singular contribution

From Eqs. (4.26) and (4.9), we have for GA d „)bi, the simple expression

GAdo„bi, ——XA(e) JA(e) HA(yi , pg) y'z) QgI0) 0) fA(yi, pg)yg)4g) 0)0) .

When evaluated at the double singular point, functions HA and fA [cf. Eq. (1.61)] are simply

IIA(yi; pz, yz, Pz, 0, 0) = (4ir )' ~(XA XB)2 .C(~)
2' ' 2x

(4.31)

(4.32)

fA(yi,.Pg, yg, Pg, 0, 0; c) = 2N d( )(S,T, V; e)

We now assemble these ingredients and obtain
EG,„„=C(~) 1(XA, XB) '

~ ~ llc( ) d )(S,T, V; ) —
~

I'A(~)
E2s

(4.33)

(4.34)

(4.35)

Expanding the factor in square brackets gives

E 2 2
GA ~ „b„=C(e) l(XA, XB) '

2 ~

lpga)

d (S, T, V;e) —+ —ln 2 2 ~
+ N —ln 2 2 + O(~)

E's &

(4.36)

E. The collinear contribution

In this section, we examine the term GA( &&)(yi, pz, yz, pz) given by Eqs. (4.22), (4.9), and (4.30):

—~A (~) 0 [+A (gl i PJ ) 0J &
O'J i (& o)fA (yl j 7J ) PJ ) 0'J I 0 & 0)

(2~3) d(

—HA(Vi; pz, V~, dz, 0, 0)fA(Vi; pz, Vz, 4z, o, 0)~(( & =-A)l . (4.37)

The functions appearing here are evaluated in the collinear configuration in which gluon 2 constitutes the jet and
gluon 3 is exactly collinear to incoming gluon A, carrying a fraction ( of the incoming proton momentum.

It will be helpful to recall some notation from Sec. I B. We defined momentum fractions XA, XB by

XA — (e"' + e"'), XB — (e ' + e "').
S 8

(4.38)

If only gluons 1 and 2 were present, XA and XB would be the momentum fractions of the incoming gluons. In the
collinear configuration at issue here, gluon 3 also takes up some + component of momentum, so that the momentum
fractions of the incoming gloons are

&A = XA + (i &B = XB (4.39)

We also introduced variables S,T, U formed from the momenta of gluons 1 and 2 in such a way that, in the absence
of gluon 3, these would be the Mandelstam variables of the elementary gluon scattering. Thus [cf. Eq. (1.18)],
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S = 2p~[1+ cosh(yg —yq)j, T = —p&(1+ e"~ "'), U = —p~(1+ e"' "~) . (4.40)

Finally, let us supplement this notation by letting z denote the fraction of the momentum of gluon A that is left for
the hard interaction after the collinear gluon 3 is emitted:

(4.41)

so

(4.42)
Z

We can now return to an examination of Eq. (4.37). In the collinear configuration at hand, the function H&,
Eq. (4.10), becomes

~, C(e) (X~ l n,
H~(yg, p2, y2, gg, g, W) = (4m )' L!,X@ !

' 2.
2x ( z ) 2x

The function f& has the simple form given by Eq. (1.61):

f~(V&i p~) V~ i 4'~)(i 0i ~) = d (~&T, U'i ~) Pgy(z) ~

Z

(4.43)

(4.44)

where P~~(z) is given in Eq. (1.62).
We shall want to rewrite Gz, &&

using z instead of g as the integration variable. The relation between the two is

so

XA
X~+( ' (4.45)

1 —Z
X~ ~

The Jacobian is

d( dz

z(1 —z)
' (4.47)

Using all of this information, we can write G& &&
as

G.'..„'=~ ()( ')' () 'd"(&, T, f;)
)

dz (1—z &
"

1 —z — (X~Xg ! Pgg(z)L!, X~ —8(z ) z~;„)P' 'L(X~, X~)
O Z —Z Z Z Z

(4.48)

Here we have de6ned

+A
Zmin —+ (4.49)

and we have used Eq. (2.55),

(1 —z) Pgg(z) -+ P' " = 2N as z —+ 1.
Inserting the value of Z~(e) from (4.23) gives

(4.50)

C(~)
'

d~ 1(S,T, U;~)
e I'(1 —e)

'
2~

x dz
(Q~X~(1 —z) )

pz P~~(z) —L!,X~ !
—8(z ) z;„) L(X~, X~) . (4.51)

1 (X~

Then expanding in powers of e gives
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C(t) ' d( &(S,T, U; t)A, coil ~ fz( 1 ~)

&q~(z) —
2 Il,Xa

~

—&(z ) z;„) I (Xg, Xa)
1 (X~ — ) Pgg

'
z2 ( z z 1 —z

+C(o) ' d'(S, T, U;0)

PSGft

&~s(z) —
z I~,Xa

~

—0(z ) z;„) I (X~, Xa) + O(t) .
z I, z z1 —z

(4.52)
Now we have to add the counterterm that removes the collinear divergence, using the MS definition of parton

distribution functions. A general discussion of the calculational prescription can be found in Ref. 16. To use this
prescription, we note from Eqs. (1.24) and (1.25) that the Born cross section is

= C(z) J dye I(Xz, XP) d '(S, TV; )z.

We write this as

dz~ dza fg(z~) fa(za)C(t) dyi b(z~ —Xg) b(za —Xa) d (S,T, U) ~) .
A B

Thus we can identify the hard-scattering cross section as
/\

= C(c) dyi b(2l~ —X~) b(*a —Xa) d (S,T, U; ~) .
. XAXB

The MS counterterm to be added to I~ «)t is thus

1 (4s)' n,
( )f( ) d P(

1 (4s.)' a,
d*~ d~a f~(~~) fa(~a)

1

x dz P~q(z) C(c) dyi b(zz~ —X~) b(za —Xa) d l(S&T, U; t)
0 XAXB

1 (4s)' n,
C(e) dz Pzz(z) dyi —

&
L i,Xa

~

d (S,T, U;e) .
1 (Xg ) (4)-

0 z' gz'

(4.53)

(4.54)

(4.55)

(4.56)

Removing the integral over yi gives the counterterm for G&
Now we want to break this up, explicitly displaying the z -+ 1 regulation of P&&(z):

4n '

(x~ 1
x dz Pzz(z) —I. ~,XP

~

—9(z) z;„)t(Xz,Xzz) +1(Xz,Xz) dz Pzz(z))
0 ~min

We need the integral

(4.57)

1 1

dZ Pgg Z = dZ

1

dz
min

=f' d.

=j' d*

(1—z z
2N

~
+ +z(l —z) ~+-', P, b(l —z)z z +
psoft ) i psoft

+ d (") +
~min

( ps oft

P (z) — ~~ ~+P' '1n~
~ + -'P (4.58)

Thus we Gnd that the counterterm is
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4m ' P

——+— C(e) —' d (S,T&V&e) dz Pzg(z) —
2 L~ &XB

~

—0(z & z~;„) L(XA, XB)z i z j
Psoft

+8(z & z;„)L(XA, XB) I P~~(z)—
z(1 —z) )

4s '
C(e)

'
d (S,T) V;t) I.(XA, XB) P"' ln

~
~

+ 2po (4.59)

Noting that two of the terms cancel, we write this as

(4.60)

1 4x' Psofl
C(~)

'
d i(S,T, V;~) dz P~~(z) —Li,X B~ —8(z & z;„) L(XA, XB)

W

+- C(e)
' d (S,T, V;e) L(XA, XB) P' ' ln

i i + 2pe(XA)

We thus obtain for GA, ii + GA cTl the result

4 E'

+C(0) —d~ l(S, T, V; 0) dz ln
~

Pi&(z) —2Ll, XB
l

—~(z & z; ) " L(XA, XB) +0(&) .
1 (XA

We can modify the 1/e term to make it match the form of our other I/e terms by multiplying it by

I'(1 —e) I'If(e)
~ 2

=
~ 2 ~

=1+t. In( 2 ~+O(e ) .
( p2 ' I'(1 —e)sl'(1+ ~) 6 p )' ( p2 l

ES&
This produces an extra finite term to compensate for the change, giving

s

G, „+G = C( )I(XA, XB) '
~ ~

I'Jf( )—d~ ~(S,T, U; ) P' "l
~ ~

+ -Po

2
—C(0)—' —in' 2 i

d~ i(S, T, V;e) L(XA, XB) P~~' ln
i I + 2pO

7C 2 4 ES
2

+C(0)—"~ i(S,T, V, 0)
vr

' ' ' ( pz )
x Pgg(z) I,~,X—

~
B—8(z & z;„) L(XA, XB) + O(t) .

(4.61)

(4.62)

(4.63)

The first term is saved for cancellation against other divergent pieces, while the remaining two terms give finite results
that can be computed numerically.

If one wishes to distinguish between the renormalization scale pUv and the factorization scale p,~~~, then the p
appearing in Eq. (4.63) is p, ii.

F. The soft contribution

(4.65)

In this section we wish to calculate GA, «, which is given by Eqs. (4.24) and (4.9). Making use of the fact that
the function HA as given in Eq. (4.10) is simple in the soft limit, we have

GA~,
fthm

= (4x')' L(XA, XB) '
2+A(t) P

'

d2 —26~
x 2 [fA(pl, pJ, gJ, 4Ji0) M) —0(W ( QA) fA(pl, pJ) gJ) QJ) 0) 0)j . (4.64)

According to Eqs. (1.53) and (1.54), the function fA has the structure

fAB fA1 fA2+ +
dAB

where the f„r daefeined in Eq. (1.50) and
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&A
(PA .Ps +P~ I 3) . (4.66)

In (4.66), we use (4.13) to evaluate the dot products and divide by (, then take the limit ( ~ 0 with constant (W, $3).
This gives

—PjD4(W& yl ) yj) ) Al p jD3(W) 43 0j + s) yl ) yj) ) dA2 —pjD3(~y $3 0j) yj) yi)

where

(4.67)

, (W2
Ds(W, 4, yi, yj) =(e"'+e"')

I

{ev& + ew&) ~ e s&

8 2 2

lW
D4(W, yi, yj) = 2(2+ e"' s'+ e"' "') e"'+"'+1

~

cosg
I

(4.68)

The functions f„with p3 = 0 are given by Eq. (1.67):

fAgy = 4VN {1—e) S fs(S, T, U),

fAi —4VN (1 —e) (—T) fs(T, U, S),

fA2 =4V~'(I-e)'(-U) f.(U, S, T)

(4.69)

Finally, we make use of Eq. (4.25) for gA(e) and show exphcitly the factor V 2„given in Eq. {2.33), that appears in
the relation

2E'

p 'd '~ = V 2, I WdWdp[sin( )J
P

(4.70)

Assembling this, ere obtain

(2 3) 1 n, r'«I'l' & QEs & (I —&)' 4V()I 4

[S fs(S, T, U) V4(yi, yj,QA) —T fs(T, U, S) V3(yi, yj, QA) —U fs(U, S,T) V3(yj, yi, QA)] ~ (4.71)

Here I"jr(e) is given in Eq. (1.29), and we note that the factor 1/[I'(1+ e)1'(1 —e)] equals 1+ O(e ). The functions
V3(yi, yj, QA) and V4(yi, yj, QA) are the integrals of 1/Ds and 1/D4. These integrals are defined more precisely
and are evaluated in Appendix B. We use the results of Appendix 8 together with Eq. (1.18) relating (pj, yj, yi) to
(S,T, U) and the relations p2j —TU/S and s = S/(XAX~), which follow from Eqs. (1.16) and (1.18), to express the
integrals V in the farm

S (S&
V4(yi, yj, QA) = ln

&&j
' '

(QEs)

2 V3(yi, yj, QA) = lnI
&pj

' '
I, Es)

, V3(yj, yi, QA) = ln
3&j ( Es)

&XAXBQA2 l
I. —yi —yj + eP4~ (yi yj QA ~ Ij s) + O(e )

(XA Xgg QA2 2—yi —yj+ ePsw(yi~ yj, QA, IJ, s)+ O(e ),
f XAX~Q2A l 2

I

—yi —yj + eP3w(yj, yi, QA, p, s) + +(e ) .
Fs

(4.72)

The functions Ps~(y j, yi, Q, s) and P4~(yi, yj, Q, p, s) are rather complicated, and are given in Eq. (B8) of Appendix
B.

Using these results we obtam, for GA, «,
~ (2~3}
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X X
x —(1 —(.) [fs(S,T, V) + fs{T,V, S) + fs{V,S,T) j»

~ & I +yi+yz
as

+fs(S, T U)

+fs(i', U, S')

+fs(U, S, T)

We use the identity (1.33),

(Sl
(I 2~) ln 2, + ~P4N(yl2 yJ QA IJ s)

as)'

&-i l
(1 —2e) ln 2 +ePs)v(y&, yJ, Q+ p s)

as)
f'-U l

(4 —2s) In I s +sPsy(yz, ys, Qs, y, s) l+ 0(s).
as)

(4.73)

4VN (1 —e) [f (s, t, u)+ fs(&, u, s)+ fs{ii,s, &)j = ~( l(s, &, u;~),

and expand in powers of e to obtain the final result:

a 4nG, , = —C(e) 1(X~,Xgy)
'

I I
I'Qe)

ass

x
I

——d( )(S,T, U;e) ln
I

+
I + yi+ yg

+ fs(S, T, U) ln 2 + fs(T, U, S) ln I 2 + fs(U, S,T) ln
4V~' - (S) - - (-T& - -- ( Vl

ES ES ES

+4VU fs(S, T, U) ln s 1

—2 ln s l + Psss(y&, ys, Qn, y, s)}4P =~ . ( asj
&Q+4VN f, (T, V, S) ln I, ',

I

—2 ln, + Ps)v(yi, yz, Q~, v, s)
as)

+4VU fs(U, S,T) jn s ~

—2 1n I s +Psls(ys, y&, Qs, y, s)I4P -~) . ( as)

Wd('&(S, i—, U;0) lnI,",
I »I, " I+yi+yJ +(~) I.&4V'=-~) . 4 as

(4.74)

(4.75)

The reader may have noticed by comparing this result with the starting expression (4.64) that the quantity in the
large bold parentheses in (4.75) should be independent of the scale parameter p. Using the results of Appendix B for
P3~ and Pq~, one finds after a bit of algebra that this is indeed so.

V. CANCELLATION GF DIVERGENCES
Let us check the cancellation of 1/e and 1/e~ terms. We denote

V(c) = C(e)1(X~,X~) '
2 I

I'Qe).c2, 4xp'5 '
7I' as P

We collect the terms that are divergent as e ~ 0. The first is from Eq. (1.25) and (1.31):

(&" "(y|,ys, yz, 4s)]s,.„..s = V(s)I 4("(+,T, U;s) I—

ln ~ fs(S, T, U)+ln I

16VX' t' S l
as) ( as)

U5
+In I s fs(U, S', T) ).

k as)

fs(T, U, S)

(5.1)

(5.2)
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The next contribution is from Eqs. (2.45), (2.57) and (2.68):

~(2 3} ~(& 3} ~(2 3}q
IG2, daub]e +G2,co]] + G2,soft jdivergent

4VX3 --- & i) --- & Tl - (Sl'I
fs(U, S,T) ln 2 + fs(T, U, S) ln 2 I + fs(S, T, U) ln 2 I. (5.3)

& Es) & Es) ( Es) ]
The next contribution is from Eqs. (3.35), (3.44), and (3.45):

G(2 3) G(2 3) G(2 3)] .l~].,daub]e +~],ca]] + ~&,soft ldavergent

fs(U, S,T) ln
I 2 + fs(T, U, S) ln 2 + fs(S, T, U) ln

ES ES ES
(5.4)

The next contribution is from Eqs. (4.36), (4.63), and (4.75):
(2~3) ~(2-+3) ~(2~3) (2~3))
A,dauble +~A, co]1 + GA, CT + GA soft jdivergent

= Y(t)
I

d( ()S, T, Ue) —+ —ln ~+21nI I+ —+lnI I+y]+yq

4VW3 - - - (S't - ( i'] -( U'] )—
fs(S, T, U) ln 2 + fs(T, U, S) ln 2 + fs(U, S, T) ln 2 I. (5.5)

ES ES ES

The final contribution comes from term B and is the same as the term A contribution except for the substitutions
A ~ a, T ~ U, yg ~ —y&, and yJ ~ —yp.-

~(2~3) ~(2~3) ~(2~3) (2~3)q
fGH, daub]e +GH, co]] + GH CT + GH ft]sdai ergevtn

= Y(e) d& &(s, T, v;c) —+ —1n
I

I+ tin I+ —+&
I

—yi —yz )
4VX' - - - &S& - - - &-i

t

fs(S, T, U) ln 2 + fs(U, S, T)ln 2 + fs(T, U, S)»
Es) (Es ) (qEs )

(5 6)

The reader can now easily check that the sum of the d&vergent contributions is exactly zero.

VI. CONCLUSIONS

We have seen that the divergent contributions cancel. It remains to add up the finite contributions, now taking
e = 0. We have

=). "vi G (ui p& vi, 4'z).
PJ VJ J

(6.1)

Since we know that the divergent terms in the G(') cancel, they can simply be dropped. Formulas for the various
contributions 0('} are given in the equations

G(2~2)
G(2~3)

2,NS
g(2 ~3)

2,coll
~(2~3)

1,NS
~(2~3)

1,coll
G(2~3)

A,NS~(2-3)
A,coll

G(2 ~3)
B

(]..26)
(2.29)
(2.57)
(3.].2)
(3.44)
(4.20)

+ 0 (4.63)
~ sar |"(B-')~1~h

~(2~3)
2,Rnite

G(2~3)
2,soft~(2-3)
1,6nite

~(2~3)
l,soft

G(2~3)
A,Rnite

G(2-3)
A, soft

A~ B,T

(2.37)
(2.68)
(3.27)
(3.45)
(4.28)
(4.75) f-(„',.'„'„. (4.36)

~ U, y1 ~ —y1, y~ ~ —y J
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These formulas give the 1dyiG~'&, less the divergent
pieces, as integrals over one, two, or four variables. These
integrations are all finite, so they can be done numeri-
cally. 'Zhus the numerical results are produced by a FOR-

TRAN computer program.
We have checked the calculation and the computer cod-

ing for the numerical integrations by checking that the
computed result is independent of the variables QEs, Qi,
Q2, Qg, Q~, =di, and:-gy. We have also checked the cod-
ing by writing two independent programs and verifying
that they produce the same results.
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APPENDIX A: DEFINITION
OF THE JET AXIS IN lV DIMENSIONS

J d D p +, y &, y, A1

where d" iP stands for the usual rotationally invariant
integration measure on a sphere. We would like to know
the Jacobian p(P, Pi, ). This is easy because we can
write

2K 2lr

dd, ddt sin(8)" fd" P f(d„da).
0 0

(A2)

In Sec. II C we defined the azimuthal components P~ of
the jet axis and transformed integration variables to Pg
and P using a vector notation that is really only suitable
if the number of transverse dimensions, n = 2 —2~, is
2. In the case of arbitrary n, the angular variables lie
on (n —1)-dimensional spheres, which have an intrinsic
curvature and thus require further definition. Here we

give the required generalization to arbitrary n.
We begin with the azimuthal angles of two gluons,

which we denote here by a and b These varia. bles P
represent points on a sphere $(n —1) having n —1
dimensions. I,et 0 denote the (one-dimensional) an-

Here 8, ti)i, are the one-dimensional angles of P and Pi,
in the plane determined by P and Pi, . The angles (I), Ob

are measured from an arbitrary fixed meridian. The re-
maining integration, I d~" 4P, denotes integration over
this plane. [The factor sin(e)" 2 will drop out of our
final result. ] We can also write

2' 2x
d&g diig) sin(e)" f d " dP f(d„ds).

0 0

Finally, it is easy to check from the explicit transforma-
tion that

d0, deb . . —— doJ dgD

xo
(A4)

4b
(1-x)O

FIG. 3. Definition of the jet axis and related angles.

Comparing Eqs. (A.2)—(A.4), we see that the Jacobian
in Eq. (A.l) is

(A5)
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APPENDIX B: THE SOFT INTEGRALS

Only four soft integrals have to be calculated:

Vj(yl —yJ) = dP (sing)
+ dy ( 1

!~ cosh(y) —cos(P) (Dl(y, P& yl —yJ)

V2(yi —yJ) = d4 (»n4) " + dy ( 1
!

o -~ cosh(y) —cos(P) E D2(y ~ yl —yJ ) D2(0, yl —yJ))

V3(yl, yJ, Q) = dP (sing)
dw (w) "(

0 owns
V4(yl, yJ&Q) = d4 (»n4) " -dw (w) "(

0 o W V) D4 W, yl, yJ

8(w & Q)
D3(o o » yJ))

0(w &Q) )
D4(0 yl yJ))

where

Dl(y, p, yl —yJ) = 2(2+ e"' " )e "+ 2e" —cosp, D2(y, yl —yJ) = 2(l + e" "')(e" + e"' " "),

DS(W, P, yl, yJ) = (e"'+ e"')! (e"'+ -'e ')+ -'e
S S

l(w'
D4(W, yi, yJ) = -'(2+ e"' "'+ e"' "')! e"'+"'+ 1!.

s

These integrals are finite as e ~ 0, but since they multiply a factor 1/e we must evalute them to first order in e.
First we carry out the integrals over y and W. These are the integrals which are enclosed in the square brackets in

Eq. (Bl). We denote them as V; . We obtain

Vl(4, yl —yJ) = 1 —cosP cosa
sing sinn

2

I ~ Q2 (2!
—ln(2+ a )—

4a2 1

(1+ a ) 1+ a + 2a cos(2$)

x —(x —P)tan! —
! [(1 —a ) —4a cos(P)] + (a —l)ln(a) —a(1+ a )7rcos(P)

2Q cos 7t'

V3(4'& yl ) yJ ) Q) = (&lp) . (& p) In(&1Q) + 6 ('E p) + lii (K1Q)1+ a2 sinP 3

2Q
V4(yl yJ Q) =

2 2 (+2') in(&2Q) + ~
l

—
12

+» (~2Q)l1+ Q

where a, a, P, zl, e2 are defined as

a = e"' "',cos a = (2 + e"' "') ~ cos P, cos P = (2 + e"' "') ~ cos P,

~1 = (2+ e"' "') e "'/s, ~2 = e"'+"'/s

(B3)

{B4)

2Ã 2[Pls(yl yJ) + EP1N(yl yJ)] + O(E ),

V2(yl —yJ) = [P23(yl —yJ) + EP2N (yl —yJ)] + O(e ),
1 + cosh(yi —yJ)

V3(yl yJ Q): [P3$(yl yJ, Q, s) + cP3N(yl yJ Q p s)] + 0( )

V4(yl, yJ, Q) = [P4s(yl yJ Q s) + ~P4N(yl yJ Q P s)] + +(~
2[1 + cosh yl —yJ)

Vl(yl —yJ) =

In the e = 0 limit, the integration over P can also be performed analytically. Consequently, analytic expressions can
be obtained for the leading contributions as e —+ O. In the case of the next to leading part, two one-dimensional
integrations over P must be performed numerically.

It is convenient to give the results in the form
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We find that the leading contributions have the simple expressions

f 1 + cosll(yi —yg) t

Pis(yi —yz) = »
l 16 l, »s(yl yJ) = ln

l

(Q'l t'Q'l
Pss(yi, yg, Q, s) = —ln(1 + e"' " ) —yi —y~ —ln ! !, P48 (yi, yg, Q, s) = —yi —yg —lnks) &s)

We also find that the nonleading contributions Pi~(yi —yg) and Pq~(yi —yg) are given by

7r' 4 COSA'
Pi~(yi —yg) = —— + 2 ln2 ln(2+ e"' "')~ — dqbln(sing) . (s. —n),

3 X O sinn

(B6)

x'
Pq~(yi —yg) = — + 2 ln21n(2[1+ cosh(yi —yj)]) —21n(1+ e"' "') ln(1+ e"~ "'),

2s2 1 Q2 lf'Q'
+ —ln e"'(2e"' + e" ) ! ln! e"'(2e"' + e" ) !

3 2 8 ) (16s
(p2 &Q' l—ln! —e"'(2e"' + e"')

! ln! e"'(e"' + e"')
!

g s s r
2 t' . cosP l

dP! —2 in(sing) . (x —P)+ (~ —P) ! )
sinp r

Psiv(yi, y&, Q p s) =—

Q' ) t'16p'
P4N(yi yz Q p s) =—

6 2 s ) 1, Qz )'
where cos P is defined as in Eq. (B4).

where cos a is defined as in Eq. (B4). The integral that remains can be evaluated numerically.
For the nonleading integrals Ps~(yi & yj, Q, p, s) and P4~(yi, yg, Q, p, s) we obtain

(B8)
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