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It is shown that by using the block-conjugate-gradient method several, say s, columns of the in-

verse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take

to run the standard conjugate-gradient algorithm s times. The method improves in efficiency rel-

ative to the standard conjugate-gradient a1gorithm as the fermion mass is decreased and as the

value of the coupling is pushed to its limit before the finite-size effects become important. Thus it

is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the

particle spectrum.

In a recent paper, ' we reported an ultimately unsuc-
cessful attempt to improve the computational efficiency of
the inversion of the Kogut-Susskind (KS) fermion matrix
in lattice-gauge-theory computations by the method of in-
cornplete Cholesky decomposition. In this paper, we are
able to report a type of preconditioning for the KS matrix
that can save a factor of more than 2 computationally in
interesting cases. We hasten to add, however, that it is
only useful in the restricted case in which several systems
are required to be solved simultaneously, as in finding
several columns of the inverse KS matrix at one time in

propagator calculations. Hence, it would be of no use in
generating gauge configurations in algorithms which in-
clude dynamical fermions. Nevertheless, it could conceiv-
ably save some computing time in the measurement part
of spectral calculations, especially as these simulations are
pushed to ever-increasing lattice sizes and decreasing
quark masses.

The method that we use is the block-conjugate-gradient
(BCG) method. '3 This is a simple extension of the com-
monly used conjugate-gradient algorithm to block form,
in which several systems are solved simultaneously. If we
let A be the n x n matrix to be inverted, 8 be the n xs ar-
ray of source vectors, and A' be the n xs array of solution
vectors, then the set of equations AA'-8 can be solved
iteratively by the BCG algorithm as follows.

Given the initial vector X, let R 8 —AX
define P( ) R( )y, and for k 0, 1, . . . , update the
iterates, residuals, and directions:

~(k+ 1) ~(k) +p (k)+k ~

R (k+1) R (k) gP (k)

p(k+1) (R (k+1)+p(k)p )
(p(k)T~P(k)) —1 gR (k)TR (k)

p ~ —l(R (k)TR (k)) —1R (k+1)TR (k+1)

Here, p(t) is an n xs array of A-conjugate direction vec-
tors; R (~) is an n xs array of residual vectors; and al, pj,
and yj are s xs matrices.

The algorithm terminates when the residuals R(") be-
come acceptably small. This will happen provided that
the algorithm does not lose stabilit~. Loss of stability can
occur if the matrices P ) and R ) lose full rank. The
nonsingular matrices yk are parameter matrices used to
monitor the stability of the algorithm. The iterates R
and A ( ) are invariant with respect to the choice of yk. In
practice, we found that problems with stability did not
arise in our implementation of the BCG algorithm so that
wecould set yk I in all cases.

What advantages do we gain by using the block form of
the conjugate-gradient algorithm? In Ref. 2 it is shown
that after'k steps of the scaled block-conjugate-gradient
algorithm, the error in component m, m 1,2, . . . , s, is
bounded by

r i —1
' 2k

(k)T~ (k) ~em em C),
. 1+Vx

where x -A,„/k„k; is the ith eigenvalue of A in increasing
order, and c1 is a complicated constant depending on m
but independent of k. [There are, in addition, some tech-
nical conditions stated in the theorem and required for the
proof which we do not wish to go into here and we urge
any reader interested in the details to consult Ref. 2. In
particular, the constant c~ contains terms with the factor
1/(A, „—X, ) so that the proof does not hold for the case
s n.] The block method cannot require more iterations
than the standard CG method in which all components of
the error obey a similar bound to (1) with x X„/Xt (i.e.,
the "condition number" ). The extent of its advantage de
pends sensitively on the eigenvalue distribution of A. The
block method is particularly useful when A has several
small eigenvalues widely separated from the others. In
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such cases, it can give a signi6cant reduction in the total
number of iterations required for convergence. In our
work, we found that solving s 12 systems at once (e.g. ,
finding 12 columns of the inverse KS matrix) using the
BCG algorithm required as many as four times fewer
iterations as applying the standard CG algorithm 12
times. The actual factor involved depends on the quark
mass (it improves as the mass is decreased), on the cou-
pling (it is best to choose a value of p just below the onset
of the finite-size phase transition), and on the block size s
(it improves as s increases and s 12 is the largest value
that we considered). Another advantage of the BCG al-
gorithm is that it forms the product of the matrix A with
several vectors at once so that it requires a smaller num-
ber of accesses to A. This could increase efficiency on
some vector computers. The BCG algorithm is easily vec-
torized, in the same way as the standard CG algorithm, so
it has none of the problems of the incomplete Cholesky
decomposition in this respect.

Analogously and, indeed, historically antecedent to the
BCG algorithm, a block Lanczos algorithm was developed
by Cullum and Donath and Golub and Underwood for
the solution of linear eigenvalue problems. The use of the
Lanczos algorithm in lattice gauge theory has been advo-
cated by Barbour. ' In his papers, certain claims are
made concerning the preferability of using the Lanczos al-
gorithm over the conjugate-gradient algorithm, specifi-
cally that convergence is much better at quark masses less
than 0.05. Also, it is claimed that at small quark masses
the block inversion is about s/2 times faster than the
equivalent single-row inversion for Susskind fermions
(where s, as before, is the number of vectors in a block).
These claims led us to investigate using the Lanczos algo-
rithm, both in its standard and block forms. It is well
known that the Lanczos and CG algorithms are
mathematically equivalent in that the residual and the
solution vector calculated at each iteration are equal.
However, there is some question as to whether the two are
computationally equivalent —a matter that is determined
by the way in which rounding errors arise in the separate
algorithms. We found the standard Lanczos alogrithm
and CG algorithm to be computationally equivalent for
masses as low as 0.005, which is as low as we tried. For
the block algorithms, we found the block-conjugate-
gradient algorithm to be far preferable to Lanczos. This
is because it is simpler to program, it requires fewer
operations per iteration, and, most importantly, it gives
rise to no stability problems whereas the block Lanczos al-
gorithm develops stability problems for low masses and
large s. Hence, all our further computations were done
using the BCG algorithm. This has the added advantage
of being a straightforward generalization of the most com-
monly used standard algorithm.

We can see two situations in which the Lanczos algo-
rithm is very useful: (i) in computing eigenvalues; (ii)
when the matrix to be inverted is not positive definite.
The second situation does not concern us here. The first
was thoroughly investigated by Barbour in computing the
low-eigenvalue spectrum of the KS matrix ' We are in-
debted to these papers for the insight that they have given
us into the nature of the spectrum of the KS matrix,
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FIG. 1. Schematic diagram showing how the spectrum of low
eigenvalues of the KS matrix evolves as the coupling crosses the
finite-temperature phase transition.

w hich is important for understanding the way in which the
CG algorithm converges as the coupling P is changed and
also for understanding the onset of the confinement-
deconfinement phase transition in numerical simulations
of finite-temperature QCD. We shall include a brief sum-
mary of their findings.

Let M be the KS matrix. The eigenvalues of M are of
the form 2m ~ iA, ; for i 1, . . . , n, where n x n is the size
of the matrix. The A,; are the eigenvalues of the anti-
Hermitian, zero-mass matrix. Barbour calculated the
low-eigenvalue distribution of the A,; for various values of
P in connection with studies of finite-temperature QCD.
From these it would appear that the low-eigenvalue spec-
trum evolves in the manner shown in Fig. 1 as P is in-
creased. The density of eigenvalues near zero decreases as
one approaches the finite-temperature phase transition
and vanishes as the transition point is crossed via a rapid
increase in the magnitude of the lowest eigenvalue for a
small increase in P. This ties in with calculations of the
chiral order parameter (i71y(m)) of finite-temperature
QCD. En the spectral representation we have (see Ref. 6)

1 ~i+ 2m

2mp(X)
z'+(2m) ' ) '

where p(X) is the normalized spectral density and so

lim lim (Py(m)) 3'(0) .
m~0 V~ oo

The value of (pry(0)) is determined by the density of ei-
genvalues near zero. It is finite below the transition point
and zero above it. If a small mass is introduced, then
(yy(m)) never vanishes but it decreases sharply at the
transition point with a gap whose size is determined by the
gap between the lowest eigenvalue in the high- and low-
temperature phases.

What effect does the nature of the eigenvalue spectrum
have on the rate of convergence of the CG algorithm at
different P? The algorithm converges faster as one ap-
proaches the transition point from below, initially because
the eigenvalues are becoming more clustered together due
to the decrease in density around zero of the X,;, and then
because the lowest eigenvalue rapidly increases, reducing
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the condition number. For the block-conjugate-gradient
algorithm we can expect that there will be some region of
p, just before the onset of the phase transition, where it
will be at its most effective. This will be a situation in
which there will be a tail of low eigenvalues adjoining the
main cluster. For values of P above the phase transition
region we would not expect the BCG method to be of any
use at all and far below the phase transition region its use-
fulness would decrease. We shall see that, in fact, our
work confirms these expectations nicely.

We used lattices of size 8 x12 with four flavors of
dynamical fermions. They were generated using the hy-
brid-molecular-dynamics algorithm. Periodic boundary
conditions were used for the gauge fields in all directions
while, for the fermions, we used periodic boundary condi-
tions in space and antiperiodic boundary conditions in
imaginary time. A dynamical fermion mass of 0.1 was al-
ways used. These specifications are the same as those in
our previous paper' and so we could make use of some of
our previous results —namely, that the phase transition
occurs around P 5.5+ 0.1.

For every iteration we computed the residual R
8 —AX and our condition for convergence was

ak ——J~ t"»~ tk' & 0.000 05.

Of course, in the block algorithm we are dealing with an
array of solution vectors. When the residual correspond-
ing to one of the solution vectors reached the convergence
criterion, we deleted that column and continued the algo-
rithm with s —1 vectors; and so on until all the columns
had converged.

The array of source vectors 8 in our calculations con-
sisted of unit vectors chosen from the n x n identity matrix.
In fact, we usually just chose the first s columns of the
identity matrix, but the selection could have been made at
random and given similar results. When we present our
results we compare the convergence of one particular
column in the course of computations using the BCG al-
gorithm with different block sizes. To have been complete
we would have had to compare the results of, say, one run
of the s 12 BCG algorithm with 12 separate runs of the
standard CG algorithm. We did do a complete analysis in
a couple of cases and convinced ourselves that all columns
are treated in the same way by the block algorithm and
that to present the results of one column is representative.

Figure 2 shows graphs of the residual versus number of
iterations for four different masses at P 5.375. It illus-
trates two general trends which hold for all values of P—that the number of iterations required for convergence
decreases as the block size s is increased and that this
effect is enhanced at smaller masses.

That the effect should be enhanced at smaller masses is
quite easy to explain since, as mentioned before, the eigen-
values of the I|'S matrix are of the form 2m+X; and as m
is increased it dominates the ratio ~-(2m+A, „)/
(2m+A, , ) which controls the rate of convergence.

The trend with increasing s, however, is harder to ex-
plain satisfactorily and is very P dependent as can be seen
from Table I. Table I shows the number of iterations re-
quired for convergence by the BCG algorithm as a func-
tion of P, s, and m. From our previous work' we believe
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- FIG. 2. Residual vs number of iterations for BCG with s 1,
3,6, 12 at P 5.375 and four difTerent masses.

the finite-size phase transition occurs at P 5.5+ 0.1.
Notice that for P 5.725, well above the phase transition,
very little is gained by increasing the block size s, even at
the smallest mass considered (i.e., m 0.005). However,
at P 5.300, the optimum value from Table I, a factor of
close to 4 can be gained at s 12 and m 0.005. The
value of p 5.300 is just below the region where the
effects of the phase transition begin to be felt. This is best
illustrated by looking at how the ratio of the number of
iterations required by the s 1 algorithm at m 0.005 and
rn 0.01 varies as P is increased. At P 5.300 the ratio is
1962/1198 = 1.64 but at 5.32S it is 1553/1194= 1.30 and
by 5.375 it has decreased to 1047/903= 1.16. This ratio
is supposed to vary as the ratio of the lowest eigenvalues
[i.e., (X;„+2mI)/(&ml, +2m2)l which should be approxi-
mately equal to the ratio of masses (i.e., 0.01/0.005 2)
provided that m dominates A, ;„,but we conjecture that as
the phase transition is approached X;„increases rapidly
for small increases in P, giving rise to deviations at masses
whose size is of the same order as X;„. We see this ulti-
mately as being a finite-size effect.

For 5.200& P &5.300 the BCG algorithm still gives
great savings for small mass and large s, although the
benefits decrease as P decreases.

We now must address the problem of the overhead in-
volved in using the BCG algorithm. We will obtain a
rough estimate of the overhead by considering the number
of Boating point operations (FPO's) required. In the
BCG algorithm there are (s+1)s 3n-vector inner prod-
ucts requiring (24n —2)(s+1)s FPO's, s matrix-vector
multiplications requiring 2&582sn FPOs, three multipli-
cations of 3n & s and s x s matrices requiring 3 x 3(8s—2)sn FPO's, and three 3n-vector additions requiring
3x2X3n FPO's. [The factor of 582 in the matrix-vector
multiplication is arrived at in the following way. The ma-
trix A in Kogut-Susskind fermion calculations is given by
MtM where M is the KS fermion matrix mentioned be-
fore. M has 24 complex off-diagonal terms, i.e., eight
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TABLE I. Total number of iterations required for convergence by BCG with different block sizes s,
on gauge configurations at various p and m on an 83x12 lattice. The values in parentheses are the ratios
of the number of iterations required for s 3,6, 12 to the number required for s 1.

5.200

5.250

Mass

0.005
0.01

0.005
0.01

s 1

2473
1248

2280
1171

$~3

2398 (1.03)
1261 (0.99)

2062 (1.11)
1248 (0.93)

s 6

1484 (1.67)
1241 (1.01)

1133 (2.01)
1048 (1.12)

s 12

806 (3.07)
722 (1.61)

636 (3.58)
611 (1.92)

5.275 0.005
0.01

2136
1236

1648 (1.30)
1203 (1.03)

962 (2.22)
906 (1.36)

556 (3.84)
532 (2.32)

5.300

5.325

0.005
0.01

0.005
0.01

1962
1198

1553
1194

1431 (1.37)
1143 (1.04)

1217 (1.28)
1093 (1.09)

851 (2.31)
794 (1.51)

728 (2.13)
675 (1.77)

499 (3.93)
475 (2.52)

448 (3.47)
431 (2.77)

5.375 0.005
0.01
0.02
0.05

1047
903
575
245

854 (1.23)
767 (1.18)
557 (1.03)
252 (0.97)

550 (1.90)
518 (1.74)
454 (1.27)
243 (1.01)

373 (2.81)
356 (2.54)
325 (1.77)

5.400

5.475

0.005
0.01

0.005
0.01
0.02

787
724

545
505
430

663 (1.19)
621 (1.17)

474 (1.15)
444 (1.13)
388 (1.11)

443 (1.78)
426 (1.70)

349 (1.56)
329 (1.53)
298 (1.44)

311 (2.53)
300 (2.41)

268 (2.03)
256 (1.97)
235 (1.83)

5.725 0.005 157 148 (1.06) 136 (1.15)

directions by three colors, and a scalar diagonal term de-
pending on the fermion mass. So the matrix-vector multi-
plication Mt(Mx) requires 2x3x(24x6+2+24x2)
FPO's. ] In the standard CG algorithm there are two 3n
vector inner products, one matrix-vector multiplication,
three scalar-vector multiplications, and three 3n-vector
additions. Hence the ratio of the number of FPO's re-
quired by the s-block BCG algorithm to the number re-
quired by s implementations of the standard CG algo-
rithm is

2x 582+24(s+1)+9(8s—2)+18/s
2 x 582+48+ 18+18

(2)

The value of this ratio depends on s. For s 12 it is 1.86.
This means that in the best case, when P 5.300, m

0.005, and s 12, the actual speed-up is a factor of
about 2.2 since the ratio of iterations required fs about

four. We measured the overhead in computations by
comparing the CPU time taken by scalar implementations
of the BCG and standard CG algorithms and it was well
estimated by (2).

In conclusion, we believe that the block-conjugate-
gradient algorithm could be useful in future spectral com-
putations in lattice gauge theory. It has the nice feature
of improving in efficiency relative to the standard con-
jugate-gradient algorithm as the mass is decreased and as
the value of the coupling is pushed to its limit before the
finite-size effects become important.
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