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Shell-focusing singularities in spherically symmetric self-similar spacetimes
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We examine spherically symmetric self-similar spacetimes in comoving coordinates, subject to a
monotonically increasing comoving time to the future, and find the necessary conditions for the for-
mation of naked strong curvature shell-focusing singularities. The strength is shown to be per-
sistent (not instantaneous). On the basis of eikonal perturbations along the associated Cauchy hor-
izons we find no reason to suspect that the singularities are unstable.

Recently, ' it has been shown that the naked shell-
focusing singularity, ' which arises in the collapse of
marginally bound self-similar Tolman spacetimes, is
strong in the sense of Tipler, Clarke, and Ellis. Prior to
this Ori and Piran showed that a self-similar spherical
collapse of an adiabatic perfect fluid with a soft enough
equation of state can give rise to a naked shell-focusing
singularity. This work extended beyond dust known fluid
collapse histories which have nakedly singular end states
which are not instantaneous. Lake showed that the as-
sociated singularity is strong.

Considering the formation of singularities only to the
future of regular initial conditions, the examples of strong
naked shell-focusing singularities presently known consist
of those mentioned plus the linear-mass Vaidya solution.
The fact that all the known examples are in spherical
self-similar spacetimes suggests that a general study of
the strength, persistence, and stability of these singulari-
ties would be of use. In the present paper we undertake
such a study within the limitations of comoving coordi-
nates, subject to a monotonically increasing comoving
time to the future, and find the criteria necessary for the
formation of a persistent strong shell-focusing singulari-
ty. We also examine the stability of the singularities by
way of massless field perturbations, within the eikonal ap-
proximation, along the associated Cauchy horizons. This
analysis suggests that the singularities are stable.

The self-similar spherically symmetric metric (in stan-
dard geometrical units) in comoving coordinates is given
by

ds2= e+dT +e dR —+r (d8 +sin Odg ),

aPy6

=(4m /r ) +2(2m /r + Gz ) +2(2m /r +GT)

+(4m/r —2G +G +G ) —4e (G ) (2)

where y=y e —1. Thus for y=O the trajectory is
null, and for y positive (negative) the trajectory is space-
like (timelike). In the null case the trajectory can be
shown to be geodesic. If g=O has no roots then clearly
R = T=O is not naked.

Consider y )0. Assuming that a root to y=O does ex-
ist (call the largest positive root y Fc and take
0&y„c & ~ ) then for y =const)y„c the trajectories are
spacelike. This implies that no null geodesic originating
at the singularity will extend into the region where

y )y„c and y =y„c is necessarily the first null geodesic to
escape the singularity. We call y„c the future Cauchy
horizon of the singularity.

It is instructive to consider part of the spacetimes in
double-null coordinates. The metric is given by

where G& is the Einstein tensor and I is the "mass"
[ = —,'(geo) ~~Re&e& which is of the form I =g(y)R here]
Given r =rT, the first term in K is 16g y /r T . Thus, ,

for vanishing heat flux (Gz =0), X diverges along
homothetic Killing trajectories like 1/T .

Consider a radial homothetic Killing trajectory (not
necessarily null or geodesic) defined by y =const. The
Lagrangian is given by

2L =e~gy dT
dk

(3)

ds2= 2f du dv+r (do +s—in Bdg ), (4)
where 4, A, and r =—r /T are functions of the self-
similarity variable y —=R /T. We take the future orienta-
tion dT )0 along timelike trajectories.

A shell-focusing singularity in these coordinates is the
node R =T=O associated with the radial null geodesic
equations. (The critical direction of the trajectories origi-
nating at the node is the future Cauchy horizon. This is
the first outgoing null geodesic extending from
R = T=O. ) Such a node is a scalar polynomial singulari-

ty when the Kretschmann scalar diverges. For metric
(I) this scalar is given by

where f and r are functions of u and v. Above the event
horizon the functions and the coordinates are set by the
requirement that P=(u, O, O, v) be a homothetic Killing
vector (V~ g't3~=g ~). Then f and ct=r/v are functions
of the self-similarity variable x =—u /v. We take the futurp
orientation du, dv )0 where v =const defines ingoing and
u =const defines outgoing radial null geodesics. The
shell-focusing singularity arises at (v=0, u )0). The fu-
ture Cauchy horizon lies along u =0 and the past along
v =0 and both are homothetic. In comoving coordinates
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they are given by y =yFc )0 for the future Cauchy hor-
izon and y =ypc (0 for the past Cauchy horizon (y„c
and ypc are constants).

Following the work of Clarke and Krolak' we consid-
er the null geodesics along the Cauchy horizons. The
singularity is a strong curvature singularity (as defined by
Tipler, Clarke, and Ellis ) if

For metric (1) it follows for the Einstein tensor that
2

A~G k kP=2C
p

(uk )e,

(uk), (9)

where v, (v, ) is the emitted (observed) frequency and u
the four-velocity tangent to the observer or emitter. By
considering radiation along the Cauchy horizons and by
taking the observer and emitter to be comoving, we find

C

We now wish to test the singularity for stability. This
is not a straightforward task. Here we limit ourselves to
the injection of massless fields along the Cauchy horizons
in the high-frequency (eikonal) limit. The frequency shift
of this radiation is given by

where C is a constant defined by R,
(10)

d%'
dy y dX

c 2 dy y
(7)

and k is tangent to the null geodesic y, =yFC or ypc.
The null geodesic equations integrate explicitly along the
future Cauchy horizon to give T= A, where
6 = 1/( 1+C ). As a result

k kp 2C
(1+C)

(8)

That is, the Cauchy horizons terminate at R = T=0 in a
strong curvature singularity for CWO. [For an interpreta-
tion of C we can turn to a perfect-fluid description of the
background. From the symmetry the equation of state
must be of the form p =(I —1)e and e =D(y)/T . It fol-
lows that C=I (4~D)' '~"=4~DI e .]

The radial null geodesics to the immediate future of the
future Cauchy horizon must terminate at R = T=0 in a
strong curvature singularity to ensure that the singularity
is not simply instantaneously strong. By the nature of the
future Cauchy horizon it is either the only radial null
geodesic originating at the node with y=y„c (where
more than one positive root exists for A'=0), or it is the
first of a family of geodesics with y=y„c at the node
(where y„c is the only positive root for A'=0). In the first
instance there must be an infinite number of radial null
geodesics originating at the node with y =y&, yb being the
next largest root of y e =1. Trajectories satisfying
y& (y=const&yFc must be timelike. Thus (defining C
along y =yi, now) dA/dy ~

&0 so C ~ 1 and the null geo-
y'b

desics necessarily terminate at R = T=O in a strong cur-
vature singularity. " In the second instance, trajectories
satisfying y =const (yFC must be spacelike, thus
dA'/dy~ =0 and C=l along y=yFC. (We consider

this the degenerate case. ) The future Cauchy horizon is
necessarily strong in this case." In either case it is clear
that the trajectories approaching the node immediately to
the future of the future Cauchy horizon necessarily ter-
minate at R = T=0 in a strong curvature singularity.

Thus for the future Cauchy horizon stability is ensured as
long as C ~0 which, by continuity [see Eq. (8)], we take
to be the weak energy condition. ' It is important to note
that dy/dy &0 at y=y„c)0 and that dg/dy ~0 at
y =ypc (0 so that C ( 1 in both cases. (For dust C & —', .)

Notice that the test field injected along the past Cau-
chy horizon develops a blueshift. However, the energy
density of the test field relative to that of the background
matter evolves like T " ' and so the perturbation actu-
ally dies away (or, if C= 1, does not grow) as the singu-
larity is approached. ' On the basis of our analysis,
therefore, there is no reason to suspect that the singulari-
ty is unstable. '

In summary, we have found that all spherically sym-
metric self-similar spacetimes, subject to a monotonically
increasing comoving time to the future, and with real
finite positive roots to y e =1, admit globally naked
strong shell-focusing singu1arities with Cauchy horizon
y =yFc, where yFc is the largest root. Further we have
shown that radial null trajectories immediately "inside"
the Cauchy horizon always terminate in a strong singu-
larity, thus ensuring that the node is not simply instan-
taneously strong. Finally, on the basis of an eikonal per-
turbation, we find no reason to suspect that the singulari-
ties are unstable.

Rote added in proof. Shell-focusing singularities in
homothetically self-similar spacetimes can be viewed in
terms of the fixed points of the homotheties [see G. S.
Hall, Gen. Relativ. Gravit. 20, 671 (1988)]. Given a
proper homothetic Killing vector g and the associated
integral curve L along which g g =V+ @=0,it follows
that L is a null geodesic which terminates in a strong cur-
vature singularity. All presently- known examples of
strong naked shell-focusing singularities are therefore
simply a kinematical result of homotheticity [T. Zannias
and K. Lake (in preparation)].
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In the time-reversed "white-hole" case (T~ —T, outgoing
null geodesics —+ingoing) the opposite conclusion holds. That
is, the energy density of the test field relative to the back-
ground still evolves like T " ', but along yb (0. Unless
C = 1, the ratio diverges as the node is approached ( T~O ).


