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Additivity of the entropies of black holes and matter in equilibrium

Erik A. Martinez and James W. York, Jr.
Institute ofField Physics, Department ofPhysics and Astronomy, University ofNorth Carolina,

Chapel Hill, North Carolina 27599-3255
(Received 20 April 1989)

We consider static spherical spacetimes in which a black hole is in equilibrium with surrounding
matter. The grand canonical ensemble is defined by the geometry of the boundary of a region of
spacetime and the chemical potential evaluated on this boundary. Additivity of the actions of gravi-

ty and matter and the principle of equivalence then jointly imply that the total entropy is the simple
sum of the accepted black-ho1e entropy and the ordinary matter entropy. However, energy and
thermodynamic potentials exhibit interaction terms and are not simply additive. .

In this work we address two fundamental questions
concerning the nature of thermodynamic equilibrium be-
tween black holes and matter. (I) Is there gravitational
entropy associated with matter in addition to its ordinary
thermodynamic entropy? We shall treat only the case in
which black hole and matter are in thermodynamic equi-
librium. (2) If a black hole and matter are in equilibrium,
what is the total entropy? In particular we want to see if
their entropies are simply additive.

The two questions are related. The first one has been
discussed to some extent by others. Gibbons and Hawk-
ing' considered a stationary Auid "star" and argued that
the only entropy would be that of the Quid. Davies,
Ford, and Page considered a static spherical black hole
surrounded concentrically by a thin shell of matter and
found no inconsistency in taking the gravitational entro-
py as only that of the black hole. We also shall begin by
treating the thin-shell model, but unlike Ref. 2 we shall
take explicitly into account the thermodynamics of the
matter. Later we generalize to a thick distribution of
spherically symmetric matter. We find no gravitational
entropy associated with the matter in either case.

The second question is part of a broader one that asks
in effect how the entropy concept is to be understood in
strongly self-gravitating systems. The possibility of such
an understanding is a consequence of the established re-
sult that the extreme end point of gravitational collapse,
the black hole, has a description as a thermal equilibrium
state. ' Furthermore, it has been demonstrated that this
state can be stable in the canonical ensemble.

Because gravity is an infinite-range, unscreenable in-
teraction, it always affects to some extent the thermal and
chemical or diffusive contact of the system with its envi-
ronment. This consequence of the principle of
equivalence was recognized explicitly long ago by Tol-
man, who pointed out that the temperature T =p and
chemical potential p suffer a relative "redshift" as they
are measured by static observers in one place or another,
even in a state of thermodynamic equilibrium. It is,
therefore, essential to recognize explicitly that equilibri-
um is characterized by spatially varying p and p. In or-
der to have definite single values to work with, one can

choose these quantities to be specified at a given locus
that can be thought of as the boundary surface of an
effective heat reservoir, or as an interface between what is
designated as "the system" and its environment. Thus
boundary conditions can be expected to play a very im-
portant role when the system contains a black hole.

We adopt as our basic hypotheses that the (grand)
canonical ensemble is fundamental and that the actions of
gravity and matter are to be added. The latter is in ac-
cord with the way actions are combined in computing
transition amplitudes and partition functions in the
path-integral forms of quantum theory and statistical
thermodynamics. As we shall see, this is very different
from an assertion of simple additivity for thermodynamic
potentials and energies, which in fact does not hold in
general when gravity is taken into account. We obtain as
a consequence of our hypotheses that the total entropy is
the simple sum of the ordinary matter entropy and the
accepted value of the black-hole entropy.

In the static spherical metrics we consider, it is natural
to use the periodically identified Euclidean or "imaginary
time" description well known from the treatment of
thermal problems in Minkowski spacetime. In space-
times with black holes, this leads as in Ref. 1 to manifolds
of topology R XS . We explicitly attach and consider a
boundary S'XS as in Ref. 5. The round S' has proper
circumference Pok, where Po:P(ro) i—s the inverse ProPer
local temperature measured on the round S with proper
area 4vrro (ks =c = I). Likewise, the proper local chemi-
cal potential of the matter po=p(ro) is specified on the
boundary S . Thus, Po, po, and ro specify the free bound-
ary data of the grand canonical ensemble we shall em-
ploy.

For the Euclidean action of matter, we adopt as La-
grangian the density of the grand potential, as is ap-
propriate whenever the matter admits a thermodynamic
description. The grand potential in ordinary thermo-
dynamics is deft ned by 0= (E ),«,„—TS,«„pN, —
where ( E ) is energy, S denotes entropy, and N is a con-
served quantity such as the total particle number. In
curved spacetime, one adopts the assumption of minimal
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coupling and employs the local, proper, "per unit
volume" definition of 0: namely,

co —6 TD pn.

For example, if the matter were a perfect Quid (which we
do not assume ), the value of the Lagrangian density
would be the negative of the pressure. Therefore, the ac-
tion is

matter action can be simplified further because the sup-
ports of e, s, and ~ are only on the shell r =o.. Hence,
we can express I,«„ in terms of the energy o., entropy s,
and number n per unit proper area on the shell. Then it
is possible to write

g,'R)+g~ R~ d x

rOI „„,= f dr f drd8dgg'/ (e T—a —p~), (2)

where r+ =—26M is the gravitational radius of the black
hole and BM =S' XS . The action for gravity, when the
metric is taken as the fundamental variable, is' "

1
(R h ii 1677GO')7 d X1 //2 3

7T r —cf

T As+go!np dxr=a

+ E —K y' dx)1

8~6 (8)

grav f g'/'Rd'

+ f y' (K —K )dx1

8~6 aM

+r dQ (r (a),
ds =U2(r)dr +V2 '(v)dr +r dQ (r )a),

(4)

where subscripts 1 and 2 refer, respectively, to the re-
gions inside and outside the thin shell. Clearly we must
have r+ &a ~ ro. We must also require that o. is greater
than the gravitational radius of the combined system of
black hole and shell in order that the metrics (4) and (5)
be physically valid. The proper length around the S' of
the boundary r =ro is

where M is the spacetime region explicitly indicated in
(2), y is the determinant of the metric induced on the
boundary, K is the trace of extrinsic curvature of the
boundary, and K is a constant that normalizes this ac-
tion to zero for Hat spacetime with the given boundary. '

Note that the constant K, which is the only "arbitrary"
element in this action, has no effect on the entropy.

We assume initially that the matter has support only
on a very thin shell of radius o, . Then the proper quanti-
ties T and p in (1) and (2) take their values at r =a, that
is, they are not the boundary data To and po. Neverthe-
less, we shall see that only the boundary data enter into
the final results. We can take, as the metric of M,

U2(a)
ds = U, (r) dr + V, '(r)dr

U, (a)

where y'/ d x =(U'/ r si n8)dOdgdr evaluated at the
appropriate value of r.

In examining the consequences of an action such as (8),
by means of a path integral for the partition function, one
wishes to enforce the gravitational constraints. The rela-
tive simplicity of the metrics we are considering allows us
to solve the constraints explicitly and incorporate the re-
sults directly into I, producing a "reduced action" I, as
introduced and exemplified in Ref. 11. Calculations us-
ing I, then involve only configurations lying on the con-
straint hypersurface of the dynamical phase space.

The momentum constraints for the ~=const slices of
the metric defined by (4) and (5) are satisfied trivially.
The Hamiltonian constraint in both regions 1 and 2 has a
simple form which is easily solved by V, =1—C, r
(a = 1,2), where C, are constants of integration. To
evaluate C, we may consider region 1 as a manifold with
boundary, the (mathematical) boundary being (say) any
r =const surface between r = r+ and r =a. From (7) and
the fact that the Euler number is g =2, one can show that
C& =r+ =26M. Subsequent arguments assume that suit-
able junction conditions are satisfied at r =a and to this
consideration we now turn.

The junction conditions require, as already satisfied,
that the metric induced on r =n from r )e and r & o. be
the same. Furthermore, the discontinuity in the extrinsic
curvature K' of the shell must be proportional to the
stress energy in this hypersurface. In keeping with the
construction of the reduced action, we need only the
"Hamiltonian constraint" part of this condition: namely,

13ofi=PU2/ (ro), (6) b.(K' —K)= —8mGo, (9)
where the period P of the Euclidean time ~ is arbitrary, in
accord with the free choice of Po at ro. In order to avoid
a conical singularity at the "center" r =r+ of M, we re-
quire

where b. indicates the discontinuity at r =a of the quanti-
ty in parentheses.

Note that in both regions 1 and 2, the scalar curvature
has the form

[ Vl/2( U i/2 )i]
U, (a)

1 I r=r+ P U ( g
—I /2( g

i /2 VU~ U
—i

)
I +2G r (10)

where a prime denotes differentiation with respect to r.
Lastly, we note that the Euler number of the R XS is
y =2 ("black-hole topology" ).

The total action of the system is I =Ig +I «The

with the last term vanishing because we have solved the
constraints. Recalling that R,h, » =26K and combining
(9) and (10) enables us to evaluate the first two integrals in
(8) to obtain
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The third integral (8) can be evaluated by using (6) and
the consequence of the principle of equivalence that p
and T are "redshifted" in the same manner; for example,

(12)

and consequently one obtains p(a)p(a)=p~o. There-
fore, the third integral in (8) becomes

4~a sA—PnMO(4~—a n )fi= S,«„—A' /3ys~—h', (13)

where S,«„=(4~a )s is the ordinary thermodynamic
entropy of the matter and N =(4vra )n. In (13) the loca-
tion of the shell is unimportant in the sense that the only
values of /3 and p that appear are the boundary values.
The last integral in (8) takes the same form it has in the
absence of a thin shell:" namely,

2m.r +

Ap—4~ &(r) V ' (r)r dr
0,')

Ap—4nPu«0 J n(r)V '/ (r)r dr
1

=P (E)—(S +S,„„,) —Po/j~ . (17)

r+
ds = 1 dr

+r dQ (r (a), (18)

Notice that S,«„and N are obtained from integrals of
proper densities over proper spatial volumes and are,
therefore, obtained by simple "counting and adding, "
which, of course, is quite unlike the way the total energy
is calculated. The failure of energy to be simply additive
is illustrated below.

Let us return to the model of black hole plus thin shell.
Imposing a/l of the Einstein equations (not just the con-
straints) gives us the metric

Via( )]
y1/2

I

4G U'1/2
r+ r+

ds = 1 — dr+ 1— dr +r dA

To obtain the total action, we combine (11), (13), (14), and
(7) to obtain

2

(15)

The zero-loop approximation' ' in the present context
identifies I„fi ' with /3OO =Pa(E ) —S —Pu«~, where 0
is the total grand potential of black hole plus matter. We
then infer our main result:

(r )a), (19)

M=M +m (1—2GMa ')' —Gm (2a) (20)

Observe that this relation is not valid unless a&2GM.
The total thermodynamic energy (E ) in (15) is given by

where r+ =26M is the gravitational radius of the black
hole and r+ =26M is the gravitational radius of the
whole system. The junction conditions at the shell are
given by (9) and by a similar equation for the angular
components in which —o. is replaced by A,»,&1, the surface
pressure for the shell. Defining the proper mass of the
shell by I =4m~ o. one Ands

2mr+
StPtg1 G &

+Sma«et SBH +Smg«el
M=(E&-" '

2rO
(21)

Thus we obtain both the simple additivity of the constitu-
ent black-hole (BH) and matter entropies and the fact
that there is no further term indicating an "extra" gravi-
tational entropy. The additivity of entropies suggests
that the "number of states" associated with the system is
given by JV,~„=A', «,~BH despite reservations ex-
pressed in Ref. 13, but in keeping with the interpretation
of JV~H indicated in Ref. 14.

It is straightforward to show that the simple additivity
of entropy is not dependent on the use of a thin sheH as a
model for matter around a black hole. If we have a dis-
tribution of spherical static (or effectively static) matter
filling a region between radii a~ and uz (r+ a, az ro),
we can again calculate the reduced action. The only non-
trivial constraint is G'+8vrge(r)=0. Solving this for
V(r) and following a procedure such as the one above
yields

Combining the last two equations shows the failure of en-
ergy to be simply additive because of the interaction and
binding-energy terms.

The period of r for which the metric (18) is regular at
r = r+ is found from (7) to be

(22)

which is 2' ', ~=surface gravity of the black hole, in
agreement with Ref. 2. The inverse temperature at ro has
the blueshifted Hawking value /3H(ro)=P(1 r+ ro ' )'—
which can derived by extremizing the reduced action (15)
with respect to r+ (all other quantities fixed), analogously
to the procedure of Ref. 11. Then if we examine r+ as a
function of the data pH, ro, m, and a similarly to Ref. 5,
we see that there do exist locally stable roots for r+. As
a consequence, to proceed from Euclidean action to
"zero-loop partition function" as we have done here
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makes physical sense. ' '
From the junction conditions one can obtain the sur-

face pressure of the shell:

[M(1 r—+ a ')
8+a

—M(1 r+—a ') ' —m] . (23)

Likewise, for the total system one has, as in Ref. 5, a
surface pressure A,gyggem conjugate to the boundary area
Ao =4mro..

1r )=system 0 8 Gro

r+1—
2ro

(24)

which has the same form found in Ref. 5, but with
r+ =2GM given by (20).

We have seen that separating black-hole and matter
contributions to the energy in a simple way is impossible
and the same clearly holds for the surface pressures and,
consequently, for any thermodynamic potentials that one
might attempt to associate individually with either black
hole or shell. Gravitational coupling is pervasive, aft'ects

the temperature and chemical potential, and violates the
hypothesis of "weak coupling" that allows one simply to
add thermodynamic potentials for separate systems. It is,
therefore, remarkable that the simple additivity of the ac-
tions leads to the simple additivity of the entropies while
the other simplicities of equilibrium drop away. ' It
should be noted that the temperature, chemical poten-

tials, and radius needed to compute the actions refer to
no individual constituent of the system, but rather only to
a common locus that may be disjoint from the constitu-
ents, that is, to the boundary of the spacetime domain in
which the system is contained.

There is, however, a special case in which all black
hole and shell variables do decouple; this occurs when the
shell coincides with the boundary in the limit a~ro. In
this case we can think of the shell as modeling a simple
"heat reservoir" for the hole. Thus, one can show that

1irn (E)=(EBH)+4rrroo
A~ro

11m csystem XBH+ ~&hell ~

a~rO

(25)

(26)

where BH denotes the black-hole quantities as computed
in an idealized massless cavity. One, therefore, recovers
the thermodynamic properties of black holes previously
computed. "" In this same limit (a~ro), one can ob-
tain a decoupled Euler relation: namely,

+(ToS «,r AshenAo+PP ) (27)
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