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Exact solutions for fermionic Green's functions
in the Bloch-Nordsieck approximation of QED
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A set of new closed-form solutions for fermioriic Green s functions in the Bloch-Nordsieck ap-
proximation of QED is presented. A manifestly covariant phase-space path-integral method is ap-
plied for calculating the n-fermion Green s function in a classical external field. In the case of one
and two fermions, explicit expressions for the full Green s functions are analytically obtained, with
renormalization carried out in the modified minimal subtraction scheme. The renormalization con-
stants and the corresponding anomalous dimensions are determined. The mass-shell behavior of the
two-fermion Green s function is investigated in detail. No assumptions are made concerning the
structure of asymptotic states and no IR cutoff is used in the calculations.

I. INTRODUCTION

Conventional perturbation theory for quantum field
theories including massless fields (e.g. , photons) produces
infrared (IR) divergences, in addition to the ordinary ul-
traviolet (UV) divergences. While the UV divergences
can be removed by renormalization within some ap-
propriate regularization scheme, this is not possible for
the IR divergences. '

In a classic paper, Bloch and Nordsieck (BN) have
shown that in any scattering process involving charged
particles, an infinite number of soft (IR) photons may be
emitted with a finite total energy. Thus, the concept of a
single particle described asymptotically by a free field is
no longer applicable. A charged particle is always ac-
companied by a "cloud" of soft photons which is inex-
tricably tied to the source. As a result, the residue of the
two-point Green's function of a charged particle near the
mass shell is modified, although the position of the physi-
cal pole is not shifted. (This refiects the fact that the
mass renormalization constant is IR finite. ) One
finds4' '

G„„(p)—(p —m +i e)

on assumptions concerning the structure of asymptotic
states; (iii) in addition to the above, it makes it possi-
ble to take into account quantum fluctuations around the
classical trajectory. Such contributions cannot be incor-
porated by other means in a simple manner. Another vir-
tue of our approach is that the use of an IR cutoff' is en-
tirely avoided, while the UV divergences are controlled
by dimensional regularization.

The work is organized as follows. In Sec. II the path-
integral method is illustrated in a discussion of the two-
point Green's function. The generalization to n fermions
is treated subsequently in Sec. III. This problem is solved
in closed form to all orders in the coupling constant a and
for arbitrary gauges. In the case of two fermions, the
mass-shell behavior of the momentum-space form of the
renormalized four-point Green's function can be investi-
gated in detail because an explicit expression is derived.
To our knowledge, such an expression which has been
calculated by a nonperturbative method (the BN model)
has not been obtained previously. The correspondence
between our solutions and results derived elsewhere by
other methods is discussed. Finally, Sec. IV contains a
summary of our results. Some details of the calculations
are presented in the appendixes.

with a =(a/2')(3 —1,), where u=e /4m (A'=c =1) is
the fine-structure constant and A. is the gauge parame-
ter. ' The eff'ect of soft photons is contained in the factor(22+')
(p —m +i@) '=e ''"'~ +"', which is a logarith-
mic branch line along the real axis beginning at the mass
shell of the charged particle. "

The aim of this paper is the analytic calculation of
closed-form solutions for the fermionic Green's functions
in the BN approximation of QED. One of the crucial
features of our approach is that the n-fermion Green's
function in a given classical external field is not derived
by solving a differential equation, but in terms of a
phase-space path integral. ' This treatment' has several
methodological advantages: (i) it permits clear insights
into the physical content of the performed approxima-
tions; (ii) it is manifestly covariant and does not depend

II. T%'O-POINT GREEN'S FUNCTION

—(J„(x)A„(x))], (2.1)

We start out with the path-integral treatment of the
two-point Green's function. Since the path-integral tech-
nique has been discussed extensively elsewhere, ' our dis-
cussion will be brief, concentrating on the points relevant
to the present investigation. We work in terms of the
generating functional, ZE[J,g, ri], of Euclidean QED (in-
dicated by the subscript E in the following) which is writ-
ten

ZE[J, t), g]=N f [dA ]det[iGE '(x, x'~ A)]

X exp[ —(g(x)Gs(x, x'~ A)g(x') ) ]

Xexp[ —
—,
' ( A„(x)D„'z(x,x') A (x') )
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where the functional integration over the fermion 6elds
has already been carried out, N '=Z~[J =ri=ri=0],
and the definitions

G~ '(x, x'~A)=[iy„B +ey„A„(x)+m]5 (x —x'),
(2.2)

The Green's function Gz(x, y~ A) describes the first-
quantized motion of an electron in a classical external
field and satisfies the equation

f d z Gz '(x, z~ A)Gz(z, y~ A) =5 (x —y) (2.5)

from which follows

D„.',(, ')= a„a.5„.+ a„a. 5"( [iy„B„+ey~A„(x)+m]Gz(x,y~ A)=5 (x —y) (2.6)

(2.3)

have been used. Here and below ( ) denotes four-
dimensional integration over position or momentum vari-
ables. det[iGz (x,y ~

A ) ] contains all possible closed
loops of fermion lines.

The electron Green's function of the second-quantized
theory is obtained from Zz [J, il, i) ] by functional
differentiation with respect to the sources q, q:

5 ZE[J i) il]
GE(x,y) =( —1)

5i)(y)57)(x) J =&=&=o

=N f [dA„]det[iGz '(x, y~ A)]Gz(x, y A)

X exp[
——,' ( A„(x ')D„ 'z(x ', x ")A,(x")) ].

(2.4)

using (2.2). Upon analytic continuation to Minkowski
space, the last equation reads

[iy"8„+ey"A„(x) m—+ie]G(x,y~ A)= —5 (x —y) .

(2.7)

Introducing now an auxiliary set of states ~x ) with
(x~y ) =5 (x —y), G(x,y~ A) can be expressed as the ma-
trix element of an operator G[A]: G(x,y A)
=(x~G[A]~y ), where the operators x" and p"=ig~'8,
satisfy the commutation relations [p",x'] =ig"',
[x",x ]=[p",p ]=0. Defining the conjugate momen-
tum operator H" =iD"+i ey" =i 8"+e 2 "+iey", the
first-order difFerential equation (2.7) can be converted into
a second-order differential equation which allows for a
path-integral representation via Fock's method of the
fifth parameter' (H '= i J o

—e' ' "dr):

G[A]= i f dr exp i II —m +—o g" —er
2m 0 2m 2

(2.8)

In the BN approximation of @ED, the matrices
y"=(P, /3a) are replaced by four scalars u"=(y ', y 'v)
with u =1, where y '=(1—

U /c )'~ . The physical
content of this approximation is that the recoil on the
electron can be neglected so that the emitted photons are
uncorrelated and their spectrum is given by a Poisson dis-
tribution. Thus,

cr„=—[y„,y ]~—[u„,u, ]=0

and Eq. (2.8) becomes

To obtain GiiN(x, y~ A), one has to compute first the
spinless Green's function

G(x,y A)=(x~6[A]~y)

= xi d~e '
y =—i d~x, ~y, O

~ ~

0 0

(2.10)

u-n+m .GBN[A]= i f drexp ir
2m 0

2 2II —m
2m

(2.9)

with H= —(II +m )/2m ie' Followi—ng R. ef. 13, we
apply rather standard techniques' to convert the ampli-
tude (x, r~y, O) into a path integral defined by means of a
nine-dimensional phase-space lattice. The result is'

T

. "+' m(x, r~y, O) = lim N f Q dx&exp —i5 g 1+
Q2

+a+Xa 1 +a +a 1
(2.1 1)

where 5 =v + i
—r =r/(n + 1) and N is a normalization constant. Taking the continuum limit, we find

(x„+,=x, xo=y)



40 EXACT SOLUTIONS FOR FERMIONIC GREEN'S FUNCTIONS. . . 2105

(x, r~y, O) =N f [dx(r)]exp —i f dr' [1+x(r') ]—eA(x(r')) x(r') —ie
0 2

(2.12)

The exponent in Eq. (2.12) can now be identified with the classical action in which Fock s fifth parameter r plays the
role of the proper time of the electron. (Note that although this action is not reparametrization invariant' it leads to
the correct equations of motion. ) Thus the amplitude (x, r~y, O) satisfies a "Schrodinger-type" equation [recall Eq.
(2.10) with respect to the proper time: i (8/Br )(x,r ~y, O) =H ( x,r ~y, 0 ) with the initial condition
(x,O/y, O) =5 (x —y)].

To proceed, we expand the path integral in (2.12) around the classical path x "(r)=x",i+@(r)keeping the end points
Axed'

(x, r~y, O) =N f [dg(v')]exp iS[x„]+—5 S[x„]+ (2.13)

iS[x ))Retaining only the leading term (x, r~y, O) =Ne ",and setting N= 1, the spinless Green's function is

G(x,y~ A)=i f drexp i f—'dr' [I +x, ]( r') ] e—A( x, ]( r')).x, ](r') —ie (2.14)

Thus far, x,](r) is arbitrary and the integration over r cannot be carried out. A closed-form solution may be obtained if
we assume that the electron moves on an effectively free trajectory without acceleration: (x —y)]'=u "r (u"=const).
Then Eq. (2.14) yields

G(x, y~ A)=i drexp ir(m— ie)+—ieu" dr'A (x —uv') 5 (x —y —ur)
0 p P

4 4
=i f dr f exp ip (x ——y) —ir(m —u p ie}+—ieu f A&(k)e ' f 'dr'e'"'"'

(2~)' (2m)' 0
(2.15)

Precisely the last expression was derived in Ref. 7 by solving the first-order differential equation (2.7) using the substitu-
tion y„~u„. (Thus, as expected, spin does not matter for IR phenomena. ) It is worth noting that our treatment of

G(x,y~ A ) not only effects the correspondence between Eq. (2.15) and the straight-line trajectory, but it also provides the
possibility to calculate quantum path fiuctuations via Eq. (2.13) in a systematic way.

Turn now to the electron Green's function [Eq. (2.4)] of the second-quantized theory. Performing the BN approxi-
mation,

det[iGz '(x, y~ A )]=exp f de'Tr[Gz(x, x
~
A )y„A& ] =1,

0

and the full photon propagator becomes identical with the free one. Then the full electron Green's function in momen-
tum space takes the form

GE(p)=N f dec "" "' f [dA„]eXp —e(L„A„(k)e'""*"f "dV'e '"' L dr')
L

—
—,
' ( A„(k)D„„'E(k,k') A (k') ) (2.16)

where

Dq, 'E(k, k')= k 5„, k„k„5—4(k+k') .

G( ) —f d
0

X exp[ ,' (j "(k,r)D„(k—, k—'}

By noticing that, for z—+ oo,

1 7

j„(k,r)—=e u„dr'exp( —iuikir')
(2~)'

(2.17)

becomes the Fourier transform of the classical current,
one observes that the functional integral over A„ in
(2.16) is entirely calculable by quadratures. The result of
the integration continued back to Minkowski space is'

/

Xjv(k )
i (k +k'].x ) ]

with

1 k„k
(k, k')= — g —(1—

A, )
" +iepV &

I 2 flV
L

X5 (k+k') .

The momentum integral

(2.18)

(2.19)
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f (r) = ——(j"(k,r)D (k, k')

Xj (k', r)exp[i(k+k'). x]) (2.20)

is IR finite but UV divergent. To deal with the UV singu-
larities, we employ the dimensional regularization rather
than the more traditional Pauli-Villars regularization
used in Ref. 7. The virtue of the dimensional regulariza-
tion is that it automatically preserves internal symmetries
which do not involve the yz matrix. The integration over
the loop momentum k is shown in Appendix A. The re-
sult is' Z eQ/E

2 7 Z3 =Zg=1, Z =1 (2.25)

where the renormalization scale isp, =(4ir/er)'r p. This
solution has a singularity structure of the form (1.1),
which, as mentioned in the Introduction, is characteristic
of an intraparticle. It is equivalent to the solution calcu-
lated by Svidzinskii within the Pauli-Villars regulariza-
tion scheme, to Zwanziger's solution obtained on the
basis of the Kulish-Faddeev formalism, and to a more
recent solution derived by Harada and Kubo' by means
of the improved perturbative technique of Grammer and
Yennie.

For the renormalization constants we obtain '

f (r) =a —+ln(m r)+ 0 (e)
1

so that

(2.21) (i.e., the coupling of a soft photon to the electron is finite)
and thus the anomalous dimension of the electron is
given by

G(p)=ie' '(2m. )'e' + p ~Zz Ba
yF(a, i, )=

Z2 Be Bp
(3—

A, } . (2.26)
277

XI (a+1)(im iu —p —Z)

with @=4—d and

ln(mr) = ,'ln(4rr p —r)+2+—3y,

(2.22)

(2.23)

Note that in the Fried- Yennie gauge, X=3, y F =0 so
that the soft-photon effect disappears and the full elec-
tron propagator (2.24) becomes equal to the free one.

Xl (a+1}(im iu p ——Z) (2.24)

y =0.5772. . . being the Euler-Mascheroni constant.
Here p is the regularization scale parameter and
Re(a + 1))0. Multiplicative renormalization in the
modified minimal subtraction (MS) scheme' yields

a

G (p)=i ~ e ~~r+~)
re11

III. n-FERMION GREEN'S FUNCTION

We now proceed to examine the general case of n fer-
mions. It is a major virtue of our treatment that the one-
particle analysis just completed can be expanded to an ar-
bitrary number of fermions.

The n-fermion Green's function analogous to (2.4) is
(i j=l, . . . , n)

G~"'(x;,y; ) =( —1)"
5 "Z~[J,r) ', r)']

g ri'(x, )r)'(y )

i=1 J =q'=g'=0
n

=N dA detiG~~y 3 6~xy A exp ——' A xD E~y ~ y (3.1)

because

GE"'(x, ,y, l~)= Q G'(x, ,y, l
~) .

i=1

Proceeding along similar lines as for the evaluation of Eq. (2.15), the n-fermion Green s function in a classical external
field can be readily obtained:

4 'k
GE'(x, ,y, l~)= f dr' f 4exp[ ip'(x' —y„')—ir—'(m'+u~„') —(j„(k,r')A„(k)e ' ')],

0 (2rr )
(3 2)

where

(3.3)

and x „'=u„=const. Inserting expression (3.2) into Eq. (3.1) and applying the same lines of argument as in the one-
fermion analysis, the Fourier transform of GE"(x,y ) continued back to Minkowski space is given by
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n 4

G'"'(p;)=i f g dr, e ' ' ' exp ——(J„'"'(k,r, x )D" (k, k')J(,")(k', r„,xk)) (3.4)

where the total current is defined by
n

J(")(k, r, ,x, )= g j„(k,r, )e (3.5)

Using now the dimensional regularization to control the UV behavior of Eq. (3.4), the momentum integral

f '"'(r;, r ) = ——(J'")(k,r;,x;)D""(k,k')J'„"'(k', r, x ) ) (3.6)

is found to be (see Appendix B)

() n+n12f "(r,,r )=a —+ln i=1
2 n

lAJ

which inserted into (3.4) leads to

n
i

+ Pl +1112

'a

(3.7)

G'"'(p) =i exp
2 n+& a —(n +n)a/2N d7ke

—i~, (m, —~.p„—i~)

2 0 k=1

n
1

(3.8)

Then the full n-fermion Green s function with renormalization carried out in the MS scheme is
a

(n +n)a/n
G(&~ ( )

— P e(n +n)(r+ 1)a ~ d
' k ~k "Pk

MS
TT

k=1
(3.9)

with the renormalization constant

Z2 =exp n+1 a
2 E

(3.10)

and the anomalous dimension

yF" (a, A, )=- n+1 cx
(3—A, ) .

2 2' (3.11)

One notices that, analogously to the one-particle case, the choice of the Fried- Yennie gauge A, = 3 leads to a renormal-
ized Green's function which reduces to the free one. Otherwise (A,A3) GMs(p; ) has no simple poles and, as we shall see
below, it exhibits a complicated singularity behavior. On the other hand, keeping

~

A,
~
(3 the Green s function (3.9) falls

off at short distances, i.e., for large momenta p;, with an increasing number of fermions.
In the remainder of this section we shall specialize to the case of two fermions. This case is of particular interest be-

cause detailed knowledge of fermion-fermion scattering amplitudes has accumulated over the years. However, most
of these results have been derived by employing powerful but, in effect, perturbative techniques. Therefore, nonpertur-
batiUe solutions for the two-fermion Green s function may help to accomplish these results.

As it is shown in Appendix C, for two fermions the proper-time integrations in (3.9) can be explicitly performed, and
the result is'

3a

6(r+)), I (2a + 1)I (1—a)I (3a +2)
1 ((2+2)

q
' '+ I l 2a +1,3a +2a +2; —

q
'+ ' +1 2a +1,3a +2 a +2 ql

2 2 1
q2

(3.12)

where the quantities q; =i (m; —u.p, —iE) (i =1,2) measure fractional distance from the mass shell. The validity of Eq.
(3.12) is gauge dependent. Convergence is preserved by restricting the gauge parameter to take values on the interval
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—857 & A, &433 (a= —„', ). Note that this is the largest continuous A, interval found to contain the Landau gauge A, =O.
One checks that Eq. (3.12) amounts for a =0 to the free two-fermion propagator:

GMs(p&, p&, a =0)=i qi &Fi 1,2;2;— +q2 2F) 1,2 2;—
q

q&
(3.13)

Noticing that zFi( a,—b; b; —z) =(1+z)' (see Ref. 24), this expression reduces to

GMs(p„pz, a =0)=
qiq2

l

(mi —u.p, ie—)(mz —u.pz —ie) (3.14)

Using now Euler's integral representation of the hypergeometric function, Eq. (3.12) can be recast in the form
3a —(3a +2)

G—(p,p )=i ~ e 'r +&'&I (3a +2) q
' + ' dt t ~(l —t) ~ 1+ tMS 1' 2 1

q,
—(3a +2)

+q-'"+"f'dt t '(1 —t) ' 1+ t
0 q2

(3.15)

which can be treated numerically, and which is more suitable to be expanded in terms of the coupling constant a:

GM, (p„p, )= I 1+a [31n(P~)+3(y+1)+2(q, lnq, +q, lnq, ) —5(q, lnq, +q, lnq, )]+O(a )I .
1 2

q&q2
(3.16)

The physical content of the two-fermion Green s function may become more transparent by studying its behavior
near the mass shell. We consider two cases.

(i) For q i Aqz we expand expression (3.15) in powers of q, to obtain

3Q

GMs(p i ~m i,pp )=t e ' +"
q "+'q ' '+"I (1+a)I (2a+1)+q 'q ' '+ 'I (1+a)I (2a+2)

—(3 +p) I (2a + 1 )I ( 1 a)I (3a +2) I ( —1 —a)I ( 1 —a)I (3a +2)
I (a+2) I ( —2a)

+O(min(q„q' , ')) (3.17)

(ii) For q, =qz the particles have the same virtuality
and, expanding (3.15) in the limit p, —+m „the result is

3a

G—(q =q )=i + e 'r+ "2 '~ ' 1(2a+1)MS

X I 3a +2 I- 1 —a (3g+2)
2 2 (3.18)

The asymmetry in the limits involved in Eq. (3.12) or
Eq. (3.15) shows that the physical poles of the Green's
function are interrelated. Hence, the mass-she11 behavior
of the two-fermion Green's function depends on the order
in which the two particles are allowed to approach their
mass shells. In addition, the mass-shell singularities in
expressions (3.17) and (3.18) depend on the choice of
gauge. For example, for gauges 3 (A, &433 the Green's
function is less singular than in a theory without massless
fields (photons).

The singularity behavior of the two-fermion Careen's
function for momentum values near their mass shells has
been discussed previously by Kibble in the context of
asymptotic coherent states. Although our analysis is
consistent with his and. the results correspond to each

other, there are also crucial difFerences. Kibble's solu-
tions have been calculated through a leading-order sum-
mation of the perturbative series on the theoretical basis
of a nonseparable Hilbert space. In particular, his treat-
ment of the momentum integral in (3.4) extends only over
a subregion Q,os which contains momenta ~ko~ &Ko and
~k;~ &K with K &&Ko &&m. This separation between
hard and soft photons is not covariant. In contrast, our
method does not handle soft- and hard-photon contribu-
tions separately; i.e., no IR cutofF is involved in the calcu-
lations. Furthermore, careful comparison reveals' that
solution (3.17) includes additional powers of
(m; —u p; i e) ' wh—ich are not accounted for in
Kibble's formalism. To be specific, the term proportional
to q &

"+'q2 ' '+" agrees with Kibble's result, while the
extra term proportional to q& 'q2 '+ ' and the one pro-
portional to q2

' '+ ' represent additional singularity
contributions due to IR photons.

IV. SUMMARY

A set of new solutions for the fermionic Green's func-
tions of the BN-approximated QED has been obtained.
The problem has been solved in closed form to all orders
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in the coupling constant and for arbitrary gauges. For
convenience, the results have been presented in the MS
renormalization scheme.

From the calculational viewpoint, a method has been
used which permits clear insights into the physical con-
tent of the model and works equally well for one as for
more fermions. This method has the advantages of being
independent of assumptions concerning the structure of
asymptotic states and being able to incorporate contribu-
tions owing to quantum fluctuations around the classical
trajectory in a systematic manner. An illustration of the
method has been given with the calculation of the elec-
tron propagator.

In the case of n fermions a formal solution has been de-
rived [Eq. (3.9)]. It has been shown that restricting the
gauge parameter to values IA, I &3, the renormalized n

fermion Green's function gets, at short distances, more
and more damped as the number of fermions increases.

In the case of one and two fermions explicit expres-
sions have been obtained [Eqs. (2.24) and (3.12)]. They
are consistent with solutions found previously by oth-
ers ' using different techniques. Analyzing the mass-
shell behavior of the two-fermion Green's function, it has
been shown that its physical singularities are interrelated
and the result depends on whether the two particles are
allowed to approach their mass shells sequentially [Eq.
(3.17)] or simultaneously [Eq. (3.18)]. This interdepen-
dence has been discussed previously by Kibble in con-
nection with asymptotic coherent states and a nonsepar-
able Hilbert space. Restricting the analysis to the IR sec-
tor, and recalling that spin does not matter for IR phe-
nomena, Eqs. (3.17) and (3.18) correspond to Kibble's re-
sults, though his solution equivalent to (3.17) contains
less powers of (m; —u p, ie) '—(i =1,2).

In conclusion we remark that our results could be used
to check results obtained by other, less rigorous, nonper-
turbative methods, e.g. , quenched @ED on the lattice.
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fF(r, e)=- e ac
(2 )'

~( I —e) /2

r 3 E

2

X f dO [1—(1—
A, )cos 8]

cos 0

x f "
dlk Ilk I

0

X [1—cos( lu Ilk lcos6)r)] .

(A2)

Here we have introduced the defect of the dimension
@=4—d, and the abbreviation 0=8d 2.

We proceed evaluating first the integral over Ikl (see
Ref. 28):

fE(r, &)=- e 2p6

(2vr )

(1—e) /2

3I

. I ( —e)cos
2

(A4)

with 1 & e & 3. To ensure the validity of the limiting pro-
cess e—+0, the range of convergence of I, has to be ex-
tended by analytical continuation:

I]=— 4 xf dx (
—l(e(3).

1 —e o (1+x )
(A5)

Then, I', and the momentum integral in (A 1) have a com-
mon range of convergence, namely, the interval 0 & e & 2,
and the x integration can be carried out:

X f d6)
2 [1—(1—A, )cos 8] .

Icos&I

(A3)

The remaining 0 integration will be performed making
use of the integral

We would like to thank Rainer Jakob for numerous
discussions on the problems considered in this work. Ii=— 2 I I3 E' 1 —g

1 —e 2 2
(A6)

APPENDIX A

In this appendix we derive (2.21) starting from (2.20).
Applying dimensional regularization and substituting
(2.17) and (2.19) into (2.20), the expression we have to
evaluate reads

2 4 —d 1 —cos(u k r)f (r, d) = — „ f d "k
(2' )" (u, k )k

(u k )
X 1 —(1—A)

k

=r r3 E 1 6'

2 2
(0&a'&2) .

Hence, fF(r, e) is given by

e2 1 6'P () —e)/21 (
(2 )3 2

Similarly, one finds

2 E'

I2 =f d 8 sin 'OlcosOI'=2 f 2 z
dx

0 (1+x )

(A7)

where the Euclidean metric has been used and p is an ar-
bitrary scalar with the dimension of mass. Using polar
coordinates in d dimensions, the integration over the an-
gles $,0„.. . , Od z can be carried out so that

X cos r' +(1—&) . (AS)
2 1 —e

Finally, by expanding (AS) in a Laurent series at a=0
and keeping only the leading terms, one arrives at (2.21).
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APPENDIX B

We here mention the steps leading to Eq. (3.7). By sub-
stituting (2.19) and (3.5) into (3.6), we obtain

(i) i =j:
ie2 f 4 k —(1 —A, )(u k)

7 j 2j'
(2~)4 k (u k)

i e f d4 1 —(1—
A, )(u k) /k +ie

7 j 1
2 (2~)4 k(uk)

X g(e ' —l )(e ' —1)
E,J

=gf (&;)

X +[1—cos( u k 2. ) ]

(B2)

We consider two cases.

Ek'(x x )Xe (B1) (ii) i': Here we assume that each fermion moves on a
free trajectory with constant velocity u" so that
x,i'(r; ) = u "2.;. Then (B1) takes on the form

fz(r;, ~ )=— f d k $([l—cos(u kr;)]+[1 co—s(u k2. . )]—I 1 —cos[u k(r; —~ )]I )
i e 4 k —(1—k)(u k)
2 (22r)" k (u k) J E J (B3)

=
—,
' g[f (&;)+f (&i)—f (I&; ~, I)],

EWJ

(B4)

where the symmetry properties of the momentum loop integral have been used to pass from (B3) to (B4).
By combining the two possibilities, we get

f"(r;,7))=f((~;,r, )+f2(2;,2;)=n gf (~;)——,
' g f( ~; —r, I)

EWJ

and with the use of (A8) we finally derive (3.7).

(B5)

APPENDIX C

Equation (3.12) is obtained in the following manner. One starts from (3.9) evaluating for two fermions:
3a a

G (p p )=l e6(&+1)jj d~ d2- e 1 1 1 e 2 2 2
oo GO

—ir (m —jj p —ie) —i j (I —u p ie)—
MS 1 2 (Cl)

Consider now the integral

I=f dv, f "d22e " 'e
0 0

a

(C2)

where q; =i (m; —u p; i e) with i =—1,2.
There are then two possibilities: ~2 & ~, or ~, & ~2. Hence

I= f "d~, f "dr,e ""e ""
—:I, +I2 .

2 'a

e(2( —~2)+ f d~) f dr2e ' 'e
T] T2 72

a

e(r, —r, )

(C3)

It suKces to calculate I& because I2 can be inferred from
I, by interchanging q, and q2. Upon performing the ~2
integration, one finds'

I (2a + 1)I (1—a)
r(a+2)

X f dw w '(+)'e ' 'F, (2a +1;a +2; —q221),
0

(C4)

which holds for —857&A, &433. The remaining integra-
tion over ~, can be carried out by utilizing the relation

t e ~dt
0

=I(cr)p + F„a, . a;o p, .p„;—

(C5)
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with the inverse Laplace transformation

f (t)=t F (a, a;p, .p„;A),

provided Reo. )0 and Rep & Rek.
In our case these conditions are satisfied:

0.=3a+2) 0 with —
—,
' (a (1

(C6)

(C7)

p =q& —+Rep =e .

Thus, we obtain

I (2a+1)1 (1 —a)l (3a+2) —(3 +p)
1 r(a+2)

X~F, 2a +1,3a +2;a +2;—q)

qp

(C9)

(C10)

and

A, =qz ~ReA, = —e,
and a similar result for I~ (q, ~qz in I,). Inserting these
expressions into (Cl), one easily arrives at (3.12).
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