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For a recently proposed novel action-variational approach refined criteria are worked out. Re-

sults of fourth-order computations for SU{2) gauge theory in four and five dimensions are presented

and ones for U{1)theory reanalyzed. Universal features independent of gauge group and dimension

become apparent.

Monte Carlo simulations of gauge theories have led to
considerable insight. Nevertheless the development of
other nonperturbative methods remains desirable, in par-
ticular, to get beyond the simulation region and for the
investigation of basic mechanisms. This suggests a recon-
sideration of action-variational approaches which in lat-
tice gauge theory started with mean-field methods. '

The cumulant expansion of the free energy introduced
next sufFers from the fact that the convexity inequality is
the only true criterion available. Then using an expan-
sion of correlation functions, which are the objects of ac-
tual interest, the Schwinger-Dyson equation has been im-
posed to fix the variational parameter in first-order calcu-
lations. ' A more detailed investigation with calcula-
tions to second order revealed, however, that this method
has severe limitations since in many cases there is no
solution and one can at best rely on a crude approxima-
tion.

In a novel approach, which I proposed recently, the
variational parameter in the expansion of the correlation
function is adjusted to a value where the sequence of
finite-order approximations has an accumulation point
(i.e., approaches a limit point arbitrarily close). Having
only a finite number of orders available it is understood
that their behavior should conform with the expected
general behavior. In practice parameter values within a
small interval appear acceptable. The optimal evaluation
then requires selecting the parameter value of fastest con-
vergence. It is important to note that the existence of the
indicated accumulation is necessary in order that the use
of the series makes sense.

In the fourth-order calculations for U(1) gauge theory,
which I performed to demonstrate the properties of the
method, it turned out that an accumulation exists above
the crossover region from strong to weak coupling in the
neighborhood of a parameter point roughly of order of
magnitude of the mean-field estimate. The precise pa-
rameter value of this point depends on the particular
function and is found to be crucial for quantitative re-
sults. When the crossover region is reached from the
weak-coupling side the accumulation suddenly disap-
pears. This provides a signal for the location of the phase
transition (though not for its nature or existence).
Proceeding further in the strong-coupling region an accu-
mulation occurs again, now at zero trial action, i.e., at

the parameter value giving a strong-coupling expansion.
It is of interest to check if these features are general ones
which hold for other gauge groups and dimensions, too.

Working at (relatively small) finite order the question
arises how to determine the parameter value of fastest
convergence in practice. In Ref. 8 the intersection of the
zeroth and nth orders has been used as a technical
prescription mainly on empirical grounds. This is not
completely satisfactory because general applicability with
optimal exploitation of the computations as well as the
understanding of detailed properties needed for further
analytical developments call for properly motivated rules.
To establish such rules the systematic features of more
cases are needed.

There has been a third-order calculation for SU(2) us-

ing the prescriptions of Ref. 8. However, in contradic-
tion to the basic idea of Ref. 8, in Ref. 9 intersections
have been evaluated in the crossover region where no ac-
cumulation exists which unfortunately does not make
sense and cannot lead to correct conclusions.

In this paper the results of fourth-order computations
for a number of Wilson loops in SU(2) gauge theory in

four and five dimensions are presented and together with
corresponding U(1) results used to obtain refined rules

for the accumulation-point method satisfying the require-
ments indicated above. The evaluation confirms that the
accumulation features first noticed for U(1) theory are of
general nature.

For correlation functions ( ) with respect to the
action S one has the expansion

where ( . . )o are connected functions with respect to
the trial action So. Equation (1) may be written in the
form

1 1(X)= g g —(P/2) ~( a)uF, „„. —
(v —p )( pI

(2)

In the case of SU(2) with

S = (p/2)g tr U
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ized by the value Pz34 at which the orders 2,3,4 meet at
one point. The value P;„at the lower end of the weak-
coupling region, where the series breaks down, is deter-
mined by the disappearance of the structure in Fig. 3(b).
Because of the very rapid change, inspection in steps of
0.05 for SU(2) and of 0.01 for U(1) allows us to get a
reasonable approximation for P;„. Table I gives an over-
view of the values 13&34 and P;„obtained. For the 1X1
loop in U(1) the upper type of structure extends down to
the breakdown of the series. [The definition of P for U(l)
used is such that the phase transition is expected at
0.505.]

Looking for the parameter value of fastest convergence
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FIG. 3. Evaluation of accumulation structure (a) in upper
part, (b) in lower part of weak-coupling region.
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FIG. 2. Typical accumulation structure of the W„ in the

weak-coupling region and Monte Carlo value. (a) Upper part,
(b) lower part of region [shown for a 2 X l loop, SU(2), and d =4
at P= 10 and 3.5 with MC values from Ref. 11].

FIG. 4. Comparison of results 8' for 1X1, 2X1, and 2X2
loops for SU(2) and d =4 with Monte Carlo data (Ref. 11) (dots,
1X1;circles, 2X1; crosses, 2X2).
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in the upper weak-coupling region the possibilities may
be described by a4 =A, a&. In Fig. 3(a) superficially
A, = —1 shows minimal Auctuation; however, decreasing
a4 at the cost of a2 appears more appropriate. Then, for
example, A, = —

—,
' with W&=( W2+ Wo)/2 or A. =O with

8'4= 8'2 may be considered. In the lower region, now
with a~=i,a3, from Fig. 3(b) it is seen that in any case
A, =O is the most advantageous value since a3 is also
minimal there.

Figure 4 compares 8' determined as 8'4 at A, =O in
both regions, with Monte Carlo data. " For larger loops
this (A, =O) prescription is seen to be all that can be
motivated without further information. For the 1X1
loop Fig. 5 reveals that actually the case A, = —

—,
' is ap-

proached with high precision. The corresponding com-
parisons for U(1) show the same situation there. In the
following, special considerations for the 1 X 1 loop would
give rise only to negligible changes. Therefore, for the
present the (A, =O) prescription is adopted generally.

As in the case of U(1) also for SU(2) the a value at the
point of optimal convergence depends on the particular
function and its individual adjustment is important for
getting precise results. To extract the nontrivial contri-
butions of this a the quantity 5, defined by
2a/( V, P) —2(d —1) for SU(2) and similarly for U(1), can
be used. 5 is constructed to vanish in the simple mean-
field case and to exhibit minimal d dependence. It turns
out that 5 depends mainly on the loop size and on P in
the lower region. It is in the range from 2.0 to —0.9 for
the cases considered with larger values for smaller loops.
There is only little dependence on gauge group and di-
mension. It should be realized here that the choice of a
is P dependent, which, as generally in mean-field-type
methods, is what makes the description of the weak-
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coupling region possible.
In the strong-coupling region only a small fraction of

terms still contributes to (1) and much higher orders be-
come easily accessible. For increasing P the series breaks
down when the crossover region is reached. The details
of this can be readily studied up to 15th order for the
1X1 loop using the results of Ref. 2. While in the range
of convergence the magnitude of Auctuations decreases
with order, it increases above this range. The first indica-
tion of this reversal occurs for 1X1,2X1, and 2X2 loops
for d =4 at P=1.51, 1.48, and 1.41 and for d =5 at
P=1.26, 1.24, and 1.21 (which to see needs at least 5th,
6th, and 8th orders). These values signal the lower end of
the crossover region.
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FIG. 5. Detailed behavior of 8'for a 1X1 loop, SU(2), and
d =4 determined as W4 at A, = —1, —2, 0, compared with

Monte Carlo data (Ref. 11) (with W'. . . standing for Wz
8 q= l/2, 8'~= l, and 8 Mc).

FIG. 6. Results 8'for SU(2) and various Wilson loops, (a) for
d =4 compared with Monte Carlo data (Refs. 10—12) (dots,
1X1 and 2X2; circles, 2X1; pluses 3X1 and 3X3; crosses,
3X2), (b) for d =5 compared with Monte Carlo data (Ref. 13)
(crosses, heating; circles, cooling; for 1 X 1).
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In Fig. 6 the results for 8 are collected and compared
with Monte Carlo data. ' ' Obviously the agreement is
good at this scale. In more detail Fig. 4 shows that to
compete with high-statistics data some work still remains
to be done. The thermal cycle in Fig. 6(b), indicating the
phase transition for d =5, fits well to the beginning of the
crossover region determined from the expansion.

Figure 7 shows results for the quantities

1.0 =

y(I, J)= —lnI W(I, J)W(I —1,J —1)

introduced by Creutz' and y(I, J) obtained from Monte
Carlo data. "' It is seen that the ending of the curves
caused by the breakdown of the series occurs approxi-
mately where one would get the enveloping curve of the
string-tension analysis. ' From Fig. 4 it is apparent that
the deviations of y(2, 2) are caused by the faster increase
of accuracy of W(2, 1) as compared to W(2, 2) and that
these deviations become small again for still larger 13 [as
is observed for U(1), too ]. It should be noted here that
y(I, J) rely on the area sensitivity which for larger loops
requires larger orders.

It has turned out that the principles of accumulation
and fastest convergence give rules to exploit the expan-
sions in detail. A rather sharp signal for the beginning of
the crossover region and the location of possible phase
transitions is obtained. The occurring features are found
to be largely independent of gauge group and dimension.
The present results and experiences provide a basis to
work on analytical modifications which increase the ac-

0.01-
p 5

-x(3.3)

FIG. 7. y(I, J) for SU(2) and d =4 compared with Monte
Carlo results (Refs. 11 and 12) (dots, I =J= 1; circles, I =J =2;
pluses I =J=3).

curacy within a given order and on changes of the com-
putational strategy reducing the CPU times for larger
loops and orders. They also suggest investigating some
properties rigorously.
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