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We present results from a study of QCD with two fiavors of Wilson fermions using the hybrid
Monte Carlo algorithm, which incorporates the effects of fermion loops exactly. We evaluate the
performance of the algorithm and its potential for large-scale computations. We argue that in the
best case the algorithm slows down as V' m~

" at a fixed gauge coupling. We present improved
algorithms for calculating the inverse and the determinant of the Wilson fermion operator. Results
for the finite-temperature transition on 4X6' and 6X8' lattices are presented at P=5.2 —5.6. We
also give Wilson loop expectation values obtained on 8 lattices at @=5.3 for six values of tt. The
data show evidence for screening in the qq potential. Lastly, on comparing Wilson and staggered-
fermion results we find that P= 5.3 is far from the scaling region.

I. INTRODUCTION

The challenge facing numerical calculations of QCD is
to simulate the full theory on large lattices, with small
lattice spacing, and with realistic quark masses. Progress
towards this goal has been slow, mainly because of the
difficulty of including dynamical fermions in the numeri-
cal algorithms. One avenue of progress has been the de-
velopment of exact algorithms for doing the simulations.
The hybrid Monte Carlo algorithm (HMCA) has recently
emerged as the preferred exact algorithm. ' In the near
future simulations with this algorithm on lattices of sizes
up to —16 will be possible. It is the aim of this paper to
do some of the groundwork necessary so as to choose the
parameters of future simulations sensibly.

The HMCA (Ref. 2) can simulate multiples of two
flavors of Wilson fermions, or multiples of four flavors of
staggered fermions. To make the calculations as realistic
as possible, therefore, we must use Wilson fermions. The
two degenerate species of fermions in the simulations
then represent the physical up and down quarks. Most of
the previous work on the HMCA has considered the
four-flavor staggered-fermion theory. This work has
considered algorithmic issues (How does one tune the al-
gorithm?) and the thorny question of the existence and
the order of a phase transition in finite-temperature
QCD. One of the purposes of the present study is to ex-
tend this work to the two-Aavor Wilson fermion theory.

The results of this paper address the following issues.

(A) Tuning and monitoring the algorithm. This is a
question at the core of determining the speed and reliabil-
ity of any promising algorithm. We discuss this in Sec.
II, and argue in Sec. III that the HMCA slows down pro-
portional to m ', in the limit of small quark masses.

(B) Efficient algorithms for the Wilson fermion matrix.
In Sec. IV we present details of an efficient matrix inver-
sion algorithm for Wilson fermions. This algorithm is
competitive with the best implementation of an incom-
plete lower upper (ILU) algorithm. We also discuss a
simplification of the pseudofermion representation of the
fermion determinant.

(C) Comparison with approximate algorithms In order.
to substantiate the claim that the HMCA is competitive
with approximate algorithms we provide a detailed com-
parison of our results with those from the hybrid and
Langevin algorithms in Sec. V.

(D) Critical parameters The first step .towards choos-
ing reasonable running parameters for large lattices is to
determine (a) for a given coupling /3—:6/g, the critical
value of the hopping parameter ~„where the pion mass
vanishes; (b) for given P and hopping parameter tc (which
together specify the lattice spacing a), the position of the
finite-temperature crossover/transition. This is most
easily expressed as Nt'=1/(T, a ), where T, is the transi-
tion temperature in physical units and X,' as defined need
not be an integer. The first calculation gives the location
of the chiral limit and the second provides a rough esti-
mate of the scale (assuming that T, =150 MeV). With
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these parameters in hand, and drawing upon the accumu-
lated experience of pure gauge theory simulations, one
can pick an appropriate lattice size to avoid severe finite-
size effects in zero-temperature observables. Further-
more, one can estimate the interesting physical region
where the u- and d-quark masses are small and the effects
of vacuum polarization are substantial. Our results for
T, are described in Sec. VI, while detailed results for ~,
will be published elsewhere.

(E) Screening in the qq potential Sec. tion VII is devoted
to illustrating the effects of dynamical quarks on the stat-
ic qq potential. We make a careful study of the screening
as a function of the quark mass, and present results show-
ing the changeover for large Wilson loops from the area
law of the pure gauge theory to the perimeter law for full
QCD.

(F) Comparison of staggered and 8'ilson fermion results.
In the scaling region the results obtained with these two
different fermion schemes must come together, and only
then can one claim to have meaningful predictions for the
continuum theory. In Sec. VIII we show how far away
we are from achievi. ng this goal.

We end with some comments on the outlook for simu-
lations of QCD with realistic parameters.

II. SYSTEMATIC TESTS OF THE HMCA
WITH WILSON FERMIONS

—(y„+r)U; „6, +„] . (2.1)

In the following we set r =1. The determinant of this
operator is real (y5b, ys=h) but not necessarily positive
definite. In order to interpret the fermion determinant as
a probability factor, we have to work with the operator
Et', . Only when the power of det(h 6) is an integer, a
path-integral representation for it can be given in terms
of the pseudofermion fields P:

D D "exp — 6 6 ' =det 5 det 6 . 2.2

Thus simulations in which Wilson fermions are represent-
ed by pseudofermions are restricted to multiples of two
degenerate Aavors. This subject is further discussed in
Sec. VI.

We use the N version of the hybrid algorithm intro-
duced by Gottlieb et al. It corresponds to evolving the
system variables through the phase space in a fictitious
(computer) time, with the Hamiltonian

Hq, =—Tr+P, „+—Re Trg(l —U )+P (b, b, )

(2.3)

Here U; „are the gauge link variables, P; are the mo-
menta conjugate to them, and U is the 1 X 1 plaquette.
The P fields have no dynamics in the 4& algorithm, and

Our implementation of the HMCA for QCD with Wil-
son fermions closely parallels that we used for staggered
fermions. The Dirac operator for Wilson fermions is

b, [U],) =5, +~+ [(y„—r)U; „li,

the simulated partition function is

Z= D D *DUDP exp —H+

The introduction of the conjugate momenta as Gaussian
variables . does not alter the QCD correlation functions
defined in terms of U and P. All expectation values are
measured as simple time averages after the system has
equilibrated.

The N algorithm is reversible and area preserving. Its
basic steps are these: Given a configuration U, refresh
the momenta P and generate the pseudofields P—:b, ri
with Gaussian random numbers q. Then evolve the sys-
tem to U', P' using leapfrog discretization of the
molecular-dynamics equations of motion for a trajectory
consisting of nMD steps each of size e (our variant of leap-
frog evolves the U at the first half step). Every trajectory
repeats these steps. Because of the discretization, the
Hamiltonian is not exactly conserved during the evolu-
tion along a trajectory. The HMCA removes this
O(nMDe ) error by accepting the new fields U', P' at the
end of a trajectory with the probability

P=min(l, e ), 5H=H(U', P', P) H(U, P—, Q) .

(2.5)

An important feature of the HMCA is that the Hamil-
tonian H used in the accept/reject step need not be the
same as the Hamiltonian H+ used in the hybrid prepro-
cessor. This fact can be exploited to increase the
efriciency of the algorithm. A convenient choice is to
take H and H+ to have the same form but different
values of the couplings a, P, and i~. We denote the cou-
plings in H+ by a subscript MD. They are tunable pa-
rameters which only affect the acceptance rate, while the
equilibrium distribution is governed by the couplings ap-
pearing in H.

One can gain —10—20% in the acceptance rate by a
suitable choice of these adjustable couplings. The op-
timal choice depends on the details of the leapfrog algo-
rithm. " The parameter a can be tuned, but all our re-
sults have been obtained with the choice aMD=u=1.
With our leapfrog scheme, we find that close to maximal
acceptance can be obtained by selecting P—PMD=0. 01,
and ~=vMD. A little more improvement is possible by
choosing KMD slightly smaller than ~, but we have not in-
vestigated this thoroughly. These rules of thumb are
similar to those found in our studies of the staggered fer-
mion HMCA. Table I shows some results of our search
for an optimal value for @MD.

In addition to the couplings appearing in the Hamil-
tonian, the HMCA has two more parameters characteriz-
ing the molecular-dynamics trajectory: the step size e
and the total number of steps nMD before the global
accept/reject. The length of the trajectory, eXnMD is
adjusted to obtain the best decorrelations. For
eXnMD —1, the acceptance is only weakly dependent on
n MD, and studies of the uncorrected hybrid algorithm ap-
plied to QCD (Ref. 10) and tests with the HMCA (Ref. 5)
suggest that using eXnMD =0.7 is optimal. These tests
were done at couplings where the lattice correlation
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TABLE I. Acceptance in the global Metropolis step on 8"
lattices at Ii=5.3 as a function of l3MD. We show the data for
three values of a=lrMD, and estimate that 5.29 & pMD & 5.295 is
the best value. The convergence criterion R is defined in (2.6).

0.04
0.04
0.04
0.0333
0.0333
0.0333
0.04
0.04

0.158
0.158
0.158
0.160
0.160
0.160
0.162
0.162

PMD

5.31
5.29
5.28
5.31
5.29
5.28
5.295
5.29

R X10'

-0.1

-0.1

Acceptance (%)

54
61
49
58
68
51
62
62

length is approximately one lattice unit. In Sec. III we
argue that e X nMD has to be increased as m ~0. Hav-
ing fixed all the other parameters, the value of e is chosen
to maximize e X acceptance, the rate of motion through
the phase space.

The final attribute of the simulation is the accuracy re-
quired in the inversion y=A P. This inversion, per-
formed at each step of the trajectory using an iterative al-
gorithm, consumes most of the CPU time. The accuracy
criterion often used to test the convergence of the inver-
sion is some variant of

(2.6)

An ad hoc choice for R does not guarantee that the final
distribution of configurations will be correct. We need a
criterion to judge when R is small enough.

For the HMCA one really has two choices to make:
the value of R used to evaluate 5H and the value used
during the trajectory (R MD ). For the algorithm to
remain exact, the in versions must be accurate when
determining 6H, and so a stringent criterion for R must
be used. The evolution is reversible irrespective of the
value of R MD, if one uses a starting guess for g indepen-
dent of the values of g at previous time steps. In prac-
tice, we use the previous value for y as the input guess for
the inversion. This means that our inversions must be ac-
curate at each step to maintain detailed balance. Thus
we use the same value for R during the evolution and in
the evaluation of 6H.

Two errors are introduced if R is not chosen small
enough. First, 5H is not evaluated correctly, and second,
the evolution is not reversible. Either of these errors is
sufficient, in general, to cause a failure of the identity"

(2.7)

Here the average is taken over all trajectories, whether or
not the trajectory is accepted. We find that monitoring
this identity allows one to choose a good value for R
quite easily. We simply decrease R until the identity is
satisfied within the error made in the evaluation of the
average. The identity is visibly violated for low conver-
gence criteria. For example, we find that ( e ) is
0.67(3), 0.93(2), and 1.00(1) for R values of 10

III. THE COMPUTER TIME REQUIREMENTS
OF THE HMCA

The analysis of the, previous section leaves the
efficiency of the HMCA to be judged by how e depends
on the variables m, Il, and the lattice volume V for a
fixed acceptance rate. (For Wilson fermions, the quark
mass m is a function of the hopping parameter. We use
it to give our arguments a general form. ) The analytic ar-
guments presented in Refs. 4 and 11, valid for both stag-
gered and Wilson fermions, imply that, for fixed 13 and
m, e V ', making the HMCA a V algorithm.

We find that the dependence of e on m as m ~0 is a
much more important source of critical slowing down for
the HMCA. The effective fermion action

SF=Tr ln( b, b, ), (3.1)

is logarithmically singular as m —+0. For finite m, how-

2X10, and 10 on a 4X6 lattice at P=4.98 and
m =0.025 (confined phase).

The identity (2.7) holds only if the distribution of
configurations has reached equilibrium. Once we have
chosen a sufficiently small value for R, we can use the
identity to test thermalization of our simulations.

The second criterion we use to choose R is to demand
that the error made in evaluating 5H be less than some
bound. Though closely related to the first criterion, it
turns out in practice to be more sensitive. It has the ad-
ditional advantage that one need only use a few sample
trajectories to evaluate the errors, whereas application of
the first criterion requires taking an average over a large
number of trajectories.

The tuning of parameters discussed above must result
in 5H lying mostly in the interval [ —1, 1] if it is to pro-
duce acceptances above 50%. This —1 number, howev-
er, is a result of cancellation between three large numbers
scaling as the lattice volume (each is —10 for a 10 lat-
tice). Consequently 5H is very sensitive to the choice of
R. By running a few trajectories with different values of
R one can quickly select a safe value. We find that to
compute 6H to a fixed accuracy, it is necessary to de-
crease R as the quark mass is reduced. Our results have
been obtained by demanding that 6H be accurate to less
than a percent. On 8 lattices, this required decreasing R
from 10 for the heaviest quark masses to 10 ' for the
lightest ones. To be more specific, in the above example
with R =10, 2 X 10, and 10, the values of 6H for a
particular trajectory were 4.2, 0.98, and 0.041, respective-
ly. The correct answer was =0.076, and the convergence
criterion required to ensure an accuracy of & 1% was
R & 10-".

From our tests we also deduce that effects of a poor ac-
curacy criterion add coherently along the molecular-
dynamics trajectory. Since the number of steps in a tra-
jectory grows as m ~0, one has no choice but to use a
rather conservative value for R at small quark masses. It
remains to be seen whether the high accuracy required in
the calculation of 5H proves to be a problem in working
with large nMD, or in implementing the HMCA on com-
puters with limited precision.
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ever, one can appeal to analytic continuation and expand
the change in the Hamiltonian during molecular-
dynamics evolution in a Taylor series:

5H =5Hs, „s,+ n Nio g C„e"SF"' .
Pl =3

(3.2)

Here C„are numerical coefficients, SI;"' represents all the
terms generated by differentiating the fermion action n

times with respect to the gauge link matrices U and the
factor of n~~ arises from integrating the result over the
full trajectory. Differentiation of the logarithm produces
negative powers of 6, each successive differentiation add-
ing one more. As m ~0 the operator 6 ' is expected to
behave like m ' making S+"' diverge like m ". The
series expansion, therefore, makes sense provided e goes
to zero faster than mq For a trajectory of length

nivin =O(e '), the most divergent term as mq ~0 is the
leading one, i.e., n =3. 5H behaves like e m, requiring
e to decrease as mq in order to maintain constant ac-
ceptance. Our tests, predominantly with staggered fer-
mions, ' support this expectation.

The above argument has been made for the full
effective fermion action (3.1). Our simulations, however,
use a pseudofermion estimator of this action. Neverthe-
less, it is simple to see that the counting of powers of m

goes through in the same way.
The efficiency of the HMCA in terms of CPU time re-

quires the estimate of two extra factors.
(a) The number of iterations of the matrix inversion al-

gorithm used to calculate (b, 6) 'P. This typically de-
pends on the ratio of the largest to the smallest eigenval-
ue of the matrix 6 and grows as m ' when mq~0. (See
the following section for more details. )

(b) The autocorrelation between the trajectories in
terms of motion through the phase space. The decorrela-
tion time is a function of the lattice correlation length g.
For QCD, /=max(g, „„m '), where g,„, is the correla-
tion length of gluonic degrees of freedom. Therefore
(=m ' ~ m ' for sufficiently light quarks. When the
decorrelation time is large compared to the molecular-
dynamics trajectory length, random-walk arguments sug-
gest autocorrelations growing as g . This is the situation
if the trajectory length is held fixed as m —+0. Alterna-
tively, Duane' has proposed use of trajectories of length
O(g). In this case the system evolves according to the
guided walk of the hybrid algorithm, and the autocorrela-
tion between trajectories becomes independent of g.

Combining all the factors, we find that when
noir~=0(e ') is held fixed, the HMCA degrades asymp-
totically as V ~ m ~ for fixed P. On the other hand,
when niviz&=O((e ') is allowed to grow, we have to go
back and rederive the dependence of t. on m . We obtain
e~m, and the total computer time becomes propor-
tional to V m ' ". To illustrate the rapidly degrading
performance, we only need to state that a twofold in-
crease in the correlation length g, accompanied by a dou-
bling of the lattice dimensions to maintain constant phys-
ics, necessitates an increase in the CPU effort by a factor
of 2' =4096 or 2" =2896.

The improvement in the asymptotic behavior caused

by taking the trajectory length proportional to g is very
small. To compare the two options we also have to take
into account the relative size of the prefactors, which can
only be determined empirically. We do foresee practical
problems in using long trajectories on large lattices and at
small quark masses, due to the growth of errors in 5H
mentioned in Sec. II. So far we have only used
molecular-dynamics trajectories of length 0.7—1.0, and
typical autocorrelation times increased from a few trajec-
tories at the heaviest-quark masses to 50—100 trajectories
at the lightest ones. More tests are clearly needed.

Our results differ from a more optimistic proposal of
Toussaint. ' He suggests that for QCD, the decorrelation
time (and hence the trajectory length) governing auto-
correlation remains fixed as m ~0; the slowing down at
small quark mass is already accounted for by the decrease
in e. It is our view, however, that the decrease in e is
necessary to obtain accurate solutions to the molecular-
dynamics equations. Even if we could integrate these
equations exactly, we claim that the trajectory length
would have to grow as m ' in order to produce
decorrelated configurations.

We have painted a rather pessimistic picture, but to
the extent that we can judge from our results, it is not far
off the mark. Major improvements can be made by re-
ducing the unknown proportionality constants that have
entered the asymptotic analysis above. Some possibilities
are as follows.

(a) Devising faster matrix inversion algorithms. The
present best iterative algorithms for inverting the fermion
matrix only reduce the prefactor, leaving the critical
slowing down as I /mq unaffected. Alternatives designed
to counter, this, such as multigrid methods, have not yet
become viable schemes for QCD in the present range of
coupling s.

(b) Finding a quicker and more efficient preprocessor
than molecular dynamics, or a difFerent discretization of
the evolution equations that decreases the magnitude of
the error 6H allowing an increase in e. Higher-order
discretization schemes that change the leading term in
6H from n =3 to n =4 have been considered, ' but they
have not yet become practical for QCD.

IV. IMPROVED AI.GORITHMS FOR CALCULATING
THE INVERSE AND THE DETERMINANT

OF THE DIRAC OPERATOR

The bottleneck in the hybrid Monte Carlo algorithm
(HMCA), in approximate algorithms and in calculations
of hadron masses and matrix elements is the inversion of
the Dirac operator (2.1). In the following we explain the
improvements we have made in calculating inverses. We
also point out that it is possible to reformulate the deter-
minant so that the pseudofermions live only on half the
sites.

The Dirac operator can be written in even/odd block
form as

M1 vD„
A=M1+~D = vD„M1

with M= 1 for Wilson fermions. Given a source P, the
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Multiplying both sides by (M 1 ~D—), the problem
separates into

and

(M 1 aD„—D.„)X,=M/, aD„—Q, , (4.3)

Xo=(P, xD„X—, )/M . (4.4)

The separation eliminates O(a. ) terms from the matrix to
be inverted, and can be viewed as first-order precondi-
tioning of the fermion matrix. ' Equation (4.3) can be
solved using one s favorite matrix inversion algorithm—
minimal residual, conjugate gradient, or anything else-
and the full propagator, if needed, can be reconstructed
at the end using (4.4). This trick substantially reduces the
memory requirement of the code and roughly doubles the
speed (in terms of iterations) at which the algorithm con-
verges.

For this simple scheme to work, it is only necessary
that the diagonal part of 6 be a multiple of the identity
matrix, while the off-diagonal parts connecting even and
odd sites contain all the interactions. This condition
holds for the improved fermion action obtained using the
&3 block transformation where the interaction terms
connect sites at distance 1 and &3. In fact, Eqs. (4.3) and
(4.4) were solved in the hadron spectrum calculation of
Ref. 17.

For staggered fermions (M=m, v= —,', r =0, y ~il„)
even/odd decomposition is the standard procedure.
Furthermore, the matrix in (4.3) is Hermitian and posi-
tive definite. In such cases the conjugate-gradient algo-
rithm works well, and we have not found any tricks to
improve upon it.

For heavy Wilson fermions the minimal residual algo-
rithm converges in approximately the same number of
iterations as the conjugate-gradient method, and it re-
quires only half the number of arithmetic operators per
iteration. ' For the generic equation A X=p and the
remainder r =p —A X, this algorithm iterates the equa-
tions

a„=(Ar„, r„)/~ Ar„~, X„+i=X„+boa„r„,

rn+ i
= rn ~n Arn ~

(4.5)

with the relaxation parameter co set to 1. The algorithm
works its way towards the final solution by minimizing
the positive-definite quadratic form ~r„~ at each step.
The minimization is attempted along the steepest-descent
direction of the quadratic form (r„,A r„), which is in
general complex. The di6'erence in the two forms causes
the iterates to get stuck when Ar becomes orthogonal to
r. The failure is strongly dependent on the gauge
configuration, the source vector P, and the initial guess

On general grounds, we expect the failure to depend
on the overlap of P with the eigenvectors corresponding
to the small eigenvalues of A. Physically this situation
arises at small quark masses. ' ' Our experience is that

fermion propagator y is obtained by solving the equation

Xg
(4.2)

for Wilson fermions (4.3) can be solved using the minimal
residual algorithm for quark masses m ~ m„where m, is
the strange-quark mass.

Taking co) 1 overrelaxes the minimization step in (4.5).
This overrelaxation is similar in spirit to the tuning of the
diagonal element in the ILU decomposition of the ma-
trix. ' Such overrelaxation is not helpful for the conju-
gate gradient or other similar methods where orthogonal-
ity of vectors at different iteration numbers has to be
maintained. We find that choosing co=1.3 decreases the
number of iterations needed for convergence by =30%.
Moreover, co does not have to be tuned very sensitively to
ensure the best convergence; a value in the range
1.15—1.50 provides reasonable improvement.

We have followed the idea of "polynomial precondi-
tioning" further by converting (4.3) to

(M 1 ~D„D—„D„D„)X,
=(M I+xD„D„.)(MP, ~D„P, ) . (4.6)

Again, co = 1.3 is optimal when solving this with the over-
relaxed minimal residual algorithm. Solving (4.6) is
=10% slower than solving (4.3) in the region where both
algorithms converge, but it has the advantage of being
more stable. It shows no signs of failure even at
m =m, /2. At still smaller quark masses where this al-
gorithm fails to converge, one can attempt further
preconditioning. Otherwise it is always possible to revert
back to the conjugate-gradient method applied to (4.3).

Quantitatively, for a single matrix inversion, the im-
proved algorithm (even/odd split, minimal residual with
overrelaxation) is about six times as fast in terms of CPU
as a straightforward application of the conjugate-gradient
method to (4.2). This factor applies, for example, to
propagator calculations needed for evaluating hadron
masses. In the molecular-dynamics evolution of the
gauge configurations, however, we need to evaluate
X=(b, b, ) 'P. We achieve this in two steps:

b Y=P, bX= Y', (4.7)

noting that b, (~, r ) =b, ( —a, r). The firs—t inversion
enhances the proportion of small eigenvalue modes, so
the second inversion is more time consuming. The
conjugate-gradient method requires only one inversion to
solve for X, and the final speed up compared to it is then
about a factor of 2.5.

The ILU decomposition' produces improvement com-
parable to our method. This is not surprising since both
methods eliminate O(l~) terms by preconditioning. The
appearance of triangular matrices makes the ILU method
inefficient to vectorize and parallelize. A high-order po-
lynomial preconditioning, on the other hand, is simple to
vectorize and parallelize. The big advantage for parallel
machines (such as the Connection Machine) is that the
ratio of multiplication by D (which requires nearest-
neighbor communications only) to global dot products of
vectors needed in the calculation of a (which are com-
paratively slow) is increased.

The algorithm we are proposing does nothing to allevi-
ate the problem of critical slowing down; the number of
iterations still increases as I in the limit m~~0. To
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=det( b,„)det( 5„—b,„b...'b,„), (4.8)

we can rewrite the determinant as

det(b, ) =det, (b, ) =det, (h, ), (4.9)

l —/D D g =~~1—/D D (4.10)

The subscript on det denotes the subspace (even or odd
sites) on which it is evaluated.

Physically the determinant contains contributions from
a11 closed fermion vacuum-polarization loops. All such
loops have even perimeter length on a hypercubic lattice.
The determinant depends only on the trace of the fer-
mion loop, which is independent of the choice of starting
point. In a hopping-parameter expansion of det, (b, ), the.
hops are of length 2, whereas the hops in an expansion of
det(b. ) are of unit length. A loop of perimeter 2L can be
covered in 2J hops of length 1 or in L hops of length 2.
This is exactly what the result (4.9) expresses; Kramer's
expansion has been simplified by restricting the starting
point to be only on even (or odd) sites.

Clearly a similar expression can be written for det(b, ).
Thus we can rewrite the pseudofermion functional in-
tegral (2.2) as

det(h)det(b, ) = JDP, DP,'exp[ —P, (b,,b, ) 'P, ] .

(4.11)

It is straightforward to modify the HMCA to use the
form (4.11). The advantage of simulating (4.11) is that
the pseudofermion fields need to be defined only on half
the lattice sites, thus reducing memory requirements.
Though there is no reduction in the number of arithmetic
operations per iteration, the phase space to be covered
has been cut down by a factor of 2.

This formulation is very similar to that used for stag-
gered fermions. The only difference is that in case of
staggered fermions there is no need to take the absolute
square of 6, . One can simply simulate the functional in-
tegral:

det(b, )= JDP, DP;exp( P, b, P, ) . —(4.12)

attack critical slowing we need to know something about
the eigenvalue distribution of the matrix being inverted.
Both 6 and 6 have the same spectrum and so can be
preconditioned using the same technique. Simple vari-
ants such as cycling co through a set of values with itera-
tion number, or adjusting the coefficients of the polyno-
mial preconditioner can be considered. We have not
yet explored these variants. Fourier acceleration ' ap-
plied to (4.2) provides a factor-of-3 improvement, and
should be tested for (4.6).

We now turn to a reformulation of the fermion deter-
minant. Using the identity

~ee ~eo
det(b ) =det

oe oo

V. COMPARING THE HMCA WITH HYBRID
AND LANGKVIN ALGORITHMS

In this section we address the following question: Is it
more efficient to use an exact algorithm or to use an ap-
proximate algorithm and extrapolate to zero-step size?
We compare the HMCA, hybrid, and Langevin algo-
rithms using Wilson loops of size up to 3X3 as probes.
The loops are measured on 6X8 lattices at P=5.5 and
~=0. 15. This lattice is e6'ectively at zero temperature for
these parameters since, as shown in the next section, the
finite-temperature phase transition for N, =6 is at
~=0.1565. We also compare our results to those of
Fukugita, Oyanagi, and Ukawa, who use a second-order
Langevin algorithm on a 9 X 18 lattice. Finally, we dis-
cuss the possibility of using an approximate algorithm at
finite-step size at the end of the section.

All the algorithms spend approximately 90% of the
time performing matrix inversions. These inversions can
be carried out using the same optimal method in all cases.
We, therefore, compare the efficiency of the algorithms
by counting the number of matrix inversions required to
achieve the same statistical accuracy for the Wilson loop
data.

The results from our calculations are presented in
Table II. For the HMCA we average over 400 trajec-
tories of length 0.8, using e'=0. 04, which gives an accep-
tance rate of 70%%uo. For the hybrid algorithm we also use
400 trajectories of length 0.8, with five values of e: 0.40,
0.16, 0.08, 0.04, and 0.02. In both cases we use a bin size
of 40 trajectories to estimate errors. The results of the
first-order Langevin algorithm are extracted from runs of
Langevin time ~=25. We use two-step sizes, 5r=0.005
and 5r=0.0025, with measurements every ~= —,

' and —,', ,

respectively. The data are grouped into bins of size
~=2.5 to estimate errors.

For all the algorithms we find long thermalization
times. We have not done a detailed autocorrelation
study. Conservatively, we discard 400 trajectories for
both the hybrid and the HMCA, and 25 time units for
the Langevin runs, which we judge to be about twice the
thermalization times. The HMCA results presented here
diff'er by 2—3 standard deviations from the preliminary
results presented in Ref. 12. The latter used shorter runs,
consequently the lattices were not sufficiently thermal-
rzed.

For small enough e (e(0.08), the hybrid algorithm
gives Wilson loop values larger than those from the
HMCA. This is in accord with our implementation of
the leapfrog scheme. On the contrary, making e too
large disorders the system. The @=0.16 results show
that the disorder rapidly increases with the loop size.
Since the approach to the @=0 values is not monotonic,
we cannot use large e results to extrapolate to zero step
size. The data for e(0.08 are close enough to the
HMCA results that it may be possible to extrapolate
them to e=O. The statistical errors on our data, howev-
er, do not allow us to test this possibility.

Upon running the HMCA with a=0.08, we discovered
that the acceptance dramatically drops to only 15% com-
pared to its value of 70% at a=0.04. The measured Wil-
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son loops (up to 3 X 3) for the hybrid algorithm, however,
have changed little between @=0.08 and @~0.04. This
discrepancy indicates that large fermion loops are mak-
ing a significant contribution to oH. The finite-step size
distortion is thus a function of the length scale of the ob-
servable, with longer-distance scale observables having
larger distortions.

Since it is the long-distance observables that carry the
physics of the theory, it is not obvious whether finite-
step-size simulations are in the same universality class as
QCD. Given this uncertainty, it is our conclusion that to
be on the safe side hybrid simulations have to be run at
values of e where the HMCA has a high acceptance rate,
and not be fooled by apparent agreement of short-
distance observables. In such a case the HMCA is obvi-
ously comparable in efficiency to the hybrid algorithm.

For the first-order Langevin algorithm, the finite-step-
size errors are very large and any extrapolation to zero-
step size would be questionable. Thus one has to use a
second-order formalism to be competitive with either the
hybrid method or the HMCA. We quote the second-
order algorithm results obtained by Fukugita, Oyanagi,
and Okawa on 9 X 18 lattices in Table II(c). They use
three values of the step size, 6~=0.02, 0.01, 0.005, and

estimate the 6~=0 values using linear extrapolation. The
second-order data also show a strong dependence on the
step size, e.g. , the 3X3 Wilson loop expectation value
changes by over 100% between 5r=0.02 and 0.0. There-
fore, we believe that Langevin simulations with at least
three values of 6~ are needed to reliably extrapolate to
the 5~=0 limit.

The statistical errors for the HMCA and the linearly
extrapolated Langevin results are comparable. The
agreement between the two sets of results is reasonable,
given that the finite-size effects are not the same (the lat-
tice volumes and fermion boundary conditions are
different) and that the extrapolation involved in the
Langevin data is substantial compared to the discrepan-
cy. The data show the extent to which Langevin simula-
tions underestimate the effect of dynamical fermions
without the 6~—+0 extrapolation. The amount of extra-
polation is increasing with the loop size and a distortion
is likely to set in at some stage making a simple linear ex-
trapolation insufficient.

To compare the efficiency of the second-order
Langevin algorithm and the HMCA, we must take into
account the different lattice volumes: the Langevin simu-
lation used a lattice roughly four times as large. Since

TABLE II. (a) Comparison of the Wilson loop data with two flavors of dynamical Wilson fermions at v=0. 15 and P=5.5. The
first five columns give results obtained using the hybrid algorithm and the last column lists the HMCA results. X;„, is the total num-
ber of matrix inversions required. (b) Same as (a) except that the first two columns contain results for the first-order Langevin algo-
rithm. (c) Same as {a) except that the first three columns give results obtained by Fukugita, Oyanagi, and Ukawa {Ref. 22) using a
second-order Langevin algorithm and the fourth column is their linear extrapolation of the data to 5~=0.

+inv

1X1
1X2
1X3
2X2
2X3
3X3

@=0.40
800

0.4062{2)
0.1555(2)
0.0604(1)
0.0233(1)
0.0035(1)
0.0002(1)

e =0.16
2000

0.5381(8)
0.3076(11)
0.1786(11)
0.1150(11)
0.0457(8)
0.0134(4)

(a)
6 =0.08

4000

0.5388{9)
0.3120(12)
0.1836(12)
0.1217(12)
0.0508(9)
0.0162(5)

a=0.04
8000

0.5384(8)
0.3122(11)
0.1841(11)
0.1224(11)
0.0513(8)
0.0164(4)

@=0.02
16000

0.5377(8)
0.3115(11)
0.1835(11)
0.1218(11)
0.0510(8)
0.0163(5)

HMCA
8000

0.5359{8)
0.3091(11)
0.1812{11)
0.1198(12)
0.0495(8)
0.0155(4)

+inv
1X1
1X2
1X3
2X2
2X3
3X3

5w= 0.005

5000
0.5029(9)
0.2707(12)
0.1476(11)
o.o893(1o)
0.0312{8)
0.0074(5)

(b)
5&=D. 0025

10000
0.5231(8)
0.2943(10)
0.1680(11)
0.1077(10)
0.0420(7)
0.0117(4)

HMCA

8000
0.5359(8)
0.3091(11)
0.1812(11)
0.1198(12)
0.0495{8)
0.0155(4)

+inv
1X1
1X2
1X3
2X2
2X3
3X3

6&=0.02

2000
0.5137(9)
0.2799(8)
01548(8)
0.0947(9)
0.0339(5)
0.0084(6)

6r=0.01

6000
0.5257(7)
0.2958(7)
0.1689{7)
0.1080(9)
0.0419(5)
0.0120(5)

(c)
5&=0.005

8000
0.5330(9)
0.3053(9)
0.1779(8)
0.1165(12)
0.0474(7)
0.0144(7)

~5~=0.0
16000

0.5389(10)
0.3131(13)
0.1848(11)
0.1228(12)
0.0511(8)
0.0161(6)

HMCA

8000
0.5359(8)
0.3091(11)
O. 1812(11)
0.1198(12)
0.0495(8)
0.0155(4)
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the sma11er lattice is larger than the correlation length,
one can view the larger lattice as four independent small-
er lattices. The HMCA will then require only a fourth as
many steps on the 9 X 18 lattice to reach the same statis-
tical errors.

Combining the factors from the number of inversions
(16000/8000) and the increase in statistics with lattice
volume (4) with the V '~ dependence of the HMCA step
size e (0.7), we conclude that the HMCA is about five
times faster than the second-order Langevin algorithm on
a 9 X18 lattice. It might be objected that this crude
analysis has been biased in favor of the HMCA by the as-
sumption that the same inversion accuracy is required in
the two schemes. Fukugita, Oyanagi and Ukawa claim
that one can get away with a much less stringent conver-
gence criterion R when using the Langevin algorithm,
and therefore conclude that the Langevin algorithm is
more efficient than the HMCA. From Table II(c) we note
that Langevin simulations at finite 6~ roughly correspond
to an exact simulation with heavier dynamical fermions.
So it is to be expected that a less stringent criterion for R
can be used, but that as one reduces 6~ the criterion will
have to be tightened up. This effect should be added to
the balance sheet on the side of the Langevin simulations.

The most conservative conclusion we draw from this
exercise is that the HMCA is at least as efficient as the
hybrid and Langevin algorithms on moderate-size lat-
tices. The HMCA gains if an extrapolation to zero-step
size is mandatory. (More so in calculations of the hadron
spectrum and matrix elements, because the external
quark propagators have to be calculated on only one set
of background-field configurations for the HMCA. )

However, it has not been resolved whether such a limit-
ing procedure is really necessary, i.e., whether the
configurations at finite 6~ are in the same universality
class as QCD. The fact that we find good agreement be-
tween the exact HMCA results, the hybrid-algorithm re-
sults with comparable e, and linear extrapolation of the
Langevin algorithm results is encouraging. On the other
hahd, we have to prove that such an agreement holds at
all length scales. We need an unequivocal answer, but a
numerical "proof" is hard to establish. In the best cir-
cumstances, universality will hold when the value of the
limiting parameter (e.g., 5r) is smaller than a certain
nonzero bound. Then the effect of a nonzero-step size
can be absorbed in the renormalization of the bare pa-
rameters of the theory (this includes the number of fer-
mion flavors Nf). In such a happy situation we can for-
get about exact algorithms and extrapolations, and in-
stead focus on showing that the dimensionless predictions
of the theory, such as mass ratios, become constant as
g~0 and m —+0. On the other hand, if the bound is
very sensitive to the value of m, then one has no
recourse but to use an exact algorithm.

0.3—
Hysl. eresis runs f'ur N, — 4

0. 1—

Ti

, J
) v

i)(
X

have too small a spatial volume to allow a study of finite-
temperature effects. Our studies with staggered fermions
suggest, however, that we will make only a small error in
the location of the phase transition. What we cannot
ascertain is the nature of the phase transition, i.e., wheth-
er there is a true transition (of either first or higher order)
or simply a crossover. To answer this would require a
finite-volume scaling analysis. Thus, when in the follow-
ing we use the expression "phase transition, " we are sim-
ply identifying the region of parameter space where there
is at least a rapid crossover and where there may be a
phase transition.

We have studied the phase transition using hysteresis
loops, varying a. at fixed P. The results are shown in Figs.
1 —3. For N, =4 most points are an average over 500 tra-
jectories of length eXnMD =0.7—1.0. The exceptions are
data at 13=5.3 and a.=0.150—0. 156 (1000 trajectories
each), a =0.157, 0.158 (2000 trajectories each), and
jr=0. 1575 (5000 trajectories). The N, =6 results are
averaged over 200 trajectories for all points.

There is a rapid crossover visible at all values of P. Al-
though the hysteresis loops do not show the behavior
characteristic of a first-order transition, that may be an
artifact of frequent tunneling caused by the small spatial
volume. We do have some evidence for a two-phase sys-
tem at Ir=0. 1575 and 13=5.3, both from flip-flops in time
histories and from histograms of the plaquette and the
Wilson line. ' However, this is only suggestive and
confirmation will require a finite-volume analysis.

All the estimates for the transition couplings are com-
plied in Table III and shown in Fig. 4. We have included
the results of Ukawa, who also uses the HMCA, at
P=4. 5 and 5.0 on 4X8 lattices. The table also gives
the known values of Ir, (Refs. 23 and 24) for two degen-
erate flavors of Wilson fermions.

With ~, defined as the limit where the pion mass van-

VI. FINITE-TEMPERATURE PHASE TRANSITION
0. ].4 0. 15

We present results for the location of the finite-
temperature phase transition for N, =4 and 6 with /3 in
the range 5.2—5.6. We have studied these transitions on
6 X4 and 8 X6 lattices. It may seem that these lattices

FIG. 1. The Wilson line as a function of ~ during hysteresis
runs on 4X6 lattices at @=5.2, 5.3, 5.4. Heating and cooling
parts of the cycles are denoted by different symbols.
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FIG. 2. Same as Fig. 1, but for P=5.5, 5.6.

ishes in the T=O theory, the data for N, =4 show that
the phase transition line does not cross the ~, line down
to P=4. 5. This feature was pointed out by Fukugita,
Ohta, and Ukawa and Ukawa, and is in contrast with
what has been observed for staggered fermions. Naively,
in going from low to high temperatures, one might expect
a "chiral-symmetry-restoration" transition along the ~,
line. According to this view, the finite-temperature tran-
sition line should cross the ~, line. This is apparently
what fails to happen for small X, . Figure 4. shows that
the situation is already considerably diferent for N, =6.
We argue in the following that the anomalous behavior at
small N, is an artifact of strong coupling and should

FIG. 4. The values of KT at the N, =4 and 6 6nite-
temperature phase transition as a function of p. Also shown are
the K, values corresponding to the chiral limit at T=O.

disappear as the lattice spacing goes to zero.
First we need a definition of ~, which works at any

temperature, since K, may vary with temperature in addi-
tion to depending on P. This is in contrast with staggered
fermions for which the chiral hmit is at I =0 for all lat-

q
tice spacings and temperatures. Using the divergence of
the rionsinglet axial-vector current, Iwasaki, Tsuboi, and
Yoshic define ~, ai finite temperature as the point
where

(6.1)

0.15 I I I

[
I I I I

)
I

Hysteresis runs for Nt=6
vanishes. In their first quenched calculation with this
definition, they find K, to be almost independent of the
temperature. Unfortunately, no results for the full QCD
theory using this definition of ~, exist yet.

TABLE III ~ Estimates for the location of the finite-
temperature phase transition and K, for two fiavors of Wilson
fermions.

—0.05
Q. 14

Lj

0. 15 0.16 0.17

xp=5 5 oP=5 4 +P=5.3—

I I I I l I I I I I I I I I

4
4
4
4
4

4

4.5
5.0
5.2
5.3
5.4
5.5
5.6

KT

0.195—0.20
0.175-0.18

0.165(2)
0.1S75(10)
0.148(2)
0.136(2)
0.114(3)

Kc

0.206(2)
0.187(1)

0.1686(3)

0.1613(2)

FICx. 3. Same as Fig. 1, but for p=5. 3, 5.4, 5.5, 5.6 on 6X8'
lattices.

6
6
6
6

5.3
5.4
5.5
5.6

=0.1675
0.1615(10)
0.156S(10)
0.1490(15)

0.1686(3)

0.1613(2)
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Second we need to understand how well different
prescriptions for estimating K, coincide with each other.
Wilson fermions have a clear interpretation in terms of
spin and Aavor degrees of freedom, and thus the con-
struction of interpolating field operators to probe the
physics is straightforward. This is achieved, however, at
the cost of explicitly breaking chiral symmetry. As a
consequence, the chiral limit is really only defined in the
continuum limit. The customary definition of an effective
chiral limit as the point where the pion mass vanishes
defines a line v, (P) in the [z,P] plane. But naive lattice
operators do not satisfy chiral Ward identities on this
line, and both perturbative and nonperturbative correc-
tions have to be made before defining physical matrix ele-
ments. Even then the requisite identities are satisfied
only up to corrections vanishing as powers of the lattice
spacing. Therefore, different prescriptions for ~, using
different chiral properties can disagree by O(a) terms.

This discussion is meant to emphasize that at strong
coupling, where one is far from the continuum limit,
there is no unique definition of ~, . The only real avenue
for progress is to do calculations for N, )6.

VII. SCREENING IN THE HEAVY qq POTENTIAL

Confinement in pure gauge QCD is visualized as the
formation of a color-electric Aux-tube between two isolat-
ed static quarks. The strength of this linear confinement
is characterized by the string tension o.. A simple phe-
nomenological spin-independent potential which is con-
sistent with present calculations is V=alr+or The.
picture changes when dynamical quarks are included. At
short distances, the dynamical quarks essentially renor-
malize the gauge coupling, changing the value of a. At
long distances, it becomes favorable for the string to
break due to the creation of a qq pair from the vacuum.
I.inear confinement disappears, and the resulting
configuration is a pair of mesons. This string-breaking
scale is characterized by an effective quark mass m, ff
which is a function of the quark mass m appearing in
the action. For very heavy quarks m, ff =mq, and one ex-
pects little deviation from the pure gauge potential for

separation r (2m, tr/cr, except for a renormalization of
the scale. For light quarks the rise in the potential is ex-
pected to cease at the length scale of confinement, about
1 fm.

Previous studies of screening of the qq potential
have all used approximate algorithms. They have ob-
served a Aattening of the potential at large distances,
while the major effect of dynamical fermions remains an
overall shift in the gauge coupling. We have extended
these calculations by using an exact algorithm, and by
studying the behavior as a function of the quark mass for
fixed p. Unfortunately, it is hard to make a direct com-
parison with the earlier calculations since that requires
(a) extrapolation of data from approximate algorithms
which typically underestimate the effect of dynamical
quarks, and (b) a careful disentangling of the screening
effect produced by dynamical quarks from that produced
by a nonzero temperature.

We have measured up to 4X4 Wilson loops on 8 lat-
tices at six values of x: 0.156, 0.158, 0.160, 0.162, 0.165,
0.167. The gauge coupling was restricted to P=5.3 so as
to avoid substantial finite-temperature effects even at the
smallest quark mass. At x=0. 167, we encountered a
severe critical slowing down of the algorithm caused by
light modes of the Dirac operator. We could not mea-
sure the autocorrelation reliably, but it might be as large
as a few hundred trajectories. This is an example of the
shortcomings of present fermion algorithms at small
quark masses as discussed in Sec. III.

Our results are presented in Table EV. The data is not
sufhcient to allow an extraction of the potential. Instead
we study a simpler problem that exposes the screening
effect of the dynamical quarks: the behavior of Wilson
loops as a function of the quark mass. For every Wilson
loop we have calculated in the presence of dynamical
quarks, we find the matching P of the pure gauge theory
that produces the same answer. The shift in the gauge
coupling b,P is tabulated as a function of the loop size
and the quark mass in Table V. Pure gauge theory simu-
lations needed for this matching have been performed on
8 lattices with p in the range [5.46,5.7] in increments of
0.02 (0.025 for p) 5.6).

TABLE IV. Wilson loop expectation values for two Aavors of Wilson fermions as a function of the
loop size and a. The data is for 8 lattices with antiperiodic boundary conditions for the Dirac operator
in all four directions. X,„„is the total number of trajectories in the data sample.

(Wi1son loop) for P=5.3 and N&=2

+traj
1X1
1X2
1X3
1X4
2X2
2X3
2X4
3X3
3X4
4X4

0.156
900

0.4847(3)
0.2472(3)
0.1274(3)
0.0658(2)
0.0712(2)
0.0214{1)
0.0065(1)
0.0040(1)
0.0007(1)
0.0000(1)

0.158
1340

0.4909(2)
0.2548(3)
0.1337(2)
0.0703(2)
0.0770(2)
0.0245(1)
0.0079(1)
0.0051{1)
0.001 1(1)
0.0001(1)

0.160
1020

0.4957{2)
0.2606(3)
0.1386{2)
0.0740(2)
0.0812(2)
0.0267(1)
0.0089(1)
0.0058{1)
0.0013(1)
0.0002(1)

0.162
1350

0.5016(4)
0.2679(5)
0.1451(4)
0.0788(3)
0.0870(4)
0.0299(2)
0.0105(2)
0.0070(1)
0.0016(1)
0.0004(1)

0.165
1710

0.5152(6)
0.2852(5)
0.1604(4)
0.0905{3)
0.1014{4)
0.0385{3)
0.0149(2)
0.0105(1)
0.0031(1)
0.0007(1)

0.167
2370

0.5299(6)
0.3047(4)
0.1785(4)
0.1050(4)
0.1195(4)
0.0507(3)
0.0219(2)
0.0169(2)
0.0060(1)
0.0020(1)
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TABLE V. The shift in gauge coupling necessary to rnatch the Wilson loop results for two flavors of
dynamical quarks with those for the pure gauge theory, as a function of the loop size and K.

5/3 from linear interpolation

K

1X1
1X2
1X3
1X4
2X2
2X3
2X4
3X3
3X4
4X4

0.156
0.155(1)
0.160(1)
0.162(1)
0.162(1)
0.165(1)
0.166(1)
0.165(2)
0.171(2)
0.167(8)

0.158
0.177(1)
0.184(1)
0.187(1)
0.188(1)
0.192(1)
0.197(1)
0.200(2)
0.202(2)
0.209(7)

0.160
0.196(1)
0.203(1)
0.206(1)
0.208(1)
0.212(1)
0.216(1)
0.218(2)
0.222(2)
0.224(4)
0.209(27)

0.162
0.218(2)
0.226(2)
0.229(2)
0.231(2)
0.236(2)
0.240(2)
0.243(2)
0.246(3)
0.243(7)
0.266(13)

0.165
0.266(2)
0.277(1)
0.282(1)
0.284(1)
0.289(1)
0.295(2)
0.298(2)
0.301(2)
0.306(4)
0.308(13)

0.167
0.320(2)
0.335(1)
0.341(1)
0.344(2)
0.353(2)
0.363(2)
0.368(2)
0.375(2)
0.381(3)
0.401(6)

For heavy quarks, the lowest-order hopping-parameter
expansion predicts the coupling-constant renormalization
to be

AP(1 X 1 loop ) =481~ (7.1)

Since our observed values of'DP(l X 1 loop) are much
larger than the predictions of (7.1), it is clear that the
quark masses we have used are sufficiently light to invali-
date the lowest-order hopping-parameter expansion.

For large Wilson loops, the effect of string breaking
should show up in our data as b,p~ oo when area —+ oo,
with the rate of growth of EP with the loop size a func-
tion of the quark mass. Were the only eA'ect of dynamical
fermions a renormalization of the gauge coupling, bp
would become a constant for loops beyond a certain size
typified by the confinement scale. As the results in Table
V and Fig. 5 show, for heavy quarks our data cannot rule
out this latter possibility; a rise in Ap with the loop size is
barely discernible. But for light quarks (our largest value

4~ p
33-3X. (7.2)

of K=0. 167 roughly corresponds to the strange-quark
mass) we do see the expected screening behavior —b,p in-
creases with the area of the loop.

The above results have implications for other physical
observables such as the hadron spectrum. To see a
departure from the behavior obtained in the quenched
approximation, the potential felt by the quarks at the ha-
dronic scale must be modified in shape and not just shift-
ed by a renormalization of the gauge coupling. We see
that this does not happen if the sea quarks are much
heavier than the physical strange quark. Unfortunately,
it is close to this mass that all the currently popular algo-
rithms, approximate or exact, run out of steam.

What happens if we look at bp(~, )7 ~, is expected to
be determined by the behavior of the theory at the ha-
dronic scale. At 1 loop the A parameter of QCD depends
on the bare coupling as

so in the asymptotic scaling region we expect

bp(a. , ) = 2%~

33—2Xf
(7.3)

0.06—

0.0~

0.02—
~+ 0

X
I.oop Area

I JJ
—0 10 20

lc == 0. 1,o6(x);0.150(-');0.160(o);0.162(x);0.& 65(+);0.167(+ )

We have ~, =0. 1686(3) from our hadron spectrum calcu-
lation. It roughly agrees with the quenched simulation
result, v, =0.1692(1) at P=5.7 (Ref. 30). The matching
value, b,p(v, ) =0.4, is well short of the answer 0.64 anti-
cipated by (7.3) and tells us that we are far away from the
asymptotic scaling region.

We make one Anal observation. Upon extrapolating
our results to the chiral limit, we find AP(1 X 1

loop) =0.38 and b,P(2 X 2 loop) =0.42. These values
bracket b,p(lr, ) and imply that the hadronic scale at
present couplings is about one to two lattice spacings —a
stark reminder of the coarseness of the lattice.

VIII. COMPARISON OF WILSON AND STAGGERED
FERMION RESULTS

FIG. 5. 6/3 —EP(1 X 1 loop) vs loop area for the six values of
~ at P=5.3. No error bars are plotted since the data are given
in Table V.

With the limited data available we can make a crude
comparison between results for two flavors of Wilson and
staggered fermions at P=5. 3. For Wilson fermions we
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use the quark mass

1 1 1m~=ln 1+—
2 IC Kc

(8.1)

With ~, =0.1686(3), the N, =4 transition for two Ilavors
of Wilson fermions corresponds to m~=0. 76T, . On the
other hand, the N, =4 transition for two flavors of stag-
gered fermions is at staggered quark mass ms=0. 14T,
(Ref. 31). The quark mass renormalization is not identi-
cal for the two fermion schemes. In perturbation theory
m~=(1+1.33/P+ )ms (Ref. 32), while in the ap-
proximate scaling region (@~6.0) quenched calculations
typically give m~=2ms (Ref. 33). The difference ob-
served here is, however, much larger and shows that
@=5. 3 is not close to the scaling region.

A related piece of information is the value of the p
mass extrapolated to the chiral limit for the two fermion
schemes. In lattice units, M =1.3 for staggered fer-

P
mions, while M =0.5 for Wilson fermions. Thus if

P
we use M to set the scale, we find a much larger lattice
spacing for staggered fermions than for Wilson fermions.
The staggered-fermion scale is closer to that expected of
quenched simulations at @=5.3.

The scale of the theory is governed by the gauge cou-
pling P and the vacuum-polarization effects of dynamical
quarks. The above comparison shows that the use of
staggered fermions underestimates the effect of dynami-
cal quarks at P=5.3. This is not unexpected, since the
staggered-fermion flavor symmetry is exact only in the
limit of vanishing lattice spacing. At finite lattice spacing
one can roughly explain the difference by considering the
effective number of staggered-fermion flavors to be less
than its naive value and/or the effective quark mass to be
greater than m . Both adjustments, decreasing the num-
ber of effective flavors and increasing the effective quark
mass, reduce the effect of the quark loops.

What is perhaps surprising in the above analysis is the
size of the difference between the two types of fermions.
Based on quenched calculations, a reliable signature of
the onset of scaling (to within 10% accuracy) is the agree-
ment between Wilson and staggered-fermion results.
Clearly we have a long way to go before seeing such scal-
ing.

IX. CONCLUSIONS

We have presented efficient algorithms for calculating
the inverse and determinant of the Dirac operator for
Wilson fermions. The inversion algorithm achieves com-
parable efficiency to the best ILU algorithm while being
very simple to implement on vector and parallel
machines. Progress remains to be made in reducing the
critical slowing down as m ~0.

The decision whether to use the HMCA or an approxi-
mate algorithm is not resolved by our study. In a partic-
ular example, the HMCA outperformed the Langevin al-
gorithm, but it is crucial to determine the mass depen-
dence of the latter to make a comparison useful for future
research. An approximate algorithm will suffer from the
same critical slowing down in matrix inversions. The
possible advantage over the HMCA may come in the
number of steps taken between statistically independent
configurations. We doubt whether approximate algo-
rithms can gain overwhelmingly over the HMCA depen-
dence of nM& ~ V' "m . The crucial issue, however,
is whether there is a need for the expensive extrapolation
to zero-step size, or whether the approximate algorithm
simulates a theory which lies in the same universality
class as QCD.

Data for the location of the finite-temperature transi-
tion for N, =4 and 6 over the interesting region of P is
given. The transition appears to be discontinuous, but in
the absence of a finite-volume study we can make no
definite conclusions.

Our data show the expected screening behavior in the
qq potential. It also shows that the effect of dynamical
quarks on the hadron spectrum will be hard to quantify
unless simulations are done at quark masses comparable
to or smaller than the strange-quark mass. Extrapola-
tions from heavier masses towards the chiral region are
unlikely to yield results quantitatively different from the
quenched calculations.

Our study also highlights the large difference between
results obtained using Wilson and staggered fermions at
f3=5.3. This gauge coupling is too strong and lies well
outside the scaling region. We have evidence that the
staggered-fermion flavor symmetry is badly broken, and
we believe that the Wilson fermion chiral symmetry is
also badly broken. Realistic simulations at weaker cou-
plings, smaller quark masses and bigger lattices will have
to await superior methods and/or faster computers.

We have analyzed the performance of the HMCA for
Wilson fermions and find that it lives up to its billing of
combining the best features of the molecular dynamics
and the Langevin algorithms. Just as in the case of stag-
gered fermions, removing the small-step-size errors of the
hybrid preprocessor leads to little loss in performance;
acceptance rates of =60—70% are obtained in the global
accept/reject step on 8 lattices without having to make
the step size smaller than that used in the uncorrected
hybrid algorithm. However, the HMCA is not a panacea
as the V m ' scaling of the required computer time

q

shows.
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