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We present details of a stochastic generalization of the multigrid method, called multigrid Monte
Carlo (MGMC), that reduces critical slowing down in Monte Carlo computations of lattice field
theories. For Gaussian (free) fields, critical slowing down is completely eliminated. For a ¢* model,
numerical experiments show a factor of =~ 10 reduction, over a standard heat-bath algorithm, in the
CPU time needed to achieve a given accuracy. For the two-dimensional XY model, experiments
show a factor of =~ 10 reduction on the high-temperature side of criticality, growing to an unbound-
ed reduction in the low-temperature regime. The algorithm is also applicable to nonlinear o mod-
els, and to lattice gauge theories with or without bosonic matter fields.

I. INTRODUCTION

Monte Carlo computations of critical phenomena in
statistical mechanics! and of the continuum limit in
quantum field theory? have been greatly hampered by
critical slowing down. In the traditional Monte Carlo al-
gorithms, the autocorrelation time 7—that is, roughly
speaking, the time needed to produce one ‘‘statistically
independent” data point—grows rapidly as the critical
point is approached, causing a corresponding rapid in-
crease in the statistical error bars.® It is thus of consider-
able importance to devise new Monte Carlo algorithms
having reduced critical slowing down.

In this paper we describe a new class* of Monte Carlo
methods, called ‘“multigrid Monte Carlo” (MGMC)
methods, that should have shorter autocorrelation times
in the critical region. For Gaussian (free) fields, a
rigorous analysis (Secs. VII and VIII below) shows that
critical slowing down is completely eliminated; the gain
in efficiency over traditional algorithms thus grows
without bound as the critical point is approached. For ¢*
fields, numerical experiments* show a gain in efficiency
(measured in CPU units), over a single-site heat-bath al-
gorithm, by a factor of =10. For the two-dimensional
plane-rotator (XY) model, numerical experiments® show
an efficiency gain of =10 on the high-temperature side of
criticality (vortex regime), growing to an unbounded gain
in the low-temperature (spin-wave) regime. (These nu-
merical results are reviewed briefly in Sec. IX.) The
MGMC idea applies to many other models, including
nonlinear ¢ models and lattice gauge theories with or
without bosonic matter fields. The performance of
MGMC methods for these models is currently under in-
vestigation.®’

The multigrid Monte Carlo method is a stochastic gen-
eralization of the multigrid (MG) method for solving
finite-difference equations.® It is philosophically similar
to, but technically quite different from, the block-spin re-
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normalization group.’ In the remainder of this introduc-
tion we review the causes of critical slowing down in the
traditional Monte Carlo algorithms, and sketch the philo-
sophy leading to MGMC methods. We also compare our
work with other recent attempts at ‘“‘collective-mode
Monte Carlo”!° methods, such as the Fourier-accelerated
Langevin,!! microcanonical, and hybrid'? algorithms.

The critical slowing down of the traditional
algorithms—such as the single-site Metropolis or heat-
bath algorithms, or the unaccelerated Langevin
method—arises fundamentally from the fact that their
updates are local: in a single step of the algorithm, “in-
formation” is transmitted from a given site only to its
nearest neighbors. Crudely one might guess that this “in-
formation” executes a random walk around the lattice.
In order for the system to evolve to an ‘“‘essentially new”
configuration, the “information” has to travel a distance
of order &, the (static) correlation length. One would
guess, therefore, that 7~ &2 near criticality. This guess is
correct for the Gaussian model (free field);!? in general,
the correct statement is that 7~ &%, where z is a dynami-
cal critical exponent'* that for most models of interest is
close to 2 (Ref. 15). It follows that the computational
work needed to get one “‘statistically independent” sam-
ple from a d-dimensional lattice of linear size L grows as
~L%*2 972 (Ref. 16). This is an enormous computa-
tional demand.

What is to be done? Our knowledge of the physics of
critical slowing down tells us that the slow modes are the
long-wavelength modes, if the updating is purely local.
The natural solution is therefore to speed up those modes
by collective-mode (nonlocal) updating.!® It is necessary,
then, to identify physically the appropriate collective
modes, and to devise an efficient computational algorithm
for speeding up those modes. These two goals are unfor-
tunately in conflict; it is very difficult to devise
collective-mode algorithms that are not so nonlocal that
their computational cost outweighs the reduction in criti-
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cal slowing down. Specific implementations of the
collective-mode idea are thus highly model dependent.
At least three such algorithms have been invented so far:
Fourier acceleration,'”!? the multigrid Monte Carlo*~’
(MGMC) algorithm, and the Swendsen-Wang algorithm
and its generalizations.!” 2> Fourier acceleration and the
MGMC algorithm are very similar in spirit (though quite
different technically). Their performance is thus prob-
ably qualitatively similar, in the sense that they probably
work well for the same models and work badly for the
same models. We discuss this in more detail, along with
the advantages and disadvantages of each algorithm, in
Sec. X.

The phenomenon of critical slowing down is not
confined to Monte Carlo simulations: very similar
difficulties were encountered long ago by numerical
analysts concerned with the numerical solution of partial
differential equations. An ingenious solution, now called
the multigrid (MG) method, was proposed in 1964 by the
Soviet numerical analyst Fedorenko:*® the idea is to con-
sider, in addition to the original (“fine-grid”’) problem, a
sequence of auxiliary “coarse-grid” problems that ap-
proximate the behavior of the original problem for exci-
tations at successively longer length scales (a sort of
“coarse-graining” procedure). The local updates of the
traditional algorithms are then supplemented by coarse-
grid updates. To a present-day physicist, this philosophy
is remarkably reminiscent of the renormalization
group-—so it is all the more remarkable that it was invent-
ed two years before the work of Kadanoff?’ and seven
years before the work of Wilson.?® After a decade of dor-
mancy, multigrid was revived in the mid 1970s,?® and was
shown to be an extremely efficient computational
method. In recent years, multigrid methods have become
an active area of research in numerical analysis, and have
been applied to a wide variety of problems in classical
physics.**737 In this paper we wish to show how a sto-
chastic generalization of the multigrid method can be ap-
plied to problems in statistical physics, and hence also
Euclidean quantum physics.

This generalization is based on the strong analogy be-
tween solving lattice systems of equations (such as the
discrete Laplace equation) and making Monte Carlo
simulations of lattice random fields. Indeed, given a
Hamiltonian H (¢), the deterministic problem is that of
minimizing H (¢), while the stochastic problem is that of
generating random samples from the Boltzmann-Gibbs
probability distribution e PH® The statistical-
mechanical problem reduces to the deterministic one in
the zero-temperature limit 8— + «.

Many (but not all) of the deterministic iterative algo-
rithms for minimizing H (¢) can be generalized to sto-
chastic iterative algorithms—that is, dynamic Monte
Carlo methods—for generating random samples from
e PH@)  For example, the Gauss-Seidel algorithm for
minimizing H and the heat-bath algorithm for random
sampling from e “H are very closely related. Both begin
with a trial configuration ¢ and update this
configuration by sweeping successively through the lat-
tice, working on one site x at a time. The Gauss-Seidel
algorithm updates ¢, so as to minimize the Hamiltonian

JONATHAN GOODMAN AND ALAN D. SOKAL 40

H(¢)=H($,,{¢,},.,) when all the other fields {4, Jyrx
are held fixed at their current values. The heat-bath
method gives ¢, a new random value (independent of the
old value) chosen from the probability distribution
exp[ —H(¢,,{¢,},.,)], with all the fields {¢,},., again
held fixed. As f— + o the heat-bath algorithm ap-
proaches the Gauss-Seidel algorithm.

In this paper we show that the deterministic multigrid
method has likewise a stochastic generalization, which
we call the multigrid Monte Carlo MGMC) method. We
explain this generalization in detail in Sec. VII, but let us
give the basic idea now. The deterministic multigrid al-
gorithm for minimizing H [see (3.1)] involves Gauss-
Seidel sweeps on a sequence of auxiliary coarse-grid prob-
lems H,; (I =grid index), together with operations for
passing from grid / to grid / —1 and vice versa. The mul-
tigrid Monte Carlo algorithm for generating random
samples from e ~PH [see (7.11)] is identical in structure:
the only difference is that the Gauss-Seidel sweeps for
minimizing H, are replaced by heat-bath sweeps for gen-

. —BH, . .
erating random samples from e . It is far from obvi-
ous that this algorithm is correct—i.e., that its equilibri-
um distribution is the desired distribution e ~#7__but it
is true, as we show in Sec. VII. The proof is based on the
idea of partial resampling: this is a generalization of
heat-bath updating in which we focus on a set of field
variables rather than only one, and the new values need
not be independent of the old values. In the MGMC
method the resampling is applied to the entire coarse-grid
field.

In this paper we describe versions of the MGMC algo-
rithm for free fields, P(¢) models, nonlinear o-models,
and lattice gauge theories with or without bosonic matter
fields. (We do not yet know how to include dynamical
fermions.)

In the free-field (Gaussian) case, the analogy between
minimizing H and generating random samples from e ~#H
can be made precise by using the formalism of second
quantization. In fact, we show that the autocorrelation
time of any stochastic linear iteration (e.g., heat bath or
MGMC) is equal to the relaxation time of the corre-
sponding deterministic linear iteration (Gauss-Seidel or
MG). In particular, we can analyze exactly the Gaussian
MGMC algorithm—proving rigorously the absence of
critical slowing down—as well as the Gaussian successive
over-relaxation (SOR) Monte Carlo algorithm of Adler®®
and Whitmer.>’

Let us emphasize that although the multigrid method
and the block-spin renormalization group (RG) are based
on very similar philosophies—dealing with a single length
scale at a time—they are in fact very different. In partic-
ular, the conditional coarse-grid Hamiltonian employed
in the MGMC method is not the same as the renormal-
ized Hamiltonian given by a block-spin RG transforma-
tion. The RG transformation computes the marginal,
not the conditional, distribution of the block means—
that is, it integrates over the complementary degrees of
freedom, while the MGMC method fixes these degrees of
freedom at their current (random) values. Our condition-
al Hamiltonian is given by an explicit finite expression,



40 MULTIGRID MONTE CARLO METHOD. CONCEPTUAL FOUNDATIONS

while the marginal (RG) Hamiltonian cannot be comput-
ed in closed form. The failure to appreciate these distinc-
tions has led to much confusion in the literature; we re-
turn to this point in Sec. X.

Let us now outline the contents of this paper.

Section II is a pedagogical introduction to multigrid
methods in the simplest case, namely the solution of
deterministic linear systems of equations. We first review
briefly one traditional iterative method for solving linear
systems (the Jacobi method) and explain the physical ori-
gin of critical slowing down. Further information on the
traditional iterative methods (Jacobi, Gauss-Seidel, and
SOR) can be found in the excellent books of Varga,"'0
Schwarz, Rutishauer, and Stiefel,*! Wachspress,*? Young
and Gregory,* and Young,** among others. Next we
define and explain the multigrid algorithm and discuss
some of its ingredients. Of course, we can only scratch
the surface of what is now an extremely active area of
numerical-analysis research, and we strongly suggest that
the reader consult other references to obtain a broader
(and perhaps more balanced) perspective. An excellent
introduction to multigrid methods is given by Briggs;*
we also recommend the articles of Brandt*® and Chaps.
2-4 of the book of Hackbusch.’*® More advanced or spe-
cialized topics can be found in various conference
proceedings,3! 37 as well as in the remainder of the book
of Hackbusch.?® The reader who is already familiar with
multigrid methods can skim lightly over Sec. II.

In Secs. III-V we extend the deterministic multigrid
method to nonlinear systems of equations, as would arise
from minimizing a nonquadratic Hamiltonian. We treat
P(¢) models (Sec. III), nonlinear o models (Sec. IV), and
lattice gauge theories (Sec. V). Our main goal here is to
present the interpolation operators for each type of model:
these operators play an identical role in the deterministic
(MG) and stochastic (MGMC) algorithms, and it is con-
ceptually clearer to introduce them first in the deter-
ministic case, without the additional complications of
stochasticity. The reader who is anxious to get to the
Monte Carlo case as quickly as possible is advised, on a
first reading, to read Secs. II and III and then skip direct-
ly to Sec. VII.

In Sec. VI we review the basic principles of dynamic
Monte Carlo methods, and define the quantities which
measure the critical slowing-down. In Sec. VII we dis-
cuss the relation between deterministic algorithms for
minimizing a Hamiltonian and stochastic algorithms for
generating random samples from the Boltzmann-Gibbs
distribution; we explain the concept of partial resam-
pling; and we introduce the multigrid Monte Carlo
(MGMC) algorithm and prove its correctness. In Sec.
VIII we consider an important class of dynamic Monte
Carlo methods—the stochastic linear iterations for
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Gaussian models—and we show how the behavior of the
stochastic algorithm is completely determined by the be-
havior of the corresponding deterministic algorithm for
solving linear equations. This proves the absence of criti-
cal slowing down for the Gaussian MGMC algorithm.

In Sec. IX we review the results of some numerical ex-
periments* with the MGMC method on a two-
dimensional ¢* model, and give preliminary results of ex-
periments in progress™® on the two-dimensional XY and
0O(4) models. We also give heuristic arguments that the
MGMC method should completely eliminate critical
slowing down (except for a possible logarithm) in all
asymptotically free theories with a continuous symmetry
group. In Sec. X we compare the MGMC method to
other proposals for ‘collective-mode Monte Carlo”
methods, summarize our findings, and discuss prospects
for the future.

In the Appendix we give the details of our heat-bath al-
gorithm for ¢* models.

The logical organization of this paper is summarized in
Table 1.

Subsequent papers in this series will apply the MGMC
method to the two-dimensional plane-rotator (XY) mod-
el,’> the two-dimensional O(4)-symmetric nonlinear o
model,® and the U(1) pure lattice gauge theory,” among
others, and present rigorous convergence proofs for
linear MG and the Gaussian MGMC algorithm.*’

II. DETERMINISTIC MULTIGRID METHODS:
LINEAR SYSTEMS

In this section we give a pedagogical introduction to
multigrid methods in the simplest case, namely the solu-
tion of deterministic linear systems of equations. The
reader who is already familiar with multigrid methods
can skim lightly over this section. The reader who is anx-
ious to get to the stochastic (Monte Carlo) case as quickly
as possible is advised to read this section and the next
one, and then skip directly to Sec. VII.

A. Traditional iterative methods and critical slowing down

Consider, for purposes of exposition, the lattice Pois-
son equation —A¢=f in a region Q CZ? with zero Dir-
ichlet data. Thus, the equation is

(—A¢), =2d¢,— 3

x"x—x'|=1

b.=f. 2.1)

for x €Q, with ¢, =0 for x €Q. Our goal is to devise a
rapidly convergent iterative method for solving numeri-
cally the linear system (2.1) (Ref. 48).

This is a special case of the more general problem of
solving a linear system

TABLE 1. Logical structure of this paper.

Free field

P(¢) model

o model Gauge theory

Sec. II
Secs. VII, VIII

Deterministic (MG)
Stochastic (MGMC)

Sec. III
Secs. VII, IXA

Sec. IV
Secs. VII, IXB, IXC

Sec. V
Secs VIII, IXC
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Ad=f, (2.2)

where A is a given nonsingular matrix and f is an arbi-
trary vector. In order to solve (2.2) we shall consider
first-order stationary linear iterations of the general form

p"tTV=M¢"+Nf , 2.3)

where ¢'©) is an arbitrary initial guess for the solution.
Obviously, we must demand at the very least that the
true solution = A ~!f be a fixed point of (2.3); imposing
this condition for all f, we conclude that

N=(I—-M)A™!. (2.4)

The iteration (2.3) is thus completely specified by its itera-
tion matrix M. Moreover, (2.2)-(2.4) imply that the error
eW=¢"— ¢ satisfies

e(n +1)=Me(n) (2.5)
and hence
e(n)zMne(O) . (2.6)

That is, the iteration matrix is the amplification matrix
for the error. It follows easily that the iteration (2.3) is
convergent for all initial vectors ¢'® if and only if the
spectral radius p(M)=lim, , , ||M"|'" is <1; and in
this case the convergence is exponential with asymptotic
rate at least p(M), i.e.,

6" — || < KnPp(M)" (2.7)

for some K,p < o (K depends on ¢'?).%

Now let us return to the specific system (2.1). One sim-
ple iterative algorithm arises by solving (2.1) repeatedly
for ¢, :

;n+l)=_217 [ S (2.8)

¢+ fx ] :
x"x—x'|=1

(2.8) is called the Jacobi iteration. It is convenient to con-
sider also a slight generalization of (2.8): let O<w =<1,
and define

;n+1):(1_w)¢;n)+£ [ > (2.9)

(m) 4 .
2d x":x —x'|=1 ¢X fx J
(2.9) is called the damped Jacobi iteration with damping
parameter w; for =1 it reduces to the ordinary Jacobi
iteration.

It can be shown® that the spectral radius p(M pl,w) Of
the damped Jacobi iteration matrix is less than 1, so that
the iteration (2.9) converges exponentially to the solution
¢. This would appear to be a happy situation. Unfor-
tunately, however, the convergence factor p(Myp; ) is
usually very close to 1, so that many iterations are re-
quired in order to reduce the error ||¢'” —¢|| to a small
fraction of its initial value. Insight into this phenomenon
can be gained by considering the simple model problem in
which the domain Q is a square {1,...,L}
X{l1,...,L}. In this case we can solve exactly for the
eigenvectors and eigenvalues of My ,: they are

P =sinp, x, sinp,x, , (2.10a)
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Ap=(1—a>)+%(cosp,+cosp2) , (2.10b)
where
__ 7 2 L
PoP2 = T U T U L+

The spectral radius of Mpy; , is the eigenvalue of largest
magnitude, namely

PMpy ) =ArjL +1),m/L+1)

=1—w|l1—cos

o
L+1
=1-0(L7?%). (2.11)
It follows that O(L?) iterations are needed for the
damped Jacobi iteration to converge adequately. This
represents an enormous computational labor when L is
large.

It is easy to see what is going on here: the slow modes
(A,=~1) are the long-wavelength modes (p,,p, <<1). [If
w=1, then some modes with wave number
p =(py,p,)=(m,m) have eigenvalue kpz—l and so also
are slow. This phenomenon can be avoided by taking
significantly less than 1; for simplicity we shall hence-
forth take =, which makes A, >0 for all p.] It is also
easy to see physically why the long-wavelength modes are
slow. The key fact is that the (damped) Jacobi iteration is
local: in a single step of the algorithm, “information” is
transmitted only to nearest neighbors. One might guess
that this “information” executes a random walk around
the lattice; and for the true solution to be reached, “infor-
mation” must propagate from the boundaries to the inte-
rior (and back and forth until “equilibrium” is attained).
This takes a time of order L2, in agreement with (2.11).
(We remark that this random-walk picture can be made
rigorous.’!)

This is an example of a critical phenomenon, in precise-
ly the same sense that the term is used in statistical
mechanics.’”> The Laplace operator 4 =—A is critical,
inasmuch as its Green function 4! has long-range
correlations (power-law decay in dimension d >2, or
growth in d =2). This means that the solution of
Poisson’s equation in one region of the lattice depends
strongly on the solution in distant regions of the lattice;
“information” must propagate globally in order for
“equilibrium” to be reached. Put another way, excita-
tions at many length scales are significant, from one lat-
tice spacing at the smallest to the entire lattice at the
largest. The situation would be very different if we were
to consider instead the Helmholtz-Yukawa equation
(—A+m?)p=f with m >0: its Green function has ex-
ponential decay with characteristic length m 1 so that
regions of the lattice separated by distances >>m ~! are
essentially decoupled. In this case, “information” need
only propagate a distance of order min(m ~',L) in order
for “equilibrium” to be reached. This takes a time of or-
der min(m ~2,L?), an estimate which can be confirmed
rigorously by computing the obvious generalization of
(2.10) and (2.11). On the other hand, as m —0 we recov-
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er the Laplace operator with its attendant difficulties:
m =0 is a critical point. We have here an example of crit-
ical slowing down in classical physics.

B. The multigrid method

The general structure of a remedy should now be obvi-
ous to physicists reared on the renormalization group:
do not try to deal with all length scales at once, but define
instead a sequence of problems in which each length
scale, beginning with the smallest and working towards
the largest, can be dealt with separately. An algorithm of
precisely this form was proposed in 1964 by the Soviet
numerical analyst Fedorenko,?® and is now called the
multigrid method.

Note first that the only slow modes in the damped
Jacobi iteration are the long-wavelength modes (provided
that w is not near 1): as long as, say max(p,,p,)=7/2,
we have 0=A, =3 (for ©=1), independent of L.. It fol-
lows that the short-wavelength components of the error
eM=¢"—¢ and hence also of the residual
riW= 46" — f = de'™, can be effectively killed by a few
(say, five or ten) damped Jacobi iterations. The remain-
ing error (or residual) has primarily long-wavelength
components, and so is slowly varying in x space. But a
slowly varying function can be well represented on a
coarser grid: if, for example, we were told e\ only at
even values of x, we could nevertheless reconstruct with
high accuracy the function e!" at all x by, say, linear in-
terpolation. This suggests an improved algorithm for
solving (2.1): perform a few damped Jacobi iterations on
the original grid, until the error and residual are smooth
in x space; then transfer (restrict) the residual to a coarser
grid and use it as the right-hand side for a Poisson equa-
tion on the coarser grid; perform a few damped Jacobi
iterations on the coarser grid; and then transfer (interpo-
late) the result back to the original (fine) grid and add it
to the current approximate solution.

There are two advantages to performing the damped
Jacobi iterations on the coarse grid. Firstly, the itera-
tions take less work, because there are fewer lattice points
on the coarse grid (27 ¢ times as many for a factor-of-2
coarsening in d dimensions). Secondly, with respect to
the coarse grid the long-wavelength modes no longer

have such long wavelength: their wavelength has been

halved (i.e., their wave number has been doubled). This
suggests that those modes with, say, max(p,,p,)=7/4
can be effectively killed by a few damped Jacobi iterations
on the coarse grid. And then we can transfer the remain-
ing (smooth) residual to a yet coarser grid, and so on re-
cursively. These are the essential ideas of the multigrid
method.

Let us now give a precise definition of the general mul-
tigrid algorithm. Our goal is to solve the equation
A¢=f, where A is a nonsingular linear operator from an
N-dimensional real vector space U to another N-
dimensional real vector space V. (It clarifies matters both
mathematically and physically to distinguish between U
and V.) In order to specify the algorithm we must speci-
fy the following ingredients:

(1) A sequence of coarse-grid

spaces Uy =U,
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LUy and V=V, Vi1, Vaygeore ooy
Vy,. Here dimU;=dimV;=N, for 0</=M, and N
=Ny >Ny 1>Npyp_p> - >N,

(2) Restriction (or “averaging”)
Vi—V,_for1=]1=M.

(3) Prolongation (or ‘“‘interpolation”) operators p,;_i:
U_,—»Ufor1<I=M.

(4) Coarse-grid operators A;: U,—V,; for 0] <M —1.
Of course we take A, = A. Each of the operators 4, is
assumed to be nonsingular.

(5) Basic (or “smoothing”) iterations §;: U, XV;—U,
for 01/ <M. The role of &, is to take an approximate
solution ¢; to the equation 4;¢,=f; and compute a new
(hopefully better) approximate solution ¢;'=&8;(¢;,f;).
(For the present we can imagine that §,; consists of a few
iterations of damped Jacobi for the operator A4;.) Most
generally, we shall use two smoothing iterations, §§¢ and
$Post: they may be the same, but need not be.

(6) Cycle control parameters (integers) y,=1 for
1=<1=<M, which control the number of times that the
coarse grids are visited.

We discuss these ingredients in more detail below.

The multigrid algorithm is then defined recursively>* as
follows:

Upr—15Upr—25 - -

operators r;_

procedure mgm(/,¢, f)
comment This algorithm takes an approximate solution
¢ to the equation A;¢=f, and overwrites

it with a better approximation .

¢<—S1"(¢, f)
if / >0 then
d——r_1 (41— f)
PO
for j =1 until y;, do mgm(/ —1,,d)
endif
¢+ Py 1Y
¢S, f)
end (2.12)

Here is what is going on: We wish to solve the equation
A,;6=f, and are given as input an approximate solution.
The algorithm consists of three steps.

(1) Presmoothing. We apply a few iterations of the
basic smoother (e.g., damped Jacobi) to the given approx-
imate solution. This produces a better approximate solu-
tion in which the high-frequency (short-wavelength) com-
ponents of the error have been reduced significantly. The
low-frequency (long-wavelength) components of the error
are, however, still large.

(2) Coarse-grid correction. We compute the residual
A;¢—f and transfer it to the next coarser grid (level
[ —1) using the restriction operator r,_; ;. We then use
the result d as the right-hand side of the auxiliary equa-
tion A4;,_;¥=d, which we solve approximately by v,
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iterations of the multigrid algorithm at level / —1 (recur-
sive definition) with an initial guess ¥=0. We then
transfer this approximation solution ¥ back to grid / us-
ing the prolongation operator p;,;_,, and use it to correct
our approximate solution ¢. The goal of this coarse-grid
correction is to reduce significantly the low-frequency
components of the error in ¢ (hopefully without creating
large new high-frequency error components).

(3) Post smoothing. We apply, for good measure, a few
more iterations of the basic smoother. (This would pro-
tect against any high-frequency error components which
may inadvertently have been creatéd by the coarse-grid
correction step.)

The foregoing constitutes, of course, a single step of
the multigrid algorithm. In practice this step would be
repeated several times, as in any other iteration, until the
error has been reduced to an acceptably small value. The
advantage of multigrid over the traditional (e.g., damped
Jacobi) iterative methods is that, with a suitable choice of
the ingredients »,_; ;, p;;—;, A; and so on, only a few
(maybe five or ten) iterations are needed to reduce the er-
ror to a small value, independent of the lattice size L.
This contrasts favorably with the behavior (2.11) of the
damped Jacobi method, in which O(L?) iterations are
needed.

For readers who prefer mathematical rather than algo-
rithmic definitions, we give the following equivalent
definition of the multigrid iteration: Assume that each
smoother §7'¢ is a stationary linear iteration of the form

ST@, f1)=5 ¢, + TP f, (2.13)
with
Tpe=I—Spe)A; ", (2.14)

and analogously for §7°'. Then the multigrid iteration
mgm(l,-,-) is likewise a stationary linear iteration of the
form

¢r—M;6,+N,f (2.15)
with
N,=(I—M)A;", (2.16)

and the multigrid iteration matrices M, are defined in-
ductively as follows:

My=SE*Spe , (2.17a)
M, =SP[I —py; (I —M;", YAy, 41SP
fori=1. (2.17b)

The multigrid algorithm is thus a general framework;
the user has considerable freedom in choosing the specific
ingredients, which must be adapted to the specific prob-
lem. We now discuss briefly each of these ingredients;
more details can be found in Chap. 3 of the book of
Hackbusch.3°

Coarse grids. Most commonly one uses a uniform
factor-of-2 coarsening between each grid Q; and the next
coarser grid Q; _;. The coarse-grid points could be either
a subset of the fine-grid points [Fig. 1(a)] or a subset of
the dual lattice [Fig. 1(b)]. These schemes have obvious
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generalizations to higher-dimensional cubic lattices. In
dimension d =2, another possibility is a uniform factor-
of-V'2 coarsening [Fig. 1(c)]; note that the coarse grid is
again a square lattice, rotated by 45°. Figures 1(a)-1(c)
are often referred to as ‘“standard coarsening,” ‘‘stag-
gered coarsening,” and ‘“red-black (or checkerboard)
coarsening,” respectively. Coarsenings by a larger factor
(e.g., 3) could also be considered, but are generally disad-
vantageous. Note that each of the above schemes works
also for periodic boundary conditions provided that the
linear size L, of the grid €, is even. For this reason it is
most convenient to take the linear size L =L,, of the
original (finest) grid Q =Q,, to be a power of 2, or at least
a power of 2 times a small integer. Other definitions of
coarse grids (e.g., anisotropic coarsening) could be ap-
propriate in specific problems.>*

Restriction operators. If the coarse-grid points are a
subset of the fine-grid points, as in Figs. 1(a) and 1(c),
then one simple restriction operator is trivial restriction:
just define

(ri—1,19),=(¢)), forallxeQ,_,CQ;, (2.18)

However, this restriction is in most cases too crude.”® A
better restriction operator would incorporate some de-
gree of local averaging (““coarse graining”), in order to ac-
centuate the low-frequency components. For a coarse
grid as in Fig. 1(b), a natural choice is block averaging:

(b)

FIG. 1. Possible choices of the coarse grid, shown here in di-
mension d =2. Dots are fine-grid sites; crosses are coarse-grid
sites. (a) Standard coarsening. (b) Staggered coarsening. (c)
Red-black (checkerboard) coarsening.
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(ri—1,180)x =5(¢, Jx, 41725, +12F (@5 —1/2,x, 4122
+(¢l )x1+1/2,x2-1/2+(¢1 )xl—l/Z,xz—l/Z]
(2.19)

(illustrated here for d =2). This restriction can be
represented in an obvious shorthand notation by the sten-
cil

(2.20)

ENEF NI
ENEESES

For a coarse grid as in Fig. 1(a), one natural choice is the
nine-point restriction (also called “full weighting”)

(2.21)

Sl- wl= =
wl— Bl o]
Sl= = S~

All these restriction operators can easily be generalized to
higher dimensions.

Prolongation operators. If the coarse-grid points are a
subset of the fine-grid points, as in Figs. 1(a) and 1(c),
then one simple prolongation operator is trivial prolonga-
tion: just define

(¢I—l)x

0 otherwise .

ifxeQ,_,;,
(Pri—191-1)x= (2.22)
However, this prolongation is in most cases too crude. A
better prolongation operator would incorporate some de-
gree of local smoothing, in order to accentuate the low-
frequency components. For a coarse grid as in Fig. 1(b),
a natural choice is piecewise-constant injection:

(Pri—191—Dx, +172,x,212=($)x x, forallx€Q,_, .

(2.23)
It can be represented by the stencil
1 1]
1 1]~
For a coarse grid as in Fig. 1(a), a natural choice is

piecewise-linear interpolation, one example of which is the
nine-point prolongation

(2.24)

1
2
1

(2.25)

Bl o= A=
Bl o] Bl

Higher-order interpolations (e.g., quadratic or cubic) can
also be considered. All these prolongation operators can
easily be generalized to higher dimensions.

Given a prolongation operator, one can always define a
restriction operator to be its adjoint (transpose), and vice
versa. For example, the adjoint of trivial prolongation is
trivial restriction, the adjoint of piecewise-constant injec-
tion is block averaging, and the adjoint of the nine-point
prolongation is the nine-point restriction.

We have ignored here some important subtleties con-
cerning the treatment of the boundaries in defining the
restriction and prolongation operators. Fortunately we
shall not have to worry much about this problem, since
most applications in quantum field theory use periodic
boundary conditions.

Coarse-grid operators. The operator A; is supposed to
model roughly the behavior of the original operator
A = A, when acting on ‘“smooth” functions (i.e., those
of wavelength 22 ~/). One very natural choice of the
A, is given by the Galerkin definition

A \=r—, 4P - (2.26)

Other possibilities could also be considered, but we shall
stick to Galerkin. Note that if A4 is the nearest-neighbor
Laplacian, and block averaging and piecewise-constant
interpolation are used, then the Galerkin coarse-grid
operators A; are again nearest-neighbor Laplacians (suit-
ably normalized). On the other hand, if higher-order in-
terpolations are used, then the Galerkin coarse-grid
operators usually involve next-nearest-neighbor couplings
as well.% .

Smoothing iterations. We have already discussed the
damped Jacobi iteration as one possible smoother. Note
that in this method only the “old” values ¢ are used on
the right-hand side of (2.8) and (2.9), even though for
some of the terms the “new” value ¢'” "' may already
have been computed. An alternative algorithm is to use
at each stage on the right-hand side the ‘“newest” avail-
able value. This algorithm is called the Gauss-Seidel
iteration.’” Note that the Gauss-Seidel algorithm, unlike
the Jacobi algorithm, depends on the ordering of the grid
points. For example, if a two-dimensional grid is swept
in lexicographic order, (1,1),(2,1),...,(L,1),(1,2),
(2,2),...,(L,2),...,(1,L),(2,L),...,(L,L), then the
Gauss-Seidel iteration becomes

(n+1)— 1(4(n) (n+1) (n)
¢’x‘,x2 _T(¢xl+1,x2+¢xl*l,x2+ X,xy+1

+oV ) F ) - .27

X2

Another convenient ordering is the red-black (or checker-
board) ordering, in which the ‘“red” sublattice
Q'={x€eQx,+ -+ +x,is even] is swept first, followed
by the “black” sublattice Q°={xEQ:x,+ -+ +x, is
odd}. Note that the ordering of the grid points within
each sublattice is irrelevant [for the usual nearest-
neighbor Laplacian (2.1)], since the matrix A4 does not
couple sites of the same color. This means that red-black

. Gauss-Seidel is particularly well suited to vector or paral-

lel computation. Note that the red-black ordering makes
sense with periodic boundary conditions only if the linear
size L, of the grid Q, is even.

The Gauss-Seidel iteration, like the Jacobi iteration,
can be generalized by introducing a parameter ©: for ex-
ample, in the two-dimensional lexicographic case we
would have
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+1)—(1— (n)
¢xnl,x2 (1 w)q&xnl,xz
+1)
_(¢x1+1 x2+¢xnl-l x2+¢x ;X +1

0L k) (2.28)

1X*2

It turns out® that this iteration converges if and only if
O0<w<2. This algorithm is called the successive over-
relaxation (SOR) iteration with relaxation parameter w.
(Of course, if @ <1 it really ought to be called ‘“under re-
laxation.”) For w=1 it reduces to the Gauss-Seidel itera-
tion.

As a stand-alone iterative solver, Gauss-Seidel can be
shown® to converge roughly twice as fast as Jacobi (it
also requires half as much storage). In particular, the un-
derlying O (L?) critical slowing-down is unchanged. For
SOR, on the other hand, the situation is rather different:
the optimal relaxation parameter @, is 2—O (L ~1), and
if this value of w is used then the critical slowing down is
only O(L)—far better than for Jacobi or Gauss-Seidel,
but still quite severe. (Also, in practical problems o
may not be known.) '

For a smoothing iteration within a multigrid algo-
rithm, however, the considerations are quite different.
The performance of the smoother on the low-frequency
modes (which determines its critical slowing down as a
stand-alone solver) is irrelevant, since the low-frequency
modes are dealt with by the coarse-grid correction step.
Rather, it is the rate at which the high-frequency error
components are reduced—the so-called smoothing rate—
that is important. It turns out®® that the optimal value of
o for SOR smoothing is 1, i.e., the ordinary Gauss-Seidel
iteration. Gauss-Seidel is also a better smoother than
damped Jacobi with its optimal w.

Many other smoothing iterations can be considered,®!
and can be advantageous in anisotropic or otherwise
singular problems. But we shall stick to ordinary Gauss-
Seidel, usually with red-black ordering.

Thus, % and $$° will consist, respectively, of m
and m, iterations of the Gauss-Seidel algorithm. The
balance between presmoothing and postsmoothing is usu-
ally not very crucial; only the total m;+m, seems to
matter much. Indeed, one (but not both) of m, or m,
could be zero, i.e., either the presmoothing or the
postsmoothing could be omitted entirely. Increasing m;
and m, improves the convergence rate of the multigrid
iteration, but at the expense of increased computational
labor per iteration. The optimal tradeoff seems to be
achieved in most cases with m,+m, between about 2
and 4 (Ref. 62). The coarsest grid € is a special case: it
usually has so few grid points (perhaps only one) that &,
can be an exact solver.

Cycle control parameters. Usually the parameters y,
are all taken to be equal, ie., ¥;=y =1 for 1<I<M.
Then one iteration of the multigrid algorithm at level M
comprises one visit to grid M, y visits to grid M —1, y2
visits to grid M —2, and so on. Thus, ¥ determines the
degree of emphasis placed on the coarse-grid updates.
(=0 would correspond to the pure Gauss-Seidel itera-
tion on the finest grid alone.)

opt
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We can now estimate the computational labor required
for one iteration of the multigrid algorithm. Each visit to
a given grid involves m|+m, Gauss-Seidel sweeps on
that grid, plus some computation of the residual, the re-
striction, and the prolongation. The work involved is
proportional to the number of lattice points on that grid.
Let W, be the work required for these operations on grid
l. Then, for grids defined by a factor-of-2 coarsening in d
dimensions, we have

W, =2 dM-Dy (2.29)
so that the total work for one multigrid iteration is
work(MG)= 2 yM-lw,
zWM 2 (,}/zfd)MvI
I=M
SW(1—y27 971 if y <29, (2.30)

Thus, provided that ¢ < 2% the work required for one en-
tire multigrid iteration is no more than (1—y2~ %)~
times the work required for m; +m, Gauss-Seidel itera-
tions (plus a little auxiliary computation) on the finest
grid alone—irrespective of the total number of levels. The
most common choices are ¥ =1 (which is called the ¥ cy-
cle) and ¥ =2 (the W cycle). '

For certain classes of operators 4 and suitable choices
of the coarse grids, restrictions, prolongations, coarse-
grid operators, smoothing iterations, and cycle control
parameters, it can be proven rigorously®® that the mul-
tigrid iteration matrices M, satisfy a uniform bound

IM||=C <1, (2.31)
valid irrespective of the total number of levels. Thus, a
fixed number of multigrid iterations (maybe five or ten)
are sufficient to reduce the error to a small value, in-
dependent of the lattice size L. In other words, critical
slowing down has been completely eliminated.

The rigorous convergence proofs are somewhat arcane,
so we cannot describe them here in any detail,®® but cer-
tain general features are worth noting. The convergence
proofs are most straightforward when linear or higher-
order interpolation and restriction are used, and y > 1
(e.g., the W cycle). When either low-order interpolation
(e.g., piecewise constant) or ¥y =1 (the V cycle) is used, the
convergence proofs become much more delicate. Indeed,
if both piecewise-constant interpolation and a V cycle are
used, then the uniform bound (2.31) has not yet been
proven, and it is most likely false. To some extent these
features may be artifacts of the current methods of proof,
but we suspect that they do also reflect real properties of
the multigrid method, and so the convergence proofs may
serve as guidance for practice. For example, in our work
we have used piecewise-constant interpolation (so as to
preserve the simple nearest-neighbor coupling on the
coarse grids), and thus for safety we stick to the W cycle.
There is in any case much room for further research,
both theoretical and experimental.

To recapitulate, the extraordinary efficiency of the
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multigrid method arises from the combination of two key
features.

(1) The convergence estimate (2.31). This means that
only O(1) iterations are needed, independent of the lat-
tice size L.

(2) The work estimate (2.30). This means that each
iteration requires only a computational labor of order L?
(the fine-grid lattice volume).

It follows that the complete solution of the linear system
A¢=f requires a computational labor of order L “.

C. Variational approach

We now turn to an important special case of the mul-
tigrid algorithm. Suppose that the space ¥V can be
identified with U™* (the dual space of U) in such a way
that the operator A4 is symmetric,

(p,Ad')=(A¢,¢') forall ¢,¢'EU , (2.32)
and positive-definite,
(¢, A¢)>0 for all pE U, ¢70 . (2.33)

The problem of solving the linear equation 4 ¢ = f is then
equivalent to a variational problem, that of minimizing
the quadratic function

H(¢)=1(¢,4¢)—(f,0) , (2.34)
and the variational point of view often leads to useful in-
sights.%*

For example, let us look at the coarse-grid-correction
phase of the multigrid algorithm from the variational
point of view. In this phase, we replace the current ap-
proximate solution ¢ by a hopefully better approximate
solution ¢+p; ;_1¥, where ¢ lies in the coarse-grid sub-
space U, _;. A sensible goal is to attempt to choose ¥ so
as to minimize H; that is, we attempt to minimize

H, ($)=H,(¢+p;; ¥) (2.35a)
=1y, 4;_¢) —(d,¢) +const , (2.35b)

where
A A =pli-1 AP s (2.36a)
d=pl\(f —4,9) . (2.36b)

This means that we attempt to solve the equation
A;_1y=d, where A;_, and d are as defined above. Com-
parison with (2.12) reveals that this is precisely what the
multigrid algorithm does, in the special case with the fol-
lowing properties.

(1) Each restriction operator is the adjoint of the corre-
sponding prolongation, i.e., r,_; ; =p/ _.

- (2) The coarse-grid operators are given by the Galerkin

definition Al—1=rl*1,1Alpl,I~l'

We call these the variational choices of restriction and
coarse-grid operators; they are completely determined by
the original operator 4 and the prolongation operators

2043

Pi1—1- The variational point of view shows why these
choices are so natural. [Indeed, in the corresponding
Monte Carlo problem (Sec. VII) the variational choices
are mandatory.]

If we assume further (without any loss of generality)
that the prolongation operators p;;_; have maximal rank
(i.e., zero nullspace), then the multigrid setup takes on a
very elegant Hilbert-space structure.

(3) The fine-grid space U= U, can be given the struc-
ture of a Hilbert space with inner product

(¢,9') 4=, A¢") . (2.37)
The corresponding norm
ol 4 =(8,0),>=(9, 4)'" (2.38)

is called the energy norm.

(4) Each coarse-grid space U, can be identified with a
linear subspace of U, namely, its image under the pro-
longation map pys; =ppp—1Pm—1,m—2 " " " Pi+1,1- These

spaces are nested: Uo,C U, C -+ CUy,=U.
(5) Each restriction map
Fom =T+t 41,042 Ym—1,m (I <m =M)

is precisely the ( , ) 4-orthogonal projection of U,, onto
U[-

(6) The quadratic form (-, 4;-) induced on U, by the
coarse-grid operator A, is precisely the restriction of the
quadratic form (-, 4;-) on U to the subspace U,. In par-
ticular, A4, is symmetric and positive definite (hence non-
singular).

The multigrid algorithm is thus seen as a sequence of
approximate minimizations of H in the subspaces
U Upyp—1, -+ -5, Uy The  coarse-grid  subspaces
Upy—1»-.., Uy are singled out for special treatment be-
cause they are the subspaces in which the Gauss-Seidel
approximate minimization is least effective.

The variational point of view also gives insight into the
Gauss-Seidel algorithm and its relation with the mul-
tigrid method. One natural class of iterative algorithms
for minimizing H are the so-called directional methods:
let py,p;, - - - be a sequence of “direction vectors” in U,
and define ¢'" T to be that vector of the form ¢ +Ap,
which minimizes H. This is a one-dimensional minimiza-
tion problem, and an easy computation yields

P A8™ )

A:
(Pn>Apy)

(2.39)
The algorithm thus travels “downhill” from ¢'* along
the line "+ Ap, until reaching the minimum of H, then
switches to direction p, , starting from this new point
"tV and so on. For a suitable choice of the direction
vectors py,p;, - - - » this method converges® to the global
minimum of H, which is ¢= 4 ~f.

Now, some iterative algorithms for solving the linear
equation 4 ¢=f can be recognized as special cases of the
directional method. For example, the Gauss-Seidel itera-
tion is a directional method in which the direction vec-
tors are chosen to be unit vectors e;,e,, ..., ey (i.e., vec-
tors which take the value 1 at a single grid point and zero
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at all others), where N =dimU. (One step of the Gauss-
Seidel iteration corresponds to N steps of the directional
method.) Similarly, it is not hard to see®® that the mul-
tigrid iteration with the variational choices of restriction
and coarse-grid operators, and with Gauss-Seidel
smoothing at each level, is itself a directional method:
some of the direction vectors are the unit vectors
e(lM’,e(zM), cee, e}vlj‘;) of the fine-grid space, but other
direction vector are the images in the fine-grid space of
the unit vectors of the coarse-grid spaces, i.e., they are

0) U] (0 i i
Pm,i€1 sPM1€2 5 - + - s PM,IEN, - The exact order in which

these direction vectors are interleaved depends on the pa-
rameters m,, m,, and ¥ which define the cycling struc-
ture of the multigrid algorithm. For example, if m;=1,
m,=0, and ¥ =1, the order of the direction vectors is
{M},gM—l}, , {0} where {/} denotes the sequence
Pumi€1 sPm1€2 > - - - sPM 1N, - If m =0, m,=1, and
v =1, the order is {0},{1},...,{M}.
vited to work out other cases.

Thus, the multigrid algorithm under the variational
conditions (1) and (2) is a directional method in which the
direction vectors include both ‘“‘single-site modes” {M }
and also “collective modes” {M —1},{M —2},...,{0}
on all length scales. For example, if p,;,_, is piecewise-
constant injection, then the direction vectors are charac-
teristic functions y (i.e., functions which are 1 on the
block BCQ and zero outside B), where the sets B are
successively single sites, cubes of side 2, cubes of side 4,
and so on. Similarly, if p;,_ is linear interpolation, then
the direction vectors are triangular waves of various
widths.

The multigrid algorithm has thus an alternative inter-
pretation as a collective-mode algorithm working solely
in the fine-grid space U. We emphasize that this “uni-
grid” viewpoint®® is mathematically fully equivalent to
the recursive definition (2.12). But it gives, we think, an
important additional insight into what the multigrid al-
gorithm is really doing.

For example, for the simple model problem (Poisson
equation in a square), we know that the “correct” collec-
tive modes are sine waves, in the sense that these modes
diagonalize the Laplacian, so that in this basis the Jacobi
or Gauss-Seidel algorithm would give the exact solution
in a single iteration (M, .,,; =Mgs=0). On the other
hand, the multigrid method uses square-wave (or

The reader is in-

triangular-wave) updates, which are not exactly the "

“correct” collective modes. Nevertheless, the multigrid
convergence proofs®> assure us that they are ‘close
enough”: the norm of the multigrid iteration matrix M,
is bounded away from 1, uniformly in the lattice size, so
that an accurate solution is reached in a very few MG
iterations (in particular, critical slowing-down is com-
pletely eliminated). This viewpoint also explains why
MG convergence is more delicate for piecewise-constant
interpolation than for piecewise linear: the point is that a
sine wave (or other slowly varying function) can be ap-
proximated to arbitrary accuracy (in energy norm) by
piecewise-linear functions but not by piecewise-constant
functions.®

We remark that McCormick and Ruge®® have advocat-
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ed the “unigrid” (UG) idea not just as an alternate point
of view on the multigrid algorithm, but as an alternate
computational procedure. To be sure, the unigrid method
is somewhat simpler to program, and this could have
pedagogical advantages. But one of the key properties of
the multigrid method, namely the O (L“) computational
labor per iteration, is sacrificed in the unigrid scheme.
Instead of (2.29)—(2.30) one has

W, =Wy, (2.40)
and hence
0
work(UG)=W,, 3 yM~!
I=M
Mw, ify=1,
TlyMwy, ify>1. 2.4
Since M ~log,L and W,,~ L¢, we obtain
k(UG) LAoeL if y=1, (2.42)
work(UG)~ .
LB s

For a V cycle the additional factor of logL is perhaps not
terribly harmful, but for a W cycle the additional factor
of L is a severe drawback [though not as severe as the
O(L?) critical slowing down of the traditional algo-
rithms]. Thus, we do not advocate the use of unigrid as a
computational method if there is a viable multigrid alter-
native. The unigrid method could, however, be of in-
terest in cases where a true multigrid algorithm is un-
feasible, as may occur for non-Abelian lattice gauge
theories (Sec. V).

III. DETERMINISTIC MULTIGRID METHOD:
NONLINEAR SYSTEMS, LINEAR STATE SPACE
(ADDITIVE MG)

In this section we extend the deterministic multigrid
method to nonlinear systems of equations on a linear
state space; as in the preceding section, the coarse-grid-
correction updates are additive. We restrict attention to
problems posed in variational form: our goal is thus to
find the absolute minimum of a given nonquadratic Ham-
iltonian. We do not purport to treat all variants of the
nonlinear multigrid method, or even necessarily the best
ones; nor do we make any serious attempt to evaluate the
performance of the algorithms we discuss. Indeed, the
performance of nonlinear multigrid methods is highly
model dependent, and is not well understood at present.
Rather, our primary goal in this section is to describe the
structure of a multigrid algorithm for an arbitrary (not
necessarily quadratic) Hamiltonian, and in particular the
definition of the coarse-grid Hamiltonian; this structure
will be identical in the corresponding stochastic (mul-
tigrid Monte Carlo) algorithm.

The setup is as follows: On an N-dimensional real vec-
tor space U, we are given a real-valued function (‘“Hamil-
tonian”) H, which we assume (for simplicity) to have a
unique absolute minimum; our goal is to find this
minimum. In order to specify the multigrid algorithm we
must specify the following ingredients.
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(1) A sequence of coarse-grid configuration spaces
Uy=UUy_,Uy_y ..., Uy. Here dimU,=N; for
O0<I=M,and N=Ny >Ny >Ny > - >N.

(2) Prolongation (or “interpolation™) operators p;;_;:
U_,—Uforl1=I<M.

(3) Basic (or “‘smoothing”) iterations &,;: U, X F#;— U,
for 0=/ <M. Here #, is a space of “possible Hamiltoni-
ans” defined on U;; we discuss this in more detail below.
The role of &, is to take an approximate minimizer ¢; of
the Hamiltonian H; and compute a new (hopefully better)
approximate minimizer ¢;'=S,(¢;,H;). Most generally,
we shall use two smoothing iterations, ST and §7°; they
may be the same, but need not be.

(4) Cycle control parameters (integers) ;=1 for
1=<[ <M, which control the number of times that the
coarse grids are visited.

The nonlinear multigrid algorithm is then defined re-
cursively as follows:

procedure nimgm (l,¢,H,)

comment This algorithm takes an approximate mini-
mizer ¢ of the Hamiltonian H,, and over-
writes it with a better approximate
minimizer .

¢—8P (¢, H;)

if / >0 then

compute H; (-)=H,(¢+p;;_,")

Y0
for j =1 until v, do nlmgm(l —1,9,H,_,)
d<—d+p, ¥

endif

$—SP(¢,H,))

end (3.1)

The basic idea of this algorithm is the same as that of
the linear multigrid algorithm explained in Sec. II. Only
two differences require comment: the meaning of the
step “‘compute H;_,,” and the nature of the nonlinear
smoothing iterations §7™ and e?f"s‘.

Computation of H, _,. This is best explained by a con-
crete example. Suppose that the Hamiltonian H; on level
I is a ¢* theory with nearest-neighbor gradient term and
possibly site-dependent coefficients:

H,(¢)=—;‘— S (=9 + S Vild), (3.2a)
Ix—x'|=1 x
where

V(g ) =R +r by + A b5+ h o, . (3.2b)

Suppose, further, that the prolongation operator p;,_; is
piecewise-constant injection (2.23). Then the coarse-grid
Hamiltonian
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H,_($)=H(¢+p,, ) (3.3

can easily be computed: it is

Hi()=5 3 (4,4’ +3 V;(y,)+const ,
ly—y'l=1 y
(3.4a)
where
V, (0, ) =Ny + K, + Ay +h)y, (3.4b)
and
a'=2%"a,
::211}\’,
K,= 3 (4r¢,+k,), (3.4c)
xXEB
y
A= 3 (6A$:+3k, ¢, +4,),
xeBy
hy= 3 (4rd+3k, 92 +2A4,¢,+h,).
xEBy

Here B, is the block consisting of those 2% sites of grid
which are affected by interpolation from the coarse-grid
site yEQ;_, [see Fig. 1(b)]. Note that the coarse-grid
Hamiltonian H;_; has the same functional form as the
“fine-grid” Hamiltonian H;: it is specified by the
coefficients o', A', {k}}, { A}}, and {h;}. The step “com-
pute H, _,” therefore means to compute these coefficients.
Note also the importance of allowing in (3.2) for ¢* and ¢
terms and for site-dependent coefficients: even if these
are not present in the original Hamiltonian H = H,, they
will be generated on coarser grids.** Finally, we em-
phasize that the coarse-grid Hamiltonian H,;_; depends
implicitly on the current value of the fine-lattice field
¢€ U;; although our notation suppresses this depen-
dence, it should be kept in mind.

The general strategy should now be clear: We choose
classes of Hamiltonians %, with the property that if
H, €%, and ¢ € U,, then the coarse-grid Hamiltonian
H,_ defined by (3.3) necessarily lies in #,_,. In particu-
lar, it is convenient (though not in principle necessary) to
choose all the Hamiltonians to have the same “functional
form”; this functional form must be one which is stable
under the coarsening operation (3.3). For example, P(¢)
theories (i.e., ¥ a polynomial of degree 2n) can be treated
by an obvious generalization of the ¢* example, as can
theories with exponential interaction
V() =cVe 1% 4 c@e 2Py .o 4 o(mg Tt (3.5)
with given 0,,0,,...,0,. Note, however, that the sim-
plicity of the coarse-grid Hamiltonian is linked to our use
of piecewise-constant (or trivial) injection: the key fact is
that each fine-grid site is affected by only one coarse-grid
site, so the nonlinearities remain strictly local. If we were
to use piecewise-linear injection, then the local ¢* term in
H,; would induce nonlocal (nearest-neighbor and possibly
next-nearest-neighbor) nonlinear terms like ¢§¢§: and
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¢;¢y, in H;_;. This process of generation of additional
interactions does eventually stop, so appropriate classes
of Hamiltonians #¥,, stable under coarsening, can be
found; but they are significantly more complicated than
the original ¢* theory. It is for this reason that we have
generally preferred to use piecewise-constant injection in
our work with nonlinear multigrid methods.

Finally, we remind the reader that in the quadratic
case

Hi(¢)=1(¢, 4,0)—{f.0) , (3.6)
the nonlinear multigrid algorithm (3.1) is identical to the
linear multigrid algorithm (2.12) with the variational
definition (2.36a) of the coarse-grid operators (compare
with the discussion in Sec. II C).

Smoothing iterations. Numerous algorithms for itera-
tive minimization of a nonlinear function can be found in
the numerical-analysis literature:’® examples are Newton
methods, nonlinear Gauss-Seidel methods, conjugate-
gradient methods, and combinations of these. Any one of
these algorithms could be used for the smoothing itera-
tions &P and $7°'. For expository purposes, however,
it is convenient to focus on one particular method,
nonlinear Gauss-Seidel with exact minimization’’
(NLGSEM). In this algorithm, the grid points are swept
in some order (e.g., lexicographic or red-black), and at
each stage the Hamiltonian H, is minimized as a function
of a single variable ¢,, with all other variables {¢, .},
being held fixed. (If the absolute minimizer is nonunique,
then one such minimizer is chosen by some arbitrary
rule.) This definition of the algorithm presupposes, of
course, that it is feasible to carry out the requisite exact
one-dimensional minimizations. For example, for a ¢*
theory it would be necessary to compute the absolute
minimum of a quartic polynomial in one variable. In
practice these one dimensional minimizations might
themselves be carried out iteratively, e.g., by some vari-
ant of Newton’s method. We note that for a quadratic
Hamiltonian H,;, the nonlinear Gauss-Seidel algorithm
with exact minimization reduces to the ordinary Gauss-
Seidel algorithm.

Nonlinear Gauss-Seidel with exact minimization is an
example of a directional method as defined in Sec. II C;
the direction vectors are the unit vectors e,e,, ..., ey,
just as in the ordinary Gauss-Seidel algorithm. Likewise,
the nonlinear multigrid algorithm (3.1) is also a direction-
al method, if NLGSEM is used for &7 and £7°; the
direction vectors are the same as in the corresponding
linear multigrid algorithm (see Sec. II C).

The performance of the nonlinear multigrid algorithm
(3.1) is highly dependent on the details of the Hamiltoni-
an H (and perhaps also on the prolongation operators and
smoothing iterations), so we can make only a few general
remarks. If the Hamiltonian H is strictly convex, then the
nonlinear multigrid algorithm (with NLGSEM as the
smoothing iteration) is guaranteed to converge to the
(unique) absolute minimum ¢* of H, irrespective of the
initial condition ¢‘0); indeed, this is a general result which
holds for a wide class of directional methods.%> More-
over, the asymptotic rate of convergence is determined by
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the behavior of the corresponding linear multigrid algo-
rithm on the quadratic Hamiltonian

Hy, (¢)=1{$,H"(¢*)$) .

(This is because, as n — o, the iterates ¢ lie in an arbi-
trarily small neighborhood of ¢*, so for asymptotic pur-
poses H can be replaced by its quadratic approxima-
tion.”?) On the other hand, for nonconvex Hamiltonians,
such as the ¢* theory in the double-well regime, we are
unable to say anything definitive. Traditional iterative al-
gorithms can get stuck in local minima of H, and the
same can occur in nonlinear multigrid methods. For-
tunately, such difficulties should be less severe in the cor-
responding stochastic algorithm (Sec. VII).

(3.7

IV. DETERMINISTIC MULTIGRID METHODS:
NONLINEAR o MODELS
(MULTIPLICATIVE MG)

In this section we extend the deterministic multigrid
method to the problem of minimizing a Hamiltonian of
the form arising in nonlinear o models. The basic mul-
tigrid algorithm is the same as in Sec. III; however, the
fact that the state space is a nonlinear manifold (rather
than a vector space) necessitates a different definition of
the interpolation operators. In particular, the coarse-
grid-correction updates are multiplicative rather than ad-
ditive. Our primary goal in this section is, therefore, to
introduce the interpolation operators and coarse-grid
Hamiltonians, in preparation for the corresponding sto-
chastic (multigrid Monte Carlo) algorithm. The reader
who is anxious to get to the Monte Carlo case [albeit only
for free fields and P (¢) models] can skip this section on a
first reading.

Let us also remark that the deterministic multigrid al-
gorithm presented here has direct application to the
problem of Landau gauge fixing.”>

The simplest example is the plane-rotator (XY) model.
At each site x there is an angular variable 6; angles
which are equal modulo 27 are identified. The state
space is therefore an |Q|-dimensional torus, where | Q] is
the number of sites in the lattice. The Hamiltonian is as-
sumed to be a nearest-neighbor interaction, but we allow
the coefficients to be space dependent:

H/(6)= 3 [a,-cos(0,—0,)+0,, sin(6,—6,)].

lx —x'|=1

4.1)
Of course, the case of primary physical interest is the
usual translation-invariant nonfrustrated XY model,
. =a, B,,=0; but more general Hamiltonians of the
form (4.1) will be generated on coarse grids, so we include
them from the start.”*

The obvious choice of coarse-grid-correction move is
to rotate simultaneously all the spins in a 2¢ block. The
update is therefore 6 —0+p,,_ 1, where ¢ is a coarse-
grid field of angles, p;,_; is the piecewise-constant injec-
tion (2.23), and addition is interpreted modulo 27. The
coarse-grid Hamiltonian

H, ((y)=H|(¢+p, ;1) 4.2)



40 MULTIGRID MONTE CARLO METHOD. CONCEPTUAL FOUNDATIONS

can easily be computed: it is

H,~1(1J/)=| 2,1 1[a;y,cos(lpy“¢yl)+ﬁ';y:sin(¢y—¢y,)] ,
y—y'l=
(4.3)
where
= 3 [ay-cos(6,—6,)+pB,, sin(6,—60,)],
xEBy
x’EBy,
(4.4a)
Byy= 3 [Bxxcos(0,—6,)—a,,sin(6,—0,)].
xEBy
x'eBy.

(4.4b)

Here B, is the block consisting of those 24 sites of grid Q,;
which are affected by interpolation from the coarse-grid
site yEQ,_; [see Fig. 1(b)]. Note that the coarse-grid
Hamiltonian H;_; has the same functional form as the
“fine-grid” Hamiltonian H,;; it is specified by the
coefficients {a;,} and {B),}. Therefore, with this
definition of the interpolation operator p;,_,, the non-
linear multigrid algorithm (3.1) can be applied without
change.”

This basic construction can be extended to nonlinear o
models in which the state space at each site is a group G.
For simplicity we assume that G is a real or complex ma-
trix group, i.e., a subgroup of GL (n,R) or GL (n,C) and
that the Hamiltonian is of the form

Hl(g): Z Retr(axx’gigx’) ’

lx —x'|=1

(4.5)

where a,, is an n X n complex matrix (not necessarily an
element of G). If G is a unitary group, the case a,, . =al
corresponds to the principal chiral models,”® while more
general Hamiltonians of the form (4.5) arise in the study
of Gribov copies and Landau gauge fixing.” [See also
(4.10)—(4.13) below.] General Hamiltonians of the form
(4.5) will in any case be generated on coarse grids.

The obvious choice of course-grid-correction move is
to simultaneously left multiply all the spins in a 2d block
B, by some group element 4,. [Because of the way in
which we have written Hamiltonian (4.5), left multiplica-
tion is more convenient than right multiplication.] The
update is therefore g —(p, , _,h)g where & is a coarse-grid
field with values in G, and p;; _, is the piecewise-constant
injection

(pri—1h)x=h, for x€B, . (4.6)

The coarse-grid Hamiltonian

Hlﬁl(h)EHl((p['IAlh)g) 4.7)
is therefore
H,_ (W= 3 Retrla,hlh,), 4.8)
ly—=y'l=1
where
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a,= 3 g8 . 4.9)
xXEB
y
x’EBy,

The nonlinear multigrid algorithm (3.1) can then be ap-
plied with only trivial modifications (e.g., initializing the
coarse-grid field to the identity matrix rather than to
Zero).

Finally, consider those nonlinear o models in which
the state space at each site is a manifold M CR" [or C"]
on which some group G CGL(n,R) [or GL(n,C)] acts
transitively. One example is the n-vector model, in which
M is the unit sphere in R” and G =SO(n) or O(n). As-
sume that the Hamiltonian is of the form

H($)= 3 Reland.d,),

|x —x'|=1

(4.10)

where a,,- is a real or complex number. Now fix a refer-

ence configuration ¢={¢.},cqEM®L The G can be
mapped into M@ by
g—gd (4.11)

(note that in general this map is many to one), and hence
the Hamiltonian (4.10) can be “lifted” to G

H(g)=H(gd)= S Retrla,glg.), 4.12)
|x —x'|=1
where
Ay =axx’$x’$jc (4 13)

is an n X n matrix of rank 1. This Hamiltonian is of the
form (4.5), and so can be handled by the multigrid
method described previously.”” Absolute minima of H
are in many-to-one correspondence with absolute minima
of H under the map (4.11).

We mention, finally, that combinations of the foregoing
methods can be appropriate for some models. Consider,
for example, an n-component ¢* model (n >2). Then the
angular variables o, =¢, /|¢,.| could be updated by a
multiplicative MG algorithm, as in the corresponding n-
vector model, while the magnitudes |, | could be updat-
ed by nonlinear Gauss-Seidel or by additive MG. The
point is that the algorithm should be adapted to the phys-
ics of each problem, i.e., to the relevant large-scale collec-
tive modes.

V. DETERMINISTIC MULTIGRID METHOD:
LATTICE GAUGE THEORIES

In this section we give two alternative multigrid
methods, developed in collaboration with Dan Zwan-
ziger, for minimizing a Hamiltonian of the form arising
in lattice gauge theories. The basic multigrid algorithm
is still (3.1); the problem is to define the interpolation
operators in a way that reflects the geometric (parallel-
transport) properties of a gauge theory. Unfortunately,
these algorithms seem to be practical only in the Abelian
case; for non-Abelian theories, the coarse-grid Hamiltoni-
an becomes very complicated. We present these methods
to illustrate the general principles (which we believe are
sound) and to show the difficulties which arise in the
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non-Abelian case, in the hope that someone will find a
way of overcoming them. This section can be skipped on
a first reading.

Consider a pure lattice gauge theory with gauge group
G (assumed for simplicity to be a real or complex group
of unitary matrices) and Hamiltonian of the form

H|(U)= 3 Retrla,,,U,,U,U,U,),

xy Yyz
(xyzs)

(5.1

where a,,,, is an n Xn complex matrix (not necessarily
an element of G) and the sum runs over all oriented pla-
quettes {xyzw ). The case of primary physical interest is

Qyyzy =0al, but more general Hamiltonians of the form .

(5.1) will in some cases be generated anyway on coarse
grids.

A natural choice of course-grid-correction move (e.g.,
by analogy with the nonlinear o models) is to simultane-
ously left multiply several parallel link variables by the.
“same” group element. The trouble is that, in a gauge
theory, the “sameness” of group elements at different
sites has no gauge-invariant meaning. Rather, one must
parallel transport the group element from one site to
another, along some predetermined path. (Note that in
the presence of curvature, the parallel transport depends
on the path chosen.) The idea is, therefore, to make
coarse-grid-correction moves which left multiply the link
variables (or a subset of them) by a field which is approxi-
mately piecewise covariant constant. (Note, however,
that no field can be exactly covariant constant if the
background gauge field has nonzero curvature. ’%)

The simplest implementation of this idea is shown in
Fig. 2 (for simplicity in the case d =2). Divide the sites
of the lattice, as usual, into blocks of size 2¢. Then any
two neighboring blocks are connected by 2! parallel
links (illustrated by wavy lines in Fig. 2); it is these links
that will be updated together. In this scheme, therefore,
only half of the links in the lattice are being updated in a
single coarse-grid-correction step; this is reminiscent of
the trivial prolongation (2.22).

7 e’w"‘é, ‘
485’\/\/\/\'6 D
S N T
2%

A C

FIG. 2. Simplest implementation of multigrid for lattice
gauge theories, shown here in dimension d =2. The lattice is

divided into blocks of size 27 (sets of sites connected by straight

lines); here 4, B, C, and D are blocks. Neighboring blocks are
connected by 2¢ ™! parallel links (wavy lines); these kinks are up-
dated together.
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Now let us look more closely at the meaning of a
“piecewise-covariant-constant” update. Consider, for ex-
ample, the links 14 and 25 in Fig. 2. Under a gauge
transformation, the link variable U,, transforms as
U,;—8 U85 " Now imagine that we have made an
update U}, =VU,,. Then V transforms under the gauge
group as

Vg Vg, (5.2)

i.e., ¥ transforms under the adjoint representation of the
gauge group at site 1. (In particular, if G is Abelian, then
V is a gauge-invariant quantity. In other words, while
the values of an Abelian gauge field are gauge dependent,
the changes of those values are gauge independent.’®)
Therefore, to update link 25 we should transport the
group element V to site 2—yielding ¥ =U ,!VU,,, which
indeed transforms under the gauge group as
V —g,Vg; ! —and then use the result to update Uy, i.e.,
Uys=VU,s;=U,'VU,,U,s. We emphasize that the
choice of path from site 1 to site 2 is arbitrary: for a
nearest-neighbor pair of sites, it is clearly simplest to
choose the direct path, as we have done, but it is not
mandatory to do so; any other path from site 1 to site 2
would have been just as good, e.g., we could have defined
V=U,sUs, Uy VU;;'U5,'U5!. This remark is impor-
tant in dimension d =3, where there is no unique “sim-
plest” choice of transport paths.

In summary, therefore, the scheme for updating the
links joining blocks B, and B, is the following.

(1) Choose arbitrarily one of the blocks (say, B,) and
one of the points in that block which is adjacent to the
other block (say, x).

(2) Assign a variable ¥ which transforms under the ad-
joint representation at site x, i.e., V—g, Vg, ..

(3) Choose arbitrarily a path from x to each other point
in B, which is adjacent to B,,, and transport ¥ to that site
using the old values of the gauge field { U}.

(4) Use these transported Vs to left multiply the corre-
sponding gauge fields.

One now does this for each pair of adjacent blocks, and
considers the field of variables { ¥} to be a coarse-grid
field. The coarse-grid Hamiltonian is then defined to be

HI_I(V)EHI(VU) ) (5.3)

where we have written schematically VU to indicate the
action of ¥ on U as described above. The form of the
course-grid Hamiltonian depends on the dimension of the
lattice (d =2 or d =23) and on the nature of the gauge
group (Abelian or non-Abelian):

There are three classes of plaquettes: those with no
wavy links (e.g., 4587 in Fig. 2), those with two wavy
links (e.g., 1254), and those with four wavy links (e.g.,
2365). The first class obviously contributes nothing to
the coarse-grid Hamiltonian. The second class contrib-
utes terms of the form

Retr[a,5,U (UL VU, Uy ) Usy (VU )1
=Retr[a;s,V(UpUysUs, Uy )V

=Retr[(V " la;s,NUpUpsUs, Uyl (5.4)
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If either G is Abelian or a,s, is a multiple of the identity
matrix, then this term is a constant (independent of V).
Otherwise it is a new single-link interaction of the form

(z) Retr(By, Vi,V Viy ) (5.5)
Xy

where B,, and y,, are n Xn matrices. Such a term is
perhaps tolerable, but unfortunately it generates a sum of
such terms on coarser grids. [Moreover, in dimension
d >3 each coarse-grid link V participates (d —1)2¢ 2
plaquettes of this class, so a sum of terms (5.5) is generat-
ed already on the first coarse grid.] So it seems impossi-
ble to stop short of writing the interaction as a general
four-index tensor in internal space,

n
S 3 Re[BEUVEWVLNH;
(xy) a,b,c,d=1

(5.6)

this requires n* parameters per coarse-grid link.
Finally, the third class of plaquettes (those with four
wavy lines) contributes terms of the form

Retrlayses(V 4cUps ) (Vep Use (Vpp Use (V 45U ys)]
=Retr[ayesV 4c U Vep(UsgUes WWppUsy Vi yl s

(5.7)

where the Vs are update matrices®
Up=V4cUsy , (5.8a)
Us=VepUse (5.8b)
Uss=VppUss » (5.8¢)
Ul =V 15 Uss . (5.8d)

If G is Abelian, this is again a coupling of the form (5.1),
with

@' 4cpp = r365Up3 Uz Ugs Us, - (5.9)

However, if G is non-Abelian, it is a mess requiring 4n?
parameters per coarse-grid plaquette:

( 2 N Re tr(axyzw nyﬁxyzw Uyz yxyzw Uzw 8xyzw wa ).
xyzw

(5.10)

Moreover, in dimension d = 3 each such coarse-grid pla-
quette participates in 29 "2 fine-grid plaquette, and the
terms proliferate further on coarser grids, so it seems im-
possible to stop short of writing a general eight-index ten-
sor in internal space, at a cost of n® parameters per
coarse-grid plaquette.

In summary, if G is Abelian, then the coarse-grid Ham-
iltonian is again of the form (5.1), and the algorithm is
simple and practical; its performance is currently under
study.” If G is non-Abelian, then the simplest coarse-grid
Hamiltonian that includes (5.1) and is stable under coar-
sening has an enormous number of parameters, making
the algorithm wildly impractical, although there is noth-
ing wrong with it in principle.

One alternative approach in the non-Abelian case
would be to use a unigrid version of the foregoing algo-
rithm; we explain this at the end of this section.

A second type of interpolation for lattice gauge
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theories is shown in Fig. 3 (again in d =2 for simplicity).
Here a ““coarse-grid link” is associated with 2% ~! parallel
pairs of links (each pair consists of two links connected
“in series”); four such coarse-grid links (V, W, X, and Y)
are depicted in Fig. 3. In this scheme, therefore, all of
the links in the lattice are updated in a single coarse-grid
correction step; this mimics the piecewise-constant inter-
polation (2.23).

Let us assign the following transformation laws under
the gauge group:

V—gVg, !, (5.11a)
W—g,Wey ', (5.11b)
X —geXgs', (5.11c)
Y—gsYgg ' . (5.11d)
Then the fine-grid links are updated as follows:
U=(UVULHU,=UuV , (5.12a)
Uy =VUy , (5.12b)
Uy =U,sUss'VU,s (5.120)
Us=U4s'VUsUsy s (5.12d)
UL=(UpWUROWU,=U, W, (5.12€)
Uy =WU,; , (5.120
U3 =(U3XU36' YU3s=Uj6X , (5.12g)
Ugg=XUg , (5.12h)
U;5=U45U58YU5—8‘ ’ (5.121)

Y
7 8 9
e AN
4 5 6
V’—’L——r— ‘_7’—X
| 2 3
W

FIG. 3. Alternative implementation of multgrid for lattice
gauge theories, shown here in dimension d =2. A “coarse-grid
link” is associated with 27! parallel pairs of links (each pair
consists of two links connected “in series”). Four coarse-grid
links are depicted here: ¥V (vertical solid lines), W (horizontal
solid lines), X (vertical wavy lines), and Y (horizontal wavy
lines).
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Uss=Uss YUs3'Usg (5.12j)
U =(Uzp YUz Uy =UypY, (5.12k)
Ul =YUs,, . (5.121)

(Of course, many other choices are possible.) Then there
are three classes of plaquettes: those-involving two dis-
tinct coarse-grid links (e.g., 4587), those involving three
distinct coarse-grid links (e.g., 1254 or 5698), and those
involving four distinct coarse-grid links (e.g., 2365). The
first class contributes terms of the form

Re tr[a4587( U45 USS YU;SI )( U&l VU45 U58 )

X(Y 'URNUZVY™H].  (5.13)
If G is Abelian, then this term is a constant (independent
of ¥V and Y); otherwise it is a mess. The second class of
plaquettes contributes terms of the form

Re tr[a1254( U12 W)( U25 U4_51 VU45)

X(UgY 'WUGUZHVTIULRD] . (5.14)

If G is Abelian, then this is of the form Retr(MWY 1)
with M =a,5,U,U,sU 35' U L' that s, it is a new in-
teraction between parallel links on opposite sides of a pla-
quette,

( 2 N Re tr(Bxy;zw ny Vzw ) 4
Xyzw

(5.15)

where B,,.,, is an n Xn matrix. Note that such a term
produces only terms of the same form on coarser grids.
On the other hand, if G is non-Abelian, then (5.14) is a
mess. Finally, the third class of plaquettes contributes
terms of the form

Re tr[ 650 WU (U3 X)(Usg' Usy YUY

X(UB' VT UsU;)] . (5.16)
If G is Abelian, this is again a coupling of the form (5.1),
with

=ay345U53U36Uss' Uss' (5.17)

Tyxy—1z-!
If G is non-Abelian, it is a mess.

One way of simplifying these formulas in the non-
Abelian case (for either of the two interpolations) is to
update only one direction of links at a time. Suppose, for
example, that we update only the vertical links. Then, in
each fine-grid plaquette, at most rwo links are being up-
dated: these involve either the same coarse-grid link
twice (e.g., 1254), or two neighboring coarse-grid links
(e.g., 2365). Such plaquettes produce coarse-grid interac-
tions of the form (5.6) and (5.15), respectively; and this
form of the Hamiltonian is preserved on coarser grids.
This coarse-grid Hamiltonian requires, therefore, n* pa-
rameters per coarse-grid link and plaquette. Though ob-
viously unwieldy, it might be borderline practical.

A closely related approach would be to use a unigrid
updating. Here one would update simultaneously, for ex-
ample, all the vertical links in a box B, using a generaliza-
tion of the “piecewise-covariant-constant” interpolation:
the update matrix ¥ would be parallel transported along
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a maximal tree in B. The resulting “unigrid Hamiltoni-
an” is obviously of the form

n
Hyg(V)=Retr(aV)+ 3 Re[pdyab(y—1)d]
a,b,c,d =1

(5.18)

for some matrix a and fourth-rank tensor 3. Moreover,
the coefficients a and 8 can be computed in a CPU time
proportional to the volume of the box, by carrying out
the parallel transport successively along the tree.?!
Again, this might be borderline practical.

Finally, we remark that lattice gauge theories with bo-
sonic matter fields can be handled by a generalization of
the above formulas; we leave the details as an exercise for
the reader. The resulting algorithms appear, however, to
be practical only in the Abelian case.

VI. DYNAMIC MONTE CARLO METHODS:
A REVIEW

In this section we review briefly the principles of dy-
namic Monte Carlo methods, and define some quantities
(autocorrelation times) which will play an important role
in the remainder of the paper.

Monte Carlo methods can be classified as static or dy-
namic. Static methods are those that generate a sequence
of statistically independent samples from the desired
probability distribution 7. Dynamic methods are those
that generate a sequence of correlated samples from some
stochastic process (usually a Markov process) having the
desired probability distribution 7 as its unique equilibri-
um distribution.

More precisely, let S be the configuration space of the
system; we use the letter ¢ to denote a generic
configuration. Now consider a Markov chain with state
space S and transition probability kernel®> P(¢—¢')
satisfying the following two conditions.

(@) [dm($)P(¢—¢")=dm(¢') . (6.1)

[This condition says that P leaves invariant the probabili-
ty distribution 7; in other words, 7 is an invariant (or sta-
tionary or equilibrium) distribution for P.]

(b) For each ¢ ES and each 4 CS having 7(4)>0,
there exists an n =0 for which P"(¢, A)>0. Here P" is
the n-step transition probability, i.e., the nth power of the
kernel P. (This condition is called irreducibility;®® it as-
serts, roughly speaking, that each state can eventually be
reached from each other state.)

In this case it can be shown®* that  is the unique sta-
tionary distribution for the Markov chain with transition
probability P, and that the occupation-time distribution
over long time intervals converges (with probability 1) to
, irrespective of the initial state of the system. If, in ad-
dition, P is aperiodic [this means that for each pair ¢, 4,
we have P"(¢, A)> O for all sufficiently large n], then the
probability distribution at any single time in the far fu-
ture also converges to m, irrespective of the initial
state—that is, lim,_, ,P"(¢, )= for all ¢. Thus, simu-
lation of the Markov chain P provides a legitimate Monte
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Carlo method for estimating averages with respect to .
However, since the successive states ¢(°),¢(”, ... of
this Markov chain are in general highly correlated, the
variance of estimates produced in this way may be much
higher than in independent sampling. To make this pre-
cise, let F be a real-valued function defined on the state
space S (i.e., a real-valued observable) which is square in-
tegrable with respect to w; and consider the stationary
Markov chain (i.e., start the system in the stationary dis-
tribution 7, or equivalently, “thermalize” it for a very
long time prior to observing the system). Then
{F,} ={F(¢'")} is a stationary stochastic process with

mean

pr=(F)= [dun($)F(¢)

and unnormalized autocorrelation function®

Crp(t)={(F,—{FINF, 1, —{F, 1))
=(F,F,,,)—uf

= [dm(¢)[PNp—¢")—

(6.2)

m($')IF($)F($’) .
(6.3)
The normalized autocorrelation function is then
Pprr(t)=Cpp(t)/Crp(0) . (6.4)

"Now define the integrated autocorrelation time (for the
observable F) to be

(6.5)

[The factor of 1 is purely a matter of convention; it is in-
serted so that 'rmt F=Texp r if pre(t)~e ™ V/7 with 7>>1.]
The relevance of the integrated autocorrelation time is
that it controls the statistical error in Monte Carlo mea-
surements of { F ). More precisely, the sample mean

F=— 3 F, (6.6)

n rs=1
1 n—1
== 3  (1—|tl/n)Cr(t) (6.7a)
Roy="ti-1n
%(Zwm, 7)Crp(0) for n>>7 . (6.7b)

Thus, the variance of F is a factor 27y, larger than it
would be if the {F,} were statistically independent. Stat-
ed differently, the number of “effectively independent
samples” in a run of length 7 is roughly n /27, .

A second (and somewhat different) notion of autocorre-
lation time plays some role in theoretical analyses. Since
typically ppr(t) decays exponentially ( ~ e 1177) for large
t, we define the exponential autocorrelation time
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Texp, F taoop —lnlpFF(t)l .
and
T (6.9)

= su T, .
exp exp, F
Fe L?( ™)

Thus, 7., is the relaxation time of the slowest mode in
the system. (If the state space is infinite, 7,,, might be
+ ©.) An equivalent definition, which is useful for
rigorous analysis, involves considering the transition
probability kernel P as an operator on the Hilbert space
L*(7) of square-integrable observables, defined by

(P)($)= [ P(p—d¢')f(4")

It is not hard to show that P is a contraction (i.e., has
norm = 1), so that its spectrum lies in the unit disk. The
constant function 1 is a nondegenerate eigenvector of P
(and of its adjoint P*) with eigenvalue 1; and if P is
aperiodic, then this is the only eigenvalue on the unit cir-
cle.®® Let R be the spectral radius of the remainder of P,
ie.,

(6.10)

R =inf{r:specP C {A:|A|Sr}U{1}} . (6.11)

Then it is not difficult to show, using a generalization of
the spectral radius formula,*” that R =exp(—1/7,,,). In
particular, the rate of convergence to equilibrium from
an initial nonequilibrium distribution is controlled by R
and hence by 7.

In summary, the autocorrelation times 7., and 7,
play different roles in Monte Carlo simulations. 7, pro-
vides an upper bound (sometimes much too conservative)
on the number of iterations n 4, which should be discard-
ed at the beginning of the run, before the system has at-
tained equilibrium; for example, 74 R 207, is usually
more than adequate. On the other hand, 7, r deter-
mines the statistical errors in Monte Carlo measurements
of (F ), once equilibrium has been attained.

Finally, we note that one convenient way of satisfying
condition (a) is to satisfy the following stronger condition:

(a") dm(¢)P(¢—¢')=dm (¢ )P(d'—¢) . (6.12)

Summing (a’) over ¢, we recover (a). (a’) is called the
detailed-balance condition;®® it is equivalent to the self-
adjointness of P as an operator on the space L*(w). In
this case, it follows from the spectral theorem that the
autocorrelation function Cpr(t) has a spectral representa-
tion

Crrl(t f dP Al

where dp(A) is a positive measure. Moreover, we have

(6.13)

R=e /T“"=sup{|}\|:k€supp} (6.14)
and
+
rur=1 [ dp A)Li (6.152)
<11_;‘”_P~ 61
ST A Texp - (6.15b)
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We want to emphasize the occasionally overlooked fact
that detailed balance is not necessary for the correctness of
a Monte Carlo algorithm —all that is necessary is to satis-
fy conditions (a) and (b). Indeed, many widely used
Monte Carlo algorithms do not satisfy detailed balance.
For example, if P, and P, are two transition matrices
that preserve the distribution 7 [i.e., satisfy condition (a)],
then their composition P, P, clearly also preserves 7. On
the other hand, the composition of two transition ma-
trices, each of which satisfies detailed balance, does not in
general satisfy detailed balance: in fact, the product of
two self-adjoint operators is self-adjoint if and only if the

two operators commute. Thus, the standard heat-bath al-

gorithm, with a periodic sweep of the sites, does not satis-
fy detailed balance. But it leaves invariant the Gibbs
measure 7, which is all that counts.

VII. MULTIGRID MONTE CARLO ALGORITHM

Classical equilibrium statistical mechanics is a natural
generalization of classical statics (for problems posed in
variational form): in the latter we seek to minimize a
Hamiltonian H (¢), while in the former we seek to gen-
erate random samples from the Boltzmann-Gibbs proba-
bility distribution e “PH¥) The statistical-mechanical
problem reduces to the deterministic one in the zero-
temperature limit f— + .

Likewise, many (but not all) of the deterministic itera-
tive algorithms for minimizing H(¢) can be generalized
to stochastic iterative algorithms—that is, dynamic
Monte Carlo methods—for generating random samples
from e "PH'%) For example, the stochastic generalization
of the Gauss-Seidel algorithm (or more generally, non-
linear Gauss-Seidel algorithm with exact minimization) is
the single-site heat-bath algorithm; and the stochastic
generalization of the multigrid algorithm is the multigrid
Monte Carlo algorithm.

Let us explain these correspondences in more detail.
In the Gauss-Seidel algorithm, the grid points are swept
in some order, and at each stage the Hamiltonian is mini-
mized as a function of a single variable ¢,, with all other
variables {¢,},.., being held fixed. The single-site heat-
bath algorithm has the same general structure, but the
new value ¢ is chosen randomly from the conditional
distribution of e “##® given {¢,},.,, i.e., from the one-
dimensional probability distribution

P (¢} )d ¢, =constXexp[ —BH($.,{d,},-)]dé;

(where the normalizing constant depends on {¢,},...). It
is not difficult to see that this operation leaves invariant
the Gibbs distribution e “##®). As B— + o it reduces to
the Gauss-Seidel algorithm.

It is useful to visualize geometrically the action of the
Gauss-Seidel and heat-bath algorithms within the space
U of all possible field configurations. Starting at the
current field configuration ¢, the Gauss-Seidel and heat-
bath algorithms propose to move the system along the
line in U consisting of configurations of the form
¢ =¢+1t8,(— <t<ow), where &, denotes the
configuration which is 1 at site x and O elsewhere. In the
Gauss-Seidel algorithm, ¢ is chosen so as to minimize the

(7.1)
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Hamiltonian restricted to the given line; while in the
heat-bath algorithm, ¢ is chosen randomly from the con-
ditional distribution of e “PH'$) restricted to the given
line: namely, the one-dimensional distribution with prob-
ability density P ,q(¢)~exp[ —H q(t)]=exp[ —H(¢
+15,)].

We now propose to generalize this idea in two ways.

(1) The ‘“fibers” used by the algorithm need not be
lines, but can be higher-dimensional linear or even non-
linear manifolds.

(2) The new configuration ¢’ need not be chosen in-
dependently of the old configuration ¢ (as in the heat-bath
algorithm); rather, it can be selected by any updating pro-
cedure which leaves invariant the conditional probability
distribution of e “A##) restricted to the fiber.

Before embarking on heavy formalism, let us give four
examples to illustrate the basic idea.

Examples. (1) Linear-state-space unigrid method (Secs.
IIC and III). Here the fibers are lines of the form
¢'=¢+txp (—oo <t <), where yp denotes the func-
tion which is 1 for sites belonging to the block B and zero
elsewhere. The sets B are taken successively to be single
sites, cubes of side 2, cubes of side 4, and so on. (If linear
interpolation were used, then the “direction vectors” xp
would be replaced by triangular waves of various widths.)
The deterministic unigrid algorithm chooses ¢ so as to
minimize the ‘‘conditional Hamiltonian” H_, 4(?)
=H(¢+tyxy), while the stochastic unigrid algorithm
chooses t randomly from the one-dimensional distribu-
tion with probability density P, 4(f) ~exp[ —H ,q(t)].
Conceptually this algorithm is no more complicated than
the single-site heat-bath algorithm. But physically it is of
course very different, as the direction vectors X
represent collective modes on all length scales.

(2) Nonlinear-o-model unigrid method (Secs. I1 C and
IV). Consider a nonlinear o model with values in a com-
pact group G. Here the variable ¢ is an element of G, and
the action of ¢ on the spin configuration g is to left multi-
ply all the spins in a block B by the group element ¢:

g, f xERB,

g, ifx&B . 7.2

gy =topg=

Again the sets B are taken successively to be single sites,
cubes of side 2, cubes of side 4, and so on. The deter-
ministic unigrid algorithm chooses ¢ so as to minimize
the conditional Hamiltonian H_, (¢)=H (to zg), while
the stochastic unigrid algorithm chooses ¢ randomly from
the distribution on G whose density with respect to Haar
measure is P, (¢)~exp[ —H_,,q(t)]. Because of the
curvature of the fibers in this example, it is not entirely
obvious that this algorithm leaves invariant the correct
Gibbs distribution (one might worry that there are miss-
ing Jacobian factors)—but it is true, as we prove below.
(3) Linear-state-space multigrid method (Secs. 11 and
III). Here the fibers are the sets of field configurations
which can be obtained one from another by a coarse-
grid-correction step, i.e., the sets of fields ¢ +p; ; _ 3 with
¢ fixed and 9 varying over U, _,. These fibers form a
family of parallel affine subspaces in U,, of dimension
N,_,=dimU,_,. This example differs from the unigrid
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examples in that the new configuration ¢’ is not chosen
independently of the old configuration ¢ (to do so would
be impractical on a space of such high dimension). Rath-
er, ¢’ is chosen by a valid updating procedure. In the
deterministic case, ‘“‘validity” means that the updating
procedure is an iterative algorithm which converges (at
least locally) to the absolute minimizer of H, restricted to
the fiber. In fact, we take this iterative algorithm to be
multigrid itself, applied at level / —1 to the conditional
Hamiltonian H,_((¢)=H/(¢+p,,_ ). Validity of the
multigrid algorithm can therefore be proven inductively,
starting at level O and working upwards. In the stochas-
tic (MGMC) case, ‘““validity” means that the updating
procedure is a Markov chain which leaves invariant the
conditional distribution of e_ﬁH’(¢)d¢, restricted to the
fiber. But this distribution, written in the coordinates v,
is just e TPy 1. (The point is that Lebesgue measure
is preserved, up to a multiplicative constant, by the affine

transformation ¥—¢+p;; _¢.) It is therefore justified

to use, as the updating procedure, the MGMC algorithm
itself, applied at level / —1 to the conditional Hamiltoni-
an H;_,(y). Validity of the MGMC algorithm can be
proven inductively, starting at level O (where the MGMC
algorithm is just ordinary heat bath) and working up-
wards.

Of course, this MGMC algorithm is mathematically
and physically equivalent to the stochastic unigrid algo-
rithm described in Example (1). But it is useful, we be-
lieve, to be able to look at it from either of the two points
of view: independent resamplings in one-dimensional
fibers, or nonindependent resamplings (defined recursive-
ly) in higher-dimensional (coarse-grid) fibers. On the oth-
er hand, the two algorithms are not computationally
equivalent. One MGMC sweep requires a CPU time of
the order of the volume (provided that y <2¢), while the
time for a unigrid sweep grows faster than the volume [cf.
the work estimates (2.30) and (2.42)].

(4) Nonlinear-o-model multigrid method (Sec. IV). The
fibers are again the sets of fields which can be obtained
one from another by a coarse-grid-correction step, i.e.,
the sets of fields (p,,_,4)g with g € U, fixed and h vary-
ing over U,_,. The comments made in the preceding ex-
ample apply here too. The only difference arises from the
curvature of the fibers, so that the proof of validity of the
stochastic algorithm is not entirely trivial.

With this introduction, let us now define the general
concept underlying all these examples, which we call par-
tial resampling. It goes as follows: Let the configuration
space U be decomposed as a disjoint union of “fibers”
U,, where a runs over some (usually continuous) index
set A . Then any probability measure u on U can be writ-
ten in the form

du($)= [dvigla)dp(a) , (7.3)
where p is a probability measure on A, and dv(-|a) is,
for each a, a probability measure on U,. In fact, p is just
the projection of p onto A —that is, the probability dis-
tribution describing which fiber ¢ lies in (integrating out
the locations within the fibers)—while dv(-|a) is the con-
ditional probability distribution of du(¢) given that ¢ lies
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in the fiber U, (Ref. 89). Now let P =P(¢—¢') be any
transition probability kernel which leaves invariant each
of the measures dv(-|a), i.e., which satisfies

[ dvigla)P(p—¢ ) =dv(¢'|a) (7.4)

for all a. Then it follows from (7.3) that P also leaves u
invariant, i.e.,

[ du@)P(¢—¢)=du(4") .

Physically, P is an updating procedure which moves the
system stochastically within its current fiber U, in such a
way as to leave invariant the measure dv(-|a). In sum-
mary, any updating procedure which leaves invariant all of
the conditional probability distributions dv(-|a) also
leaves invariant the parent probability distribution du.

The simplest example is that in which the
configuration space U is decomposed as a Cartesian prod-
uct U =V X W, so that each field configuration ¢ € U can
be uniquely written as ¢ =(¢,w) with yEV, o E W. Then
we can take A=W and U, =V X{w}={(,0)ypEV].
Now suppose that

du(¢p)=2Z le BHYq Y ydud o) ,

(7.5)

(7.6)

where pf and pl are suitable a priori measures, and we
have written H(¢,w) for H(¢). Then the conditional
probability distribution of ¥ given w has the simple form

dv(Plw)=Z(w) le PHOGO)\q V() , (7.7)
where
Z(w)= [e PAGqpuliy) . (7.8)

A special case of this setup is that in which U is a vector
space decomposed as a direct sum U =V& W. Then the
fibers U, are a family of parallel affine subspaces. Usual-
ly uf and pf are just Lebesgue measure on ¥ and W, re-
spectively.

Example. In single-site update algorithms, when site x
is being updated one takes y=¢, and ©={¢,},.,-

The transition probability P(¢—¢') can be any updat-
ing procedure which leaves invariant each of the condi-
tional probability distributions dv(:|a). One example is
(generalized) heat-bath wupdating, in which the new
configuration ¢’ is an independent resampling of location
within the fiber a=a(¢):

Pug(d—¢')=dv(d'|al(¢)) .

In the Cartesian-product situation, this means that
¢'=(y/,w), where ¢’ is a random variable chosen from
the conditional distribution (7.7), independent of the
“old” value v, while w is unchanged. Heat-bath updating
is feasible if the distribution dv(-|a) is relatively simple.
This typically happens if the fibers U, are low-
dimensional manifolds (as in our two unigrid examples).
However, we emphasize that it is legitimate to use any
updating procedure that leaves invariant the conditional
distribution dv(¢’|a(¢)); it is not necessary that ¢’ be
(conditionally) independent of ¢. For example, Metropo-
lis updating is perfectly legitimate—as is MGMC updat-
ing.

(7.9)
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We can now describe the multigrid Monte Carlo
(MGMCQ) algorithm in detail. Consider first the case in
which the configuration space U is a vector space. We
specify the following ingredients (compare to Sec. III).

(1) A sequence of course-grid configuration spaces
Uy=UUy_,Uy_», ..., U,.

(2) Prolongation (or ‘“‘interpolation’) operators p;;_;:
U_,—Ufor1<I<M.

(3) Basic stochastic iterations 8;: U;XH,— U, for
0=<I!=<M. Here #, is a space of “possible Hamiltonians”
defined on U}, and &,(-,H,) is a stochastic updating pro-

cedlgqre which leaves invariant the Gibbs distribution
~BH,

Jaoie PPy g =dgie T
where d¢, is Lebesgue measure on U;. For example,
&,(-,H,;) could be a single-site heat-bath (or single-site
Metropolis) updating for the Hamiltonian H,. Most gen-
erally, we shall use two basic stochastic iterations, &P
and $°%; they may be the same, but need not be.

(4) Cycle control parameters (integers) ;=1 for
1 <1 =M, which control the number of times that the
coarse grids are visited.

The MGMC algorithm is then defined recursively as
follows: ’

(7.10)

procedure mgmc(l,¢,H;)
comment This algorithm updates a field configuration
¢ in such a way as to leave invariant the

. . (¢)
Gibbs distribution e "1

d¢$, where d¢, is
Lebesgue measure on U, .
¢—S7"(¢,H;)
if / >0 then
compute H;_ (-

<0

)EH](¢+p[’1..1')

for j =1 until y, do mgmc(l
¢—d+p, ¢

endif

PSP (@, H))

end (7.11)

—1,¢,H,_,)

It is immediately seen that this algorithm is identical in
structure to the deterministic multigrid algorithm
(3.1)—only the meaning of 7™ and $7°% is different.

As explained above, the course-grid-correction phase
of the MGMC algorithm is a special case of partial
resampling: the configuration space U, is decomposed as
a direct sum U;=V,® W,, where V,=p,,_,[U,;_] and
W, is some complementary subspace (the choice of W;
plays no role). In other words, the fibers U, are the sets
of field configurations which can be obtained one from
another by a coarse-grid-correction step: namely,
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¢+p; ;-1 with ¢ fixed and ¢ varying over U;_,. These
fibers form a family of parallel affine subspaces in U,.
The conditional distributions of e d¢, on these

fibers are simply e ~PH) multiplied by Lebsgue measure
on the ﬁber but this, in new coordinates, is precisely

—BH, 1—1 '/’d

Y, since Lebesgue measure is preserved, up to
a multlphcatlve constant, by the affine transformation
Y—¢+p,;_1¥. This proves the correctness of the
MGMC algorithm (7.11).

Consider next the case of a nonlinear o model with
values in a compact group G (cf. Sec. IV). The MGMC al-
gorithm is again identical in structure to the correspond-
ing deterministic MG algorithm, except for the meaning
of &7 and §T°*. The fibers U,, are again the sets of fields
which can be obtained one from another by a coarse-
grid-correction step: namely, (p,,_4)g with g € U, fixed
on h varying over U, _,. It seems intuitively clear that
the MGMC algorithm for nonlinear o models is
“correct,” i.e., that it preserves the correct Gibbs distri-
bution. However, it is extremely easy to make mistakes
in this area (see Sec. X A), so we feel more confident with
a formal proof. To simplify the notation, we will discuss
a simple model situation in which there is only one
coarse-grid site coupled to fwo fine-grid sites. The gen-
eral situation with arbitrarily many coarse-grid sites (not
just one) and arbitrarily many fine-grid sites per block
(not just two) is proven by identical reasoning using
heavier notation (more indices).

Consider, therefore, a model with fine-grid variables
g1,8, belonging to a compact group G. Let the Hamil-
tonian be H(g,,g,); the Gibbs probability distribution is

duig,,g,)=2Z le T gNg )dMg,),  (1.12)

where d A is the normalized Haar measure®® on G and of

course Z is the normalization factor (“partition func-
tion”)

Z=ffe_

Now suppose that we put g, and g, into a “coarse-grid
block” and left multiply both of them by a ‘“‘coarse-grid
variable” h €G:

T8 g0g,)dMg,) . (7.13)

(81,82)—(hgy,hg,) . (7.14)

We want to show that if (g,,g,) have the distribution
(7.12) and A has the coarse-grid conditional distribution

1 —H(hg,

du(hlg,,g,)=2Z(g,,g,) e "8 anh), (7.15)
where
Z(g,8)= [ "), (7.16)

then (g),g5)=(hg,,hg,) has again the distribution
(7.12).

To show that two probability distributions are equal, it
suffices to show that they give equal expectation to all
functions. So let F(g,,g,) be an arbitrary function of g,
and g, (i.e., an arbitrary “observable”). We want to show
that I (F)=J(F), where
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1=z fe "4 R(g g,)d Mg M g,)

and

JF)=z [ [ MEve [Z(gl,gz)*1fe‘””’gl”'g”p(hgl,hgz)dx(h) ]dk(gl)dk(gz) .

Interchanging the order of integration in J gives

JF)=z"'[ [f fz<g1,g2)"e‘”‘g*’gz)e“”“‘g"”gZ’F<hgl,hg2)dx(gl)dx(gz)]dx(h).
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(7.17)

(7.18)

(7.19)

Now, Haar measure is preserved under the change of variables g} =hg,, g5 =hg, in the inner integral, so

_ B A N A r
JF)=z"'f [ffZ(h—lg;,h-lg;rle Hin g0k ), ”‘g“g“ﬂg'l,g;)dug'l)dug’2>]duh).

(7.20)

Returning now to the original order of integration (and dropping the primes), we get

J(F):-'Z“ff [fz(h—1g1’h—1g2)7le—H(h"g‘,h

N - \
2gnh) }e B8 p (o 8,)d Mg, dA(g,) .

(7.21)

Now Z(h'g,,h'g,)=Z(g,,g,) for any h' € G, by the left invariance of Haar measure [cf. (7.16)]. Therefore,

_ -1 —1
Jp=z"'[ [ [Z(gl,gz)—‘fe Ak 80 g 0 ()

On the other hand, Haar measure (on a compact group) is
also invariant under inversion, i.e.,

Jrin=harm = [ f(rydrch) (7.23)
for any function f, so the inner integral in (7.22) collapses
to the constant 1, and I(F)=J(F) as desired. This
proves the correctness of the MGMC algorithm of the
group-valued nonlinear o model.

Consider, next the case of a nonlinear 0 model with
values in a compact manifold M CR" (or C") on which a
compact group G acts transitively. As explained in Sec.
V such a model on M can be “lifted” to a model on G by
means of the mapping

g§—8d, (7.24)

where ¢ is a fixed reference configuration. Of course, this
mapping is usually many to one, but that is irrelevant.
The key fact is that the image under (7.24) of Haar mea-
sure on G is the unique G-invariant measure on M.
Therefore, expectation values of observables F(¢) in the
M model with Hamiltonian H (¢) are equal to expecta-
tion values of observables F(g)=F(g¢) in the G model
with Hamiltonian H(g)=H(g¢) [cf. (4.10)-(4.13)]. It
suffices, therefore, to simulate the latter model.

Finally, the correctness of the MGMC method for a
lattice gauge theory (cf. Sec. V) follows by arguments
analogous to those used for the G-valued nonlinear o
model. Indeed, a lattice gauge theory can be thought of
(if desired) as a group-valued nonlinear o model with
strange four-spin interactions.

VIII. STOCHASTIC LINEAR ITERATIONS
FOR GAUSSIAN MODELS

In this section we analyze an important class of Mar-
kov chains, the stochastic linear interactions for Gauss-

e TEVBIE (g o )dMg,)dAg,) .

-H
(7.22)

ian models.’! This class includes, among others, the
single-site heat-bath algorithm (with deterministic sweep
of the sites’?), the stochastic SOR algorithm,*** and the
multigrid Monte Carlo algorithm—all, of course, in the
Gaussian case only. We show that the behavior of the
stochastic algorithm is completely determined by the be-
havior of the corresponding deterministic algorithm for
solving linear equations.
Consider any quadratic Hamiltonian

H(¢)=1(p, Ad)—(f,¢) , (8.1)

where A is a symmetric positive-definite matrix, and the
corresponding Gaussian measure

dm(¢)=const X e ~($48)/2+f:d)g 4 (8.2)
having mean 4 ~!'f and covariance matrix 4 ~!. Next
consider any first-order stationary linear stochastic itera-
tion of the form

¢(n+l):M¢(n)+Nf+Q§(n) , (8.3)
where M, N, and Q are fixed matrices and the é‘(”) are in-
dependent Gaussian random vectors with mean zero and
covariance matrix C. The iteration (8.3) has a unique sta-
tionary distribution if and only if the spectral radius
p(M)=lim, __||M"||"/" is <1; and in this case the sta-
tionary distribution is the desired Gaussian measure (8.2)
for all f if and only if

N=I—-M)4"! (8.4a)

and

0COT=A4"1—MA"'MT (8.4b)
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(here a superscript T denotes transpose). >

The reader will note the close analogy with the deter-
ministic linear problem (2.2)-(2.4). Indeed, (8.4) is identi-
cal with (2.4); and if we take the ‘“zero-temperature limit”
in which H is replaced by BH with B— + «, then the
Gaussian measure (8.2) approaches a 6 function concen-
trated at the unique minimum of H (namely, the solution
of the linear equation A¢=f), and the “noise” term
disappears (Q —0), so that the stochastic iteration (8.3)
turns into the deterministic iteration (2.3). We have the
following. :

(a) The linear deterministic problem is the zero-
temperature limit of the Gaussian stochastic problem;
and the first-order stationary linear deterministic itera-
tion is the zero-temperature limit of the first-order sta-
tionary linear stochastic iteration. Therefore, any  sto-
chastic linear iteration for generating samples from the
Gaussian measure (8.2) gives rise to a deterministic linear
iteration for solving the linear equation (2.2), simply by
setting Q =0.

(b) Conversely, the stochastic problem and iteration are
the nonzero-temperature generalizations of the deter-
ministic ones. In principle this means®' that a deter-
ministic linear iteration for solving (2.2) can be general-
ized to a stochastic linear iteration for generating samples
from (8.2), if and only if the matrix 4 " '—MA4 " 'MTis
positive semidefinite: just choose a matrix Q satisfying
(8.4b) (Ref. 94). In practice, however, such an algorithm
is computationally tractable only if the matrix Q has ad-
ditional nice properties such as sparsity (or triangularity
with a sparse inverse).

Example. (1) Single-site heat-bath (with deterministic
sweep of the sites) =stochastic Gaussian. On each visit to
site i, ¢, is replaced by a new value ¢; chosen indepen-
dently from the conditional distribution of (8.2) with
{¢;}»: fixed at their current values: that is, ¢, is Gauss-
ian with mean (f;—3;.,a;¢;)/a; and variance 1/a;.
When updating ¢; at sweep n +1, the variables ¢ ; with
J <i have already been visited on this sweep, hence have
their “new” values ¢;"+”, while the variables ¢; with
J > i have not yet been visited on this sweep, and so have
their “old” values ¢§"). It follows that

(n+1)—
¢;" "= fizaij ;"_H)_Eaij ;n)]/aii
j<i i>i
+(aii)_1/2§£‘n) (8.5)
where £ has covariance matrix I. A little algebra brings
this into the matrix form (8.3) with

=—(D+L)"'LT, (8.6a)
N=({D+L) ', (8.6b)
Q=(D+L)"'D'? (8.6¢)

where D and L are the diagonal and lower-triangular
parts of the matrix A, respectively. It is straightforward
to verify that (8.4a) and (8.4b) are satisfied.®® The single-
site heat-bath algorithm is clearly the stochastic generali-
zation of the Gauss-Seidel algorithm.

(2) Stochastic SOR. For models which are Gaussian (or
more generally, “multi-Gaussian”), Adler’® and Whit-
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mer>® have shown that the successive over-relaxation
(SOR) iteration admits a stochastic generalization: name-

ly,
¢(n+l)=(1_w)¢(n)

+1) )
to(fi— 3 aij¢;'n - a;; 3’”

j<i j>i

/aii

(8.7)

172

£,

0(2—w)
a

+

i

where 0 <w <2. For w=1 this reduces to the single-site
heat-bath algorithm. This is easily seen to be of the form
(8.3) with

M=—(D+oL) '[(0—1)D+oL™], (8.8a)
N=w(D+oL)™ !, (8.8b)
Q0 =[w(2—w)]""*D +wL)"'D'?, (8.8¢)

where D and L are as before. It is straightforward to ver-
ify that (8.4a) and (8.4b) are satisfied. °>

(3) Multigrid Monte Carlo (MGMC) method. The
MGMC algorithm (7.11) is identical to the corresponding
deterministic MG algorithm (2.12) and (3.1) except that
&, is a stochastic rather than deterministic updating.
Consider, for example, the case in which & is a stochas-
tic linear updating (e.g., single-site heat-bath). Then the
MGMC is also a stochastic linear updating of the form
(8.3): in fact, M equals My, the iteration matrix of the
corresponding deterministic MG method, and N equals
Nyg; the matrix Q is rather complicated, but since the
MGMC algorithm is correct, Q must satisfy (8.4b). (The
easiest way to see that M =M,,; is to imagine what
would happen if all the random numbers £'” were zero.
Then the stochastic linear updating would reduce to the
corresponding deterministic updating, and hence the
same would be true for the MGMC updating as a whole.)

(4) Langevin equation with small time step. As far as
we know, there does not exist any useful stochastic gen-
eralization of the Jacobi iteration. However, let us
discretize the Langevin equation

%=—%C(A¢—f)+§, (8.9)
where £ is Gaussian white noise with covariance matrix
C, using a small time step §. The result is an iteration of
the form (8.3) with

M=1—§CA , (8.10a)
N=%C , (8.10b)
0 =871 . (8.10¢)

This satisfies (8.4a) exactly, but satisfies (8.4b) only up to
an error of order 8 (Ref. 96). If C=D "', these M, N cor-
respond to a damped Jacobi iteration with 0=856/2<<1
(Ref. 97).

It is straightforward to analyze the dynamic behavior
of the stochastic linear iteration (8.3). Using (8.3) and
(8.4) to express ¢'" in terms of the independent Gaussian
random variables ¢'©, £, gV £n=1 e find
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5= MpO) + "il M7 RNf "i‘ M7 -1k Qg from which it follows that
k=0 k=0 .
"l My =M"($O)+(T—M" 4! (8.12)
=Mn¢(0)+(I_Mn)A-1f+ 2 Mn—]*kgé—(k)’ <¢( ) <¢ ) f
k=0
(8.11) and
J
min(s,z)—1
COV(¢(S),¢(”)ZMSCOV((ﬁ(m, ¢(0})(MT)I+ 2 Ms—l—kQCQ T(MT)I—-I—k
k=0
min(s,7)—1
=MSCOV(¢(0)’¢(0))(MT)I+ 2 Ms—lak(A_l—MA~1MT)(MT)I_1—k
k=0
o oo [TATI=MEATMTEIMTY T s <t
=M COV(¢ 7¢ M)+ Ms..t[A_l_MtA_l(MT)t] ifs>t. (8.13)
f
Now let us either start the stochastic process in equilibri-
um LM
I—M
0y — 4—1 T = (8.18)
<¢ ) A f ’ (8.14a) int, F (a, A ._la)
cov(¢®,¢')=4"", (8.14b)

or else let it relax to equilibrium by taking s,f— + o
with s —1 fixed. Either way, we conclude that in equilib-
rium (8.3) defines a Gaussian stationary stochastic pro-
cess with mean 4 ~'f and autocovariance matrix

A MMTY s ifs<t,

cov( (s)’ (D)=
e MST'47l ifs>t .

(8.15)

Moreover, since the stochastic process is Gaussian, all
higher-order time-dependent correlation functions are
determined in terms of the mean and autocovariance.
Thus, the matrix M determines the autocorrelation func-
tions of the Monte Carlo algorithm. In particular, the
exponential autocorrelation time 7, (slowest decay rate
of any autocorrelation function) is given by

exp( — 1 /7 ) =p(M) , (8.16)
and this decay rate is achieved by at least one observable
which is linear in the field ¢. In other words, the conver-
gence rate of the Monte Carlo algorithm is equal to the
convergence rate of the corresponding deterministic itera-
tion: namely, p(M).

Similarly we can compute the integrated autocorrela-
tion time 7, r for selected observables F. Consider, for
example, an observable linear in the field, F =a-¢; we
have

Crp(t)=(a,M"' 4 1a) (8.17)

and hence

In particular, if a is an eigenvector of M T with eigenvalue
A, then

1+A

Tin,F = T (8.19)

Likewise, consider an observable quadratic in the “shift-
ed field” g=¢— A " 'f: namely, F=(§,K¢) for some
symmetric matrix K. Then

Crp(t)=2tr[ 4 " (MT)IKM1 4 7'K] . (8.20)

In particular, if K =aa” and a is an eigenvector of M7
with real eigenvalue A, then,

Crp(t)=20%"(a, 4 7'a)? (8.21)
and, hence,
1+A2
Tint,F = :\? . (8.22)

Another way to state these relationships is to recall®®

that the Hilbert space L(7) is isomorphic to the bosonic
Fock space F(U) built on the “energy Hilbert space”
(U, A) defined by (2.37) and (2.38): the “n-particle states”
are the homogeneous Wick polynomials of degree n in
the shifted field §=¢— 4 ~'f. (If U is one-dimensional,
these are just the Hermite polynomials.) Then the transi-
tion probability P(¢”—¢” t1) induces on the Fock
space an operator

P=TMN=1oMToMTeMD® - - - (8.23)

that is the second quantization®® of the operator M7 on
the energy Hilbert space. To see this, let us first rewrite
the transition probability P(¢— ¢’) as an explicit integral
kernel:

P(¢p—¢')=[det2mQCQ )]~ exp[ —1(¢' —M¢—Nf,(QCQT) " (¢’ —M¢$p—Nf))1d¢’

=[det(27QCQ "1~ 2exp[ — L($'—M $,(QCQT) "' —M$))1d’ .

(8.24)



2058

JONATHAN GOODMAN AND ALAN D. SOKAL 40

(To lighten the notation, let us henceforth drop the tildes.) Now let us apply this integral kernel, as in (6.10), to the

Wick exponential®®
8.(¢)=:expla-¢):=exp(a-¢—1LaT4 la).

We obtain

(8.25)

(Pg, (¢)=[det(2rQCQ )]~ Zexp(—LaT 4 ~'a) [ exp[ — L' —M$,(QCQT) "¢’ —M$))+a-¢'1d ¢’

=exp[ —1(a,M 4 “MTa)+(MTa,$)]=:exp(MTa-¢): .

On the other hand, by definition,

T(MT)expla-¢):=T(MT) S, %:(wd))k:
K=o X!
=
—:(MTa-¢)*
k§0 k!
=:exp(MTa-): . (8.27)

We have therefore demonstrated the validity of (8.23) on
Wick exponentials (8.25). But linear combinations of the
Wick exponentials form a dense set in the Hilbert space
L2(1r), so (8.23) holds universally.®°

It follows from (8.23) that

ITAO" 1 2, =M, a0 (8.28)
and hence that
p(D(M) } 1Y) =p(M) . (8.29)

Moreover, P is self-adjoint on L2(7) (i.e., satisfies detailed
balance) if and only if M is self-adjoint with respect to the
energy inner product (2.37), i.e., if >’

MA=4AMT, (8.30)
and in this case
p(D(M) |} 1Y=|T(M) | 1Yo,
=p(M)=|M||y, 1) - @.31)

In summary, we have shown that the dynamic behav-
ior of any stochastic linear iteration is completely deter-
mined by the behavior of the corresponding deterministic
linear iteration. In particular, for Gaussian MGMC, the
results of Ref. 63, combined with the arguments of the
present section, prove rigorously that critical slowing
down is completely eliminated. That is, the autocorrela-
tion time 7 of the MGMC method is bounded as criticali-
ty is approached (empirically r=1—2).

Likewise, we can analyze exactly the Gaussian stochas-
tic SOR algorithm of Adler*® and Whitmer.** Consider,
for example, the massless free field with Dirichlet bound-
ary conditions on a square {1,...,L}X{l,...,L}.
Then it is well known!® that the SOR iteration with
overrelaxation parameter o (with red-black or lexico-
graphic ordering) has convergence rate

(8.26)

a)z,u2—2(a)—l)+wg\/co2,u2—4(w—1)

2 .
p(Msog )= ifo<w,,
o—1 ifwozw, , (8.32)
where
‘u:COSLZ-l (8.33)
and
1+smL 1
Therefore, @ yptima = @5, and
1—sin—2
2
P(Msor,a )= L;rl zl—T’T (8.35)
1-+si
S

It follows that, for the stochastic SOR algorithm,
Texpl @optimal) L and the dynamic critical exponent is
z=1. Analogous results can easily be derived for other
boundary conditions.

IX. PERFORMANCE OF THE MULTIGRID
MONTE CARLO ALGORITHM
FOR NON-GAUSSIAN MODELS

It is pleasant to know that the MGMC method elimi-
nates critical slowing down for Gaussian models (free
fields), but the real test of any algorithm is its perfor-
mance on interacting (non-Gaussian) field theories. It
turns out that the performance of MGMC on non-
Gaussian models depends strongly on the specific form of
the nonlinearities. We have therefore undertaken sys-
tematic numerical experiments*~’ on a variety of models,
with the aim of refining our physical insight into why
MGMC works well on some models and not so well on
others. In this section we summarize the currently avail-
able heuristic and numerical evidence on the performance
of MGMC for non-Gaussian models, and explain what
work needs to be done in the future.
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A. ¢* models

The first numerical experiments* on non-Gaussian
MGMC concerned the ¢* model

H=2 3 (6,— 6,0+ 3 (Ag:+4¢2)

2 |x —x'|=1

9.1

in dimension d =2. We ran on a 128X 128 periodic lat-
tice at =1, A=0.1 at a variety of values of 4 (bare mass
squared) near the critical point 4.~ —0.3. Our MGMC
interaction used one heat-bath presweep and one heat-
bath postsweep (m;=m,=1) with red-black ordering,
and a W cycle (y =2); for comparison, we also ran a pure
heat-bath algorithm (m;=m,=1, y=0). We measured
the integrated autocorrelation time (6.5) for the total
magnetization M= ¢, , and found that the MGMC al-
gorithm does not eliminate critical slowing down for this
model. Indeed, we found that the autocorrelation time
for MGMC diverges at the critical point with the same
dynamic critical exponent as in the heat-bath algorithm;
the reduction in 7 over the heat-bath algorithm (at this
value of A) is a factor of =20. Since each MGMC itera-
tion takes twice the work of the corresponding heat-bath
iteration, I°! the gain in efficiency, measured in CPU
units, is a factor of =~10. Such a gain is perhaps
significant, but it is disappointing that the dynamic criti-
cal exponent was not reduced at all.

In retrospect, it is now clear that the ¢* model was one
of the worst possible choices for a test of the MGMC
method. In fact, we can argue heuristically that the
efficiency gain near criticality in this model should ap-
proach a constant factor F(A)< «, where F(A) is a de-
creasing function of A. Of course, F(A) must approach
+ o as A—0, in accordance with the absence of critical
slowing down for the Gaussian MGMC method. Here is
our heuristic analysis of the behavior of the MGMC
method for ¢* models.

Let us use the “unigrid” point of view (Sec. IIC): this
means that we imagine performing updates successively
on single sites, cubes of side 2, cubes of side 4, cubes of
side 8, and so on; an update of a block B consists of pro-
posing to add a constant ¢ simultaneously to all the spins
in that block, computing the conditional Hamiltonian

H_  4(t)=H(¢+1txp), and choosing a random value of ¢

according to the probability density

~exp[ -Hcond( t)]

Consider first the Ising model, which is the limiting
case A— oo with 4 = —2A; here the only allowed spin
values are +1 and —1. What does the probability distri-
bution P, 4(¢) look like? If all of the spins of the block
B happen to be in the state —1, then the possible values
of t (i.e., those that have nonzero probability) are O and
+2; and analogously if all the spins in B are + 1; but in
all other cases, the only allowed value for ¢ is zero. In
other words, the MGMC updates do nothing, except in
the rare event that all of the spins in B are initially
aligned. Since the probability of such a configuration de-
creases exponentially with the volume of the block B —
indeed, it is already quite improbable even for a 2X2
block—it follows that the MGMC method is completely
ineffective on long length scales, and should behave essen-

Pcond(t)
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tially the same as a single-site heat-bath algorithm.

The same is clearly true when A is large but finite: The
potential ¥ (¢) has deep double wells at ¢==c, so that
every spin B has a value very near either +c¢ or —c.
Then, unless all the spins in B happen to be in the same
well, the only probable values for ¢ are very near zero, so
that the MGMC updates induce only small fluctuations
within the current well. These are, to be sure, long-
wavelength small fluctuations; but intuition tells us that
the important large-scale collective modes are not small
fluctuations, but are rather Ising type (i.e., flips in the
sign of ¢), so the MGMC updates are again ineffective in
moving the system around the important regions of the
configuration space.

Consider, finally, the general case (A >0 of arbitrary

magnitude). Then the conditional Hamiltonian for a
block B of size b%is
H ona()=Nt*+k't3+ A't>+h't +const , (9.2a)
where
V=3 A=b\,
xXEB
K= 4Ad, ,
xEB
(9.2b)
A'=3 (6A$2+ A)+db? la,
xXEB
h'=3 (4r¢3+24¢,) .
xXEB
Now suppose that
2
a= min H ,4(t)>0. 9.3)

—w<t<ow dt?

Then H 4 is strictly convex, hence has a unique local
minimum (call it ¢#,), and
Hcond(t)ZHcond(to)+%(t —10)% . (9.4)
One expects heuristically, therefore, that “typical” values
of the random variable ¢ in the probability distribution

P a(t)~exp[ —H ,4(2)] will differ from ¢, by at most
~a ~'/2, [In fact, since

Hcond(t)EHl(t)+%(t—t0)2 ©.5)

with H, convex, the Brascamp-Lieb inequality!®? implies
rigorously that var(z)<a~'.] Now a simple computa-
tion shows that

2
xXEB

a=2A4+2db? la+124b? ‘Zlg S (¢—¢,)?

(9.6a)

where

b, (9.6b)

1

X

xXEB

For a one-site block, the term in large parentheses van-
ishes (as it should); but for a large block, the term in large
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parentheses is with very high probability close to
var(¢,)=(¢2)— (¢, )?=(¢2)>0 9.7)

(Ref. 103). On the other hand, {$2) in the interacting
theory is at least as great as its value {¢2 ) in the theory

with the ferromagnetic nearest-neighbor interaction
turned off, namely in the single-spin measure
dv(¢)~exp[ —Ap*— (A4 +da)p*ld (9.8)

(this is Griffiths’ second inequality!®*). It follows!?® that

A+da>—20(¢2)o> —20(¢2) . 9.9)
Therefore, for large blocks (b >>1) we have

a22db? la+ 12069 ¢% ) (9.10)
and hence

var(¢) S(2db? "la+120b9(¢2 )) " . (9.11)

Now the term 2db¢ " !a is present already for free fields
(it measures the energy cost of making a piecewise-
constant update of a Gaussian field); from the rigorous
convergence theorem for the Gaussian MGMC algo-
rithm,* we know that an update of this size is “big
enough” to eliminate critical slowing-down, provided
that A =2 (i.e., a W cycle is used). On the other hand, we
might expect that if the size of the update on a given
length scale is drastically less than this, the MGMC up-
dates are essentially ineffective on that length scale. %
We conclude that for block sizes

bza/A{(¢2)~1/A, 9.12)

the MGMC updates are ineffective. The scenario is
therefore the following: the first few coarse grids (up to
b=1/A) do useful work, while the rest are useless, so
that the “effective correlation length” of the theory is re-
duced by a factor of about 1/A; we expect, therefore, that
the autocorrelation time of the MGMC method will be a
factor of about (1/A)* smaller than the autocorrelation
time of the heat-bath algorithm (here z =2 is the dynamic
critical exponent). This substantiates the claims made
above, and makes the specific prediction that the im-
provement factor F(A) behaves as

F(A)~1/A% (9.13)

as A—0.

The foregoing arguments have, in our opinion, too
many loopholes to justify taking seriously the quantita-
tive prediction (9.13). Nevertheless, we are convinced
that the qualitative behavior is correct: for one-
component ¢4 models, the MGMC method has the same
dynamic critical exponent as the heat-bath algorithm;
and the improvement factor F(A) is a decreasing function
of A which approaches + « as A—0. It would be an in-
teresting project to measure carefully the improvement
factor F(A) along with the histogram of update ampli-
tudes var(t) on the various course grids, so as to test
quantitatively the reasoning (9.2)—(9.13).

We emphasize that this argument applies to ¢* models
in any lattice dimension: the argument has nothing what-
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soever to do with the behavior of the renormalization-
group flow (which would be different for d <4 and d > 4).
This illustrates, once again, that the “flow”’ of conditional
Hamiltonians in the MGMC method is very different
from the flow of marginal (renormalized) Hamiltonians in
the block-spin renormalization group.

We suspect, in fact, that the MGMC method is
doomed to behave similarly on any lattice model with a
nonconvex Hamiltonian.'”” On the other hand, it is at
least conceivable that the MGMC method might elimi-
nate critical slowing down for all models (in some large
class) with a convex Hamiltonian. (This is admittedly a
wild speculation.) One interesting model in which the
critical point occurs when the Hamiltonian is still convex
(albeit barely so) is the anharmonic crystal'®®

H(¢): 2 V(¢x——¢x’)

|x —x'|=1

9.14)

where V is, for example, a polynomial of degree 4. (Note
that the coarse-grid Hamiltonian is again of this form,
but with a space-dependent V_,,..; and if ¥ is convex,
then so is V_ y..) It would be interesting to try the
MGMC method on this model.

We remark, finally, that although the additive MGMC
algorithm (Secs. IIT and VII) is likely to perform badly
for N-component ¢* models for all N, we expect that the
multiplicative MGMC algorithm (Secs. IV and VII) will
behave well for N-component ¢* models (N >2) whenev-
er it behaves well for the corresponding O (N)-symmetric
nonlinear 0 model. This is based on the intuition that
the important large-scale collective physics of a mul-
ticomponent ¢* model is contained in the angular vari-
ables; we expect that the magnitudes of ¢, conditional on
the angles, can be equilibrated well by a single-site heat
bath. This prediction requires, of course, a careful nu-
merical check.

B. Two-dimensional XY model

We are currently completing a comprehensive study of
MGMC for the two-dimensional XY (plane-rotator) mod-
el.> We ran on lattice sizes up to 128 X 128 at a series of
temperatures very near the critical temperature 5, = 1.13,
and carried out a finite-size-scaling analysis of both static
and dynamic quantities. The results for the MGMC
method (W cycle) are roughly as follows: As the critical
temperature is approached from above, T appears to
diverge, with approximately the same dynamic critical
exponent as in the heat-bath algorithm; the reduction in 7
over the heat-bath algorithm is a factor of =20, yielding
an efficiency gain of a factor of =10. On the other hand,
below the critical temperature, 7 is very small (=1—2;
since for the heat-bath algorithm 7 is unbounded (as
L — o) in this regime, the gain in efficiency is unbound-
ed as well. The finite-size scaling analysis shows a very
subtle crossover between these two regimes.

This behavior can be understood physically: in the
low-temperature phase the main excitations are spin
waves, which are well handled by MGMC (as in the
Gaussian model); but near the critical temperature the
important excitations are widely separated vortex-
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antivortex pairs,'® which are apparently not so easily
created by the MGMC updates.

Analogous behavior is to be expected in the four-
dimensional U(1) lattice gauge theory.

C. Asymptotically free theories

The simplest asymptotically free theories are the
O(N)-symmetric nonlinear ¢ models (N >2) in two di-
mensions. These models can be handled by multiplicative
MGMC as discussed in Secs. IV and VII. In particular,
the O(4) model is isomorphic to the SU(2) principal chiral
model, which simplifies the technical details of the simu-
lation. We have recently begun a test of the MGMC
method for the two-dimensional O(4) model.® Very pre-
liminary results show a large reduction in critical slowing
down—possibly its complete elimination. For example,
on a 128X 128 lattice at S=2.828, we find Tpey pan = 300
compared to Tygmce= 10; and Ty gmc appears to decrease
as B is increased, contrary to the behavior of 7. path-
Comprehensive tests are now in progress.

We can, in fact, argue quite generally that for asymp-
totically free theories with a continuous symmetry group
(e.g., nonlinear ¢ models or non-Abelian lattice gauge
theories), the multiplicative MGMC algorithm (with a W
cycle) as described in Secs. IV, V, and VII should elimi-
nate entirely the critical slowing down except for a possi-
ble logarithm. Recall our argument for ¢* models: the
first few coarse grids (up to some scale b,,,) do useful
work, but the rest are ineffective; therefore, the “effective
correlation length” is reduced from & to =§/b,,,, and
the autocorrelation time is reduced correspondingly. For
asymptotically free theories with a continuous symmetry
group, on the other hand, the important excitations at
short wavelengths are weakly-interacting spin waves;'!°
and this “almost-Gaussian” behavior persists up to
length scales around =¢&/10, where £ is the correlation
length (inverse particle mass). (Of course, at length scales
of order & the behavior is far from Gaussian, giving rise
to scattering, bound states, and other nontrivial physics.)
Since the physics on length scales up to =§/10 is ap-
proximately Gaussian, one might expect that the MGMC
updates (using a W cycle) are essentially perfect on these
length scales; but the MGMC updates on yet coarser
grids are likely to be ineffective, because they fail to take
into account the relevant nonlinear collective excitations.
Therefore, the ‘“‘effective correlation length” is reduced
from & to =§&/(£/10)=10—that is, a bounded
quantity—so the autocorrelation time should correspond-
ingly be bounded. Of course, it is not quite true that the
short-wavelength fluctuations are perfectly Gaussian—in
fact, the coupling strength on scale b behaves like
1/logP(§/b) for some power p >0—so it would not be
surprising if 7 contained a logarithm, i.e., Tygmc~108%
for some power g >0. But we expect that the critical
slowing down will not be worse than this (for a W cycle).

Note the importance of the qualifying words “with a
continuous symmetry group” and ‘“‘multiplicative”
MGMC (Secs. IV, V, and VII) in the foregoing argument.
Consider, for example, the ¢4 model in dimension d >4
(with any number of components). This model is infrared
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asymptotically free, in the sense that the behavior on long
length scales of RG-type block spins is essentially Gauss-
ian; but, as argued above, we expect that the MGMC
method (in the ddditive style described in Secs. III and
VII) does not reduce the dynamic critical exponent. The
point is that almost Gaussianness in the RG sense in not
equivalent to almost Gaussianness in the MGMC sense.
Nevertheless, our intuitive understanding of the physics
of nonlinear ¢ models and non-Abelian lattice gauge
theories leads us to believe that these models are probably
almost Gaussian in both senses.

These heuristic arguments obviously require a careful
numerical test, first for two-dimensional ¢ models and
then (hopefully) for four-dimensional non-Abelian gauge
theories.

D. Discrete models

The multiplicative MGMC algorithm described in
Secs. IV, V, and VIl is in principle applicable to o models
and lattice gauge theories based on any compact group,
whether continuous or discrete. But though the algo-
rithm will work correctly, it will not necessarily work
well. Indeed, the fundamental physical idea underlying
the MGMC method is that the system can be equilibrated
by large-scale, small-amplitude updates of fixed shape.
More precisely, one offers (in the unigrid interpretation)
an update ¢—¢+txp (or g—to zg) and lets the system
choose the update amplitude ¢ according to the probabili-
ty distribution P 4(¢t)~exp[ —H(¢+1txp)]. But this
amplitude turns out to be small if the block size is
large—e.g., of order b ~“ V72 in the Gaussian case. On
the other hand, for a discrete model, the only allowable
“small” update amplitude is zero. So the MGMC moves
on large blocks do almost nothing.

For example, for the Ising model (=Z, principal
chiral model), a multiplicative MGMC update (in the
unigrid interpretation) consists of proposing to flip all the
spins in a block B. But in equilibrium, the majority of
the “boundary bonds” (ij) with i€B, j&B are
“satisfied” (0;0;=++1), so that flipping the spins in B
typically costs an energy of order b% ! (the surface area
of B). If the block B is large, such a proposal would al-
most always be rejected. Therefore, only the first few
coarse grids would do useful work, and the autocorrela-
tion time of the MGMC algorithm would be only slightly
better than for the single-site heat-bath-algorithm.

More generally, we suspect that collective-mode up-
dates of fixed shape are doomed to failure in discrete-spin
models. Rather, it appears necessary to devise some
(model-dependent) way to let the system choose its collec-
tive modes (e.g., the shape of blocks to be flipped). In
general it is very difficult to do this and still preserve the
correct Gibbs measure; but Swendsen and Wang'” and
others!®~2% have recently made great progress in this
direction (see Sec. X C).

X. DISCUSSION

In this section we would like to comment on some al-
ternative MGMC schemes proposed recently by other
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workers, and to compare the behavior of MGMC to oth-
er “collective-mode” algorithms such as Fourier accelera-
tion'"!? and the Swendsen-Wang approach. !7~2°

One difficulty in comparing Monte Carlo algorithms is
the paucity of good ‘“‘experimental” data. Some papers
propose a new method without actually trying it. More
common—and in our opinion, even more vexing—are pa-
pers that present some numerical data, but not enough to
confirm the sweeping claims made for the method. From
a theoretical point of view, any Monte Carlo method is it-
self a stochastic dynamical system and has its own
autocorrelation-time critical exponent z: 7~&? where £
is the correlation length. All the methods for estimating
physical critical exponents (finite-size scaling and possibly
even Monte Carlo renormalization group) could be used
to estimate z (Ref. 111).

A. Other approaches to the multigrid Monte Carlo method

The idea of using multigrid techniques to update the
(stochastic) values of a Euclidean quantum field was ap-
parently first proposed by Parisi!!? in 1983, in the same
paper in which he proposed Fourier acceleration. How-
ever, his brief description of a multigrid Monte Carlo al-
gorithm was not quite correct. He proposed to write the
field ¢ as a superposition of contributions from each
length scale,

M
6= 3 3 ey

1—0y€EQ,

(10.1)

where the ¢!/} are suitable interpolation weights. But this

formulation is correct—in the sense that it gives rise to
the correct Gibbs measure—only if the fields ¢'” are con-
strained to be “orthogonal” in an appropriate sense. [For
example, if one were to use piecewise-constant interpola-
tion, then each field ¢'” (except for the coarsest-grid field
#'9) should have zero mean on each basic cube of side 2,
so as to be “orthogonal” to the next-coarser field ¢!/ 1. ]
Such a decomposition with constraints appears, for exam-
ple, in the rigorous work of Gallavotti and collabora-
tors!''® and Gawedzki and Kubiainen. ''*

A correct version of the MGMC algorithm based on
the decomposition-with-constraints idea was proposed by
Mack!" in 1987. In the most straightforward implemen-
tation, one would update successively the fields qﬁ“),
0=/=M, using a heat-bath algorithm that is specially
designed to respect the constraints. However, this algo-
rithm is notably awkward to implement, as a result of the
constraints. Mack advocates, therefore, an alternative al-
gorithm in which the fields

!
(0 — LI (1)
V=3 3 i),

I'=0yeQ,

(10.2)

which are essentially the sum of ¢'” and all coarser-grid
fields, are updated using an ordinary heat-bath (or
Metropolis) algorithm, with the finer-grid fields ¢'™,
MY 4T held fixed. But in this form, it seems
to us that Mack’s MGMC algorithm is essentially
equivalent to ours, with the only difference being the
choice of interpolation operator (we use piecewise-
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constant, while he uses a more complicated but smoother
smearing) and the fact that Mack uses a “unigrid” im-
plementation (Sec. II C). We are therefore unable to un-
derstand Mack’s claim that his MGMC algorithm is
more effective than ours in beating critical slowing down.
In the free-field case, piecewise-linear interpolation does
indeed perform better than piecewise-constant, but for
the W cycle (y =2) the difference is only a constant fac-
tor; that is the content of the rigorous convergence
theorem.*”!' On the other hand, for ¢* models both
versions of the MGMC method should perform equally
badly, as our argument in Sec. IX A shows [the Ab¢ term
in (9.11) will be present irrespective of the choice of inter-
polation]. Indeed, Mack has a rather similar understand-
ing of the reasons for possible failure of the MGMC
method in non-Gaussian models, as a result of strong
coupling between grids arising from the nonquadriatic
terms in the Hamiltonian.!'” Unfortunately, Mack’s pa-
per!!’® contains only very preliminary numerical results; a
promised future paper'!® will hopefully contain detailed
measurements of critical slowing down (including a
finite-size-scaling analysis) for MGMC versus single-site
heat-bath-methods.

A unigrid algorithm essentially equivalent to our multi-
plicative MGMC algorithm for nonlinear o models (Secs.
IV and VII) was proposed in 1985 by Meyer-
Ortmanns. !'® The only difference is that she chooses the
block size (and location) randomly, while we choose them
periodically in a fixed sequence (see Sec. II C). However,
provided that the probability distribution of block sizes
gives sufficient weight to large blocks, we expect that this
algorithm will behave essentially the same as ours. Her
algorithm suffers, of course, from the disadvantage
shared by all unigrid algorithms: the work per iteration
grows faster than the volume [cf. (2.42)]. Nevertheless,
we feel that Meyer-Ortmanns deserves credit for identify-
ing physically the collective modes which should be up-
dated.

An MGMC algorithm very similar to our own was
proposed independently by Brandt, Ron, and Amit.'?
The only difference between their algorithm and ours is
the choice of coarse-grid Hamiltonian: we adhere strictly
to the variational definition H,_,(¢)=H,(¢+p;,_ ),
while Brandt, Ron, and Amit assert the freedom to
choose freely the coarse-grid Hamiltonian, as in the
deterministic MG method.'?! It seems to us that their
assertion is incorrect, and that their algorithm does not in
general leave invariant the correct Gibbs measure.

The paper of Brandt, Ron, and Amit, does, however,
contain an interesting point of view on highly nonlinear
field theories. They argue'?? that the “‘contour map” of
the Hamiltonian H typically has many local minima (or
“basins’), such that transitions between these basins are
difficult if one uses local (e.g., single-site) updates. The
role of the collective-mode (e.g., coarse-grid) updates is
precisely to cause such transitions. Unfortunately, they
point out, a collective-mode update is not likely to land
us near the bottom of the new basin; rather, it is most
likely to land us high on the walls of the new basin, at an
energy level much higher than the current energy near
the bottom of the old basin. Therefore, such a move
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(considered as a Metropolis proposal) will almost certain-
ly be rejected. On the other hand, if we could explore the
new basin, using finer-scale moves to arrive near its bot-
tom, and then decide to accept or reject the entire pack-
age of moves, the transition might have a reasonable
chance of being accepted. Unfortunately, while this idea
may well be useful in minimization (zero-temperature)
problems, where “anything is fair,”” we have been unable
to see how to apply it to finite-temperature problems,
where the requirement of leaving invariant the Gibbs
measure imposes severe constraints on acceptable algo-
rithms.!?3

Other “multigrid Monte Carlo” algorithms have been
proposed by Gupta'?* and by Decker.'?> We do not fully
understand these algorithms, but they appear to be in-
correct, in the sense that they fail to leave invariant the
correct Gibbs measure. Both algorithms involve “(ap-
proximate) renormalized Hamiltonians” (in the RG
sense) and “tunable parameters.” We emphasize once
again that (1) multigrid Monte Carlo is very different
from the renormalization-group method. In particular,
the coarse-grid Hamiltonian in the MGMC method is
neither equal nor approximately equal to the renormal-
ized Hamiltonian in the RG method; and (2) as far as we
know, there is no freedom in choosing the coarse-grid
Hamiltonian: it must be defined by the variational formu-
la H_(¢)=H/(¢+p,,_11). We know of no other way
to leave invariant the correct Gibbs measure.

Finally, Schmidt'?® ‘and Brower, Giles, Moriarty, and
Tamayo'?’ have proposed a class of Monte Carlo algo-
rithms based on simulating on exact or approximate re-
normalized Hamiltonian in the RG sense. When an exact
renormalized Hamiltonian is used, these algorithms be-
come static Monte Carlo algorithms (Sec. VI); they are
stochastic analogues of the “total reduction”'?® (and
“nested dissection”!?®) algorithms for solving partial
differential equations (PDE’s). Unfortunately, an exact
renormalized Hamiltonian can be used only in trivial (ex-
actly soluble) one-dimensional problems; and in all other
cases, the efficiency of the algorithm appears to
deteriorate exponentially in the lattice volume (i.e., even
worse than the critical slowing down of conventional al-
gorithms).

B. Comparison with Fourier acceleration

The “collective-mode” algorithm closest in spirit to
MGMC is Fourier acceleration.!"!? Both algorithms are
inspired by free-field theory, and both use predefined ad-
ditive collective modes. These modes are piecewise con-
stant (or piecewise-linear) in the MGMC method while
they are sine waves in Fourier acceleration; but the idea
is fundamentally the same. The behavior of the two algo-
rithms in the free-field case is nearly identical; both algo-
rithms reduce the autocorrelation time to a small con-
stant (i.e., a few sweeps), independent of the correlation
length and lattice size.

At a deeper level, we suspect that the MGMC method
and Fourier acceleration have the same qualitative behav-
ior also for non-Gaussian field theories, in the sense that
they probably work well for the same models and work
badly for the same models. For example, Fourier ac-

"the high-temperature side of criticality,
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celeration is just as unlikely to promote spin flips in a ¢*
model as is the MGMC method. [In fact, it is less likely:
as a small-step-size algorithm, energy barriers must be
climbed over slowly, not jumped over. This difficulty has
nothing to do with critical slowing-down: it would occur
even in a single-site ¢* model in the deep double-well re-
gime, where a small-step-size algorithm (e.g., Langevin,
microcanonical, or hybrid) would perform vastly worse
than a single-site heat-bath algorithm.] Likewise, in the
two-dimensional XY model, Fourier acceleration should
behave well on the low-temperature side of criticality,
where the relevant excitations are spin waves, but not on
where the
relevant excitations are vortex-antivortex pairs. Indeed,
the fragmentary available data'3® appear to show such a
behavior. Finally, for the SU(3) principal chiral model in
two dimensions—which is asymptotically free—an ini-
tial test'*! of the Fourier-accelerated Langevin and hy-
brid algorithms suggested a significant reduction in criti-
cal slowing down (possibly its complete elimination).

The choice between the MGMC method and Fourier
acceleration will likely come down, therefore, to a ques-
tion of the constant prefactors. Such a question can be
decided only by careful measurements of the autocorrela-
tion time (and CPU time) in the MGMC method versus
the Fourier accelerated Langevin'! and hybrid!? algo-
rithms. (We emphasize that a fair test must use the exact
versions of the Langevin!3? and hybrid'3® algorithms, and
should tune the time-step size in these algorithms so as to
optimize the autocorrelation time.) We suspect that the
MGMC method will turn out to be slightly more
efficient, because it is not restricted to ‘“‘small” steps but
this may depend on the details of the model, and in par-
ticular on the efficiency of the heat-bath subroutine.

Fourier acceleration does, however, have at present
one major advantage: it is applicable to non-Abelian
gauge theories and to models with dynamical fermions.
It remains to be seen where the MGMC method can be
generalized (in a practical way) to these models.

C. Other collective-model algorithms

A very different type of collective-mode algorithm was
proposed recently by Swendsen and Wang!? for Potts
models, and subsequently generalized in different direc-
tions by several workers. 1872 Basically, the idea is to
augment the given model by means of auxiliary variables,
and then to simulate this augmented model.

The Swendsen-Wang (SW) algorithm for the ferromag-
netic Potts model

dppous ) =Z " lexp [ 3758, o —1) |duola)  (10.3a)

ij)
:Zl;—oits <I-I> [( 1 _pij )+pij80i,aj ]d/J'O(o-)
Y

(10.3b)

[where p;; =1—exp(
augmented model

—J;;)] is based on simulating the
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dulo,n)=2Z"! I [(1—p; )8,,,}_'0+p,~j5,,,j,15m,aj]
(ij) ' ' !

Xdpyo)duyn) , (10.4)

which has g-state Potts spins o; at the sites and occupa-
tion variables n =0, 1 on the bonds. It is easily seen that
integrating over the bond variables {n} in (10.4) yields
(10.3). Moreover, the augmented model (10.4) has very
simple conditional probability distributions.

(1) Distribution of {n} given {o}. Independently for
each bond (ij), one sets n;=0 in case 0,70, and sets
n;=0,1 with probability 1—p,;,p;;, respectively, in case
0;=0;.

(2) Distribution of {o} given {n}. Independently for
each connected cluster of sites (in the graph whose edges
are the bonds having n;;=1), one sets all the spins o; in
the cluster to the same value, chosen equiprobably from
theset {1,...,q}.

The Swendsen-Wang algorithm them simulates (10.4)
by alternately applying these two conditional dis-
tributions—that is, by alternately generating new bond
occupation variables (independent of the old ones) given
the spins, and new spin variables (independent of the old
ones) given the bonds.'**

It is certainly plausible that the SW algorithm might
have less critical slowing down than the conventional al-
gorithms: the reason is that a local move in one set of
variables can have highly nonlocal effects in the other.
For example, setting n;; =0 on a single bond may discon-
nect a cluster, causing a big subset of the spins in that
cluster to be flipped simultaneously. In some sense,
therefore, the SW algorithm is a collective-mode algo-
rithm in which the collective modes are chosen by the sys-
tem rather than imposed from the outside as in multigrid
or Fourier acceleration.

In fact, the performance of the SW algorithm for fer-
romagnetic Potts models (at second-order transitions) is
nothing short of extraordinary. For the two-dimensional
Ising model at the bulk critical temperature, preliminary
data!® on lattices of size L =64,128,256,512 show that
the autocorrelation time 7y, ¢ (& =energy~=slowest
mode) grows from =5 at L =64 to only =8 at L =512.
This is consistent with a dynamic critical exponent
z=0.3 (Ref. 17); but precisely because T rises so slowly
with L, it is difficult to estimate z with much precision.
For the two-dimensional three-state Potts model, careful
measurements?* on lattices of size L =16,32,...,256
yield the dynamic critical exponent z =0.55+0.03 (95%
confidence limits). Behavior for the four-state Potts mod-
el in two dimensions, and for the Ising model in three di-
mensions, is only slightly less spectacular.!”-1%¢

Spurred by the extraordinary performance of the SW
algorithm for Potts models, numerous authors'®-22 have
tried in recent months to generalize the SW algorithm to
non-Potts models. It is still too early to say which of
these algorithms will ultimately succeed in reducing or el-
iminating critical slowing down for which models, but
several of these algorithms offer great promise.

(1) Brower and Tamayo?® have simulated a one-
component ¢* model by decomposing the spin ¢, into its
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sign o, =sgn(¢,) and its magnitude |$, |. The signs, con-
ditional on the magnitudes, are distributed according to a
ferromagnetic Ising model (with space-dependent cou-
plings) which can be simulated by Swendsen and Wang;
and ordinary heat-bath sweeps suffice to equilibrate the
magnitudes. With this algorithm, Brower and Tamayo
find that the ¢* model (with A70) falls in the same dy-
namic universality class as the SW algorithm for the Ising
model. As A—0, the performance of their algorithm
deteriorates; but they suggest that it could be rescued by
replacing the heat-bath sweeps by the MGMC method.
We have here a beautiful example of the collective-mode
Monte Carlo method in action: the SW and MGMC al-
gorithms capture the essential long-distance physics for
large and small A; and it is at least possible that a com-
bination of the two algorithms will exhibit z <zgy (=0.3
in d =2) uniformly in 0<A < o (Ref. 137).

(2) Wolff?! has devised an algorithm similar to that of
Brower and Tamayo, but for multicomponent spin mod-
els; the initial numerical results are extremely encourag-
ing. In particular, it appears that critical slowing down
may be eliminated on both sides of criticality in the two-
dimensional XY model. It remains unclear, however, why
this could be the case, i.e., how the algorithm succeeds in
creating and destroying large vortex-antivortex pairs.

(3) Niedermayer’s?® generalization of the SW algorithm
may also succeed in reducing or eliminating the critical
slowing down in multicomponent spin models.

(4) Brandt and collaborators® have described a mul-
tilevel generalization of the SW algorithm for Potts mod-
els, which may succeed in further reducing (or even elim-
inating) the critical slowing-down. A related algorithm is
currently being investigated by Edwards, Li, and Sokal.?®

D. Over-relaxation algorithms

A very different approach to accelerating the conven-
tional Monte Carlo algorithms was taken by Adler,'*®
and Whitmer,* and others;'*® the idea is to devise sto-
chastic analogues of the successive over-relaxation (SOR)
algorithm (2.28). These algorithms are not, strictly
speaking, collective-mode algorithms, as the updates are
purely local; but they do succeed in some cases in achiev-
ing strong collective effects. In the Gaussian (free-field)
case, our exact analysis (Sec. VIII) shows that the dynam-
ic critical exponent is z =1, provided that the over-
relaxation parameter o is tuned always to its optimal
value. [This necessity of tuning w is one of the disadvan-
tages of SOR also for solving PDE’s (Refs. 40—-44).] Re-
cent theoretical analysis by Neuberger'* and numerical
measurements by several groups!'3® % appear to confirm
that z =1 is attainable, at least for some models.

E. Final conclusions

The collective-mode Monte Carlo method is a general
philosophy, not a cut-and-dried recipe. For each model,
the challenge is to find the collective modes, and then to
use this physical knowledge (and some ingenuity) to in-
vent an efficient Monte Carlo algorithm. The multigrid
Monte Carlo method is one step in this direction. For
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the models studied thus far, the MGMC method has pro-
duced substantial gains in efficiency: a factor of 10 in un-
favorable cases, vastly more in favorable cases. Our stud-
ies are also beginning to suggest the outlines of an under-
standing of why the MGMC method works well on some
models and less well on others. It seems that for models
in which the dominant large-scale collective modes are
spin waves, the MGMC method works excellently (criti-
cal slowing down is completely or almost completely el-
iminated); while for models in which the dominant collec-
tive modes have discrete elements such as spin flips (one-
component ¢* or vortices (two-dimensional XY), the
MGMC method gains only a constant factor in efficiency
(e.g., a factor of 10). On the other hand, many of the
latter models are amenable to collective-mode algorithms
of Swendsen-Wang type.

At the risk of closing with a standard (but true) plati-
tude, let us note that much progress has been made in the
last 2—-3 years in devising new and radically more
efficient Monte Carlo algorithms for quantum field
theory, but that much more work—both theoretical and
numerical—needs to be done in an effort to understand
thoroughly the behavior of the existing algorithms and to
devise new and even better ones.
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APPENDIX: HEAT-BATH ALGORITHM
FOR ¢* MODELS

In implementing the heat-bath phase of the MGMC al-
gorithm for ¢4 models, we need a subroutine that gen-
erates a random variable X from the one-dimensional
probability distribution with density proportional to

4 3 2

fx)=exp(—ayx*"—azx°—ax"—ax), (A1)

where a, >0 and a,,a,,a; are arbitrary. By a shift in x
we can assume with loss of generality that a; =0.
We use a von Neumann rejection algorithm:!'*! given a

|

2
121722 8K | (2%/8) for z>0,

F(z)= {1I'({) for z=0,

1
2
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function g(x)= f(x), we generate a random variable X
with density proportional to g (x) and then accept it with
probability f(X)/g(X); we keep trying until success.
The acceptance fraction is

7 Feodx
A= —%”———— (A2)
f _ g(x)dx
and the expected number of trials is 4 ~ 1.
We use a Gaussian trial distribution
g(x)=exp(—ax?—Bx—y) (A3)

(a>0) and choose a,B,7 subject to the constraint
g (x)= f(x) so as to maximize the acceptance fraction A4;
this means minimize

BZ

E 2 (A4)

f ® g(x)dx ~a~%exp

— 00

It is not difficult to see that, for given a, the minimum

area (A4) occurs when 8 and y are such that the polyno-

mial inequality ’
ax*+(a,—a)x?+(a;—B)x —y =0 (AS)

is satisfied with equality at two points of tangency, i.e.,
with two double roots. It follows that

aza,, a>0, (A6a)
B=a,, (A6b)
y=—(a—a,)*/4a, . (A6c)

Minimizing (A4) we then obtain a cubic equation for a,
aja, _

2

3 2

a’—aa’—ao— 0. (A7)

It is easy to see that (A7) has precisely one real positive
root. This root can be found to machine precision by a
few iterations of Newton’s method with the initial guess

a,+(a%+4a,)"?

(0) =
a’'=
2

(A8)

(This is much more efficient than solving the cubic equa-
tion by the exact formula.)

The acceptance fraction of this algorithm can be com-
puted exactly in the symmetric case a;=0. In terms of

L(—2)2e? 3K, ,4(2%/8)+ V2, 4(z2/8)] for z <O,

G (z2)=(m/2)" AV z2+4—2)%exp[(V'z2+4—2)*/16] ,

the dimensionless variables z=a,/a}’?, we have
A =F(z)/G(z) with
(A9)
(A10)

where X, ,, and I, ,, are modified Bessel functions. In particular,
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1— —2—1—5 +0 % for z— + o (deep single-well regime),
z
A= tm7 127141 (1)=0.796 for z=0, (A11)
172
—g— (—2) " [140(z7?%)] for z— — o (deep double-well regime) .

Thus, the efficiency deteriorates in the deep double-well regime (as is obvious geometrically), but is tolerable for the
values of z encountered in our simulation. Note that the efficiency is generally higher in the asymmetric case a,70,
since one of the two wells begins to dominate.

One possible improvement in the double-well case would be to use a double-Gaussian trial distribution, but the details
of optimizing this algorithm appear to be somewhat messy.

The special case a; =a, =0 of our algorithm has been studied previously by Tadikamalla.!*> Previous Monte Carlo
studies of the ¢* model'*® have used Metropolis-type algorithms with various parts of the action being included in the
proposal matrix. This is convenient for the multigrid Monte Carlo method, since the parameters a,,a,,a; vary from
site to site on the coarse grids, making it difficult to obtain uniform control over the acceptance fraction. For this

reason we have used a pure heat-bath algorithm.
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is <<b? provided that we are in the single-phase region (i.e.,
above or at the critical temperature). Indeed, xjp is a finite-
volume approximation to the susceptibility, so that we can ex-
pect x5 ~b>"" for b comparable to the correlation length &.
Therefore (A ) ={¢?) for large blocks. On the other hand,
in the single-phase region, the variance of A is presumably
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Here kp is a finite-volume approximation to what is essential-
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rable to the correlation length §. This is a very weak diver-
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B <0; and by a rescaling of ¢, it suffices to consider the mea-
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Using the Schwinger-Dyson identity
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