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Checking the S matrix in QCD in axial gauges
within the generalized Leibbrandt-Mandelstam prescription
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We apply the Leibbrandt-Mandelstam prescription to QCD within a family of gauges comprising
the homogeneous axial gauge and the planar gauge. We calculate to one-loop order the UV-
divergent parts of the quark self-energy, the quark-quark-gluon vertex, and the four-quark one-
particle-irreducible vertex. The results are found to satisfy the Slavnov-Taylor-Lee identity. Sum-

ming up the contributions to the S-matrix element for quark-quark scattering, we show that the re-
sult is indeed independent of the gauge parameters n„and a and of the auxiliary vector n„.The
nonlocal counterterms persisting in Green's functions for n %0 are thus compatible with gauge in-

dependence of physical quantities. The Lorentz-noninvariant divergent structures (local as well as
nonlocal ones) turn out to be proportional to the classical equations of motion.

I. INTRODUCTION

Noncovariant gauge choices containing a gauge-fixing
term characterized by a constant four-vector n„have
been studied and used for more than 15 years. These
axial-type gauges' have shown their advantages in vari-
ous fields. Important cases are the light-cone (LC) gauge,
n =0, which has facilitated many considerations in su-
persymmetric and string theories, ' and the temporal
gauge n„=(1,0, 0,0) which, for example, has recently
been used to investigate QCD at finite temperature.
However, already the quantization of Yang-Mills (YM)
theories in the homogeneous axial gauge n A =0 is a non-
trivial task and different techniques have been used for
different choices of n„. If one agrees to use the
translation-invariant gauge field propagator

—is'
p~ q 2 ~ gp~

q +i@

2q„n +q n„nq„q,+
qn (qn )

one has to define a prescription to regularize the singular-
ities (qn), P)0, in momentum-space Feynman in-
tegrals. For a long time, the principal-value (PV)
prescription

1 ~ 1 1
P = lim +

(qn)~ ~-+o 2 (qn+ie)~ (qn i e)~—(1.2)

was considered the correct technique to handle these
poles. It obeys power counting; hence, the usual concepts
of renormalization can be applied, allowing us to estab-
lish the unitarity and gauge independence of S-matrix ele-
ments. Unfortunately, this prescription fails for n =0
(Refs. 6 and 7). In Wilson loop calculations it turns out
to be inconsistent in the temporal gauge too. Until re-
cently ' a consistent treatment of the temporal gauge
seemed to require a modification of the propagator (1.1)

itself. " The PV prescription runs into difficulties above
the one-loop level anyway, because [P(qn) ~] is not well
defined. The consistency of using different vectors n„for
different loop orders in intermediate stages of the calcula-
tion has not been verified as yet.

For the LC gauge two equivalent versions of a
prescription have been introduced independently by Leib-
brandt and Mandelstam (LM):

1 ( n*)~q
(qn)~ LM (qnqn" +is)~

(1.3)

1 1 1 1 1 (1.4)
pn qn pn —qn

This very splitting formula, however, together with the
presence of a second four-vector n„' now gives rise to
nonlocal (nonpolynomial) contributions to the divergent
parts of one-particle-irreducible (1PI) vertex functions.
Thus the renormalization of YM theories in the LC
gauge seems to require nonlocal counterterms. For-
tunately, it was soon pointed out' that S-matrix elements
are not aff'ected by them. (Indeed, nonlocal divergences
do not show up in the two-component formalism, where
only physical degrees of freedom are present. '

) The
structure of these nonlocalities has been investigated by
Bassetto, Dalbosco, and Soldati' invoking cancellation
of Lorentz-noninvariant divergent terms in the S matrix

qn pn —qn

where n„=(n no) and n„*=(no,—n) which was shown
afterwards to emerge quite naturally from a Hamiltonian
quantization of YM theories in this gauge by Bassetto,
Dalbosco, Lazzizzera, and Soldati. ' With the help of a
gauge-fixing term containing n„,this prescription has
also been justified by Andrasi and Taylor. '

The LM prescription has some advantage over the PV
technique, because it regularizes products of poles
(pn ) '(kn) ' without any 5 functions in the decomposi-
tion formula
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and by Skarke and Gaigg' using extended Becchi-
Rouet-Stora-Tyutin (BRST) invariance. It was shown
that nonlocal divergences are no longer present in
Green's functions and that all nonlocal counterterms are
generated by expanding (DFn)(nD) '(nFn *), where
D„'"=d„5' gf—' '2', in powers of (n 8)

It also turned out ' that the LM prescription yields
consistent results off the LC, n 2%0, and it was general-
ized to n„*W(no,—n) by Gaigg and Kreuzer' and by
Leibbrandt. The integrals hitherto obtained are
equivalent ' in these two approaches. This generalization
has later been derived in a Hamiltonian quantization pro-
cedure by Lazzizzera and in another one where n„*is al-
ready included in the Lagrangian by Burnel. The possi-
bly strongest support so far, however, comes from Wilson
loop calculations in the temporal gauge, as Hiiffel,
Landshoff, and Taylor' obtained the correct time ex-
ponentiation behavior with the propagator (1.1) and
prescription (1.3) where n„=(1,0,0,0) and n„"
=(0, 1,0,0).

While this prescription seems to allow a uniform treat-
ment of n A =0 for all values of n„,there are also severe
drawbacks, concerning the renormalization procedure.
As soon as n =0 is dropped, the structure of counter-
terms becomes much more complicated and no stringent
ordering principle is seen as yet. Moreover, divergent
nonlocalities now persist also in Green's functions.
Thus it is of vital importance to check that they do not
afFect physical quantities, in particular the 5 matrix. A
first check of this fact is the aim of this paper.

The paper is organized as follows. In Sec. II we apply
the generalized LM prescription to a one-parameter fami-
ly of axial gauges comprising the homogeneous axial
gauge and the planar gauge. We calculate the UV-
divergent parts of the quark self-energy, the quark-
quark-gluon vertex, and the four-quark 1PI vertex to
one-loop order. The structure of counterterms is more
complicated than in the LC gauge, and the results are
found to agree with the Slavnov-Taylor-Lee identity. In
Sec. III we sum up the UV-divergent contributions to the
S-matrix element of quark-quark scattering. All
Lorentz-noninvariant structures, in particular the nonlo-
cal terms, vanish, and the UV-divergent part of this ma-
trix element is the same as in covariant gauges. This can-
cellation is traced back to the fact that Lorentz-
noninvariant counterterms are proportional to the classi-
cal equations of motion.

II. QCD IN A CLASS OF AXIAL GAUGES

The homogeneous axial gauge n A =0 can be general-
ized to inhomogeneous gauges in various ways. One of
these generalizations leads to a simplified gluon propaga-
tor if an additional gauge parameter a is chosen ap-
propriately (planar gauge). For the present considera-
tions, however, it is of more interest that this family of
gauges yields n„-dependent UV divergences already in
the PV prescription, ' provided a%0. Hence, it is a
suitable model to investigate the behavior of such terms
in the S matrix. This family of gauges has recently been
studied by Kummer, who presented a very concise

derivation of the Slavnov-Taylor-Lee identities in a com-
pletely ghost-free formulation, using the compact nota-
tion of DeWitt. In the first part of this section we shall
follow his arguments, allowing for the presence of fer-
mion fields, because in the following we shall need the
Lee identity for the fermion-fermion-boson vertex. The
total action of QCD in this family of axial gauges is given
by

S=S;„„+Sb+j;p;,
= 1

Ssb= N p;R t3NppJ,2a

(2.1)

(2.2)

a
where N, =5, n„5(x;—x ) in the bosonic sector and

t t

zero otherwise, and 8 & is a symmetric field-independent
operator. We have omitted the ghost term as in this class
of gauges ghost loops do not contribute to the renormal-
ization of the gauge field in dimensional regularization.
The gauge transformation

5p;=D; (p)5', D; (p)=V, +gtp)pj (2.3)

in the path-integral variables of the generating functional

fV(j)=I (d p)exp(iS)

leads to the Slavnov-Taylor identity

(2.4)

ÃpR ~~ +j. Dr1
i ap j g i i

l
(2.5)

DfI; = fr sR t)N~NkXJ—"(a), (2.6)

where an index after a comma indicates functional
derivation with respect to a and

XEJ=—r '
)EJ (2.7)

A crucial property of this family of axial gauges is that
one has

N; tfj=f syN (2.8)

which is responsible for the comparatively simple result
(2.6). Differentiation with respect to aI and a yields

r =Lg p 5D) I;(m = f),~sR t3N~Nk—

X(X"'I X'"'I X"
)P I IP2 ,p3 mp4

+~Jp) ~ ~p2p3~ ~p4
,p I mp~ )p31p4

—X 'I X')
,Pl 1mP~ (2.9)

At a =0, identifying a;,a. as boson and a1,a as fermion
lines, the left-hand side (LHS) contains the contributions
of the quark-quark-gluon vertex and the quark self-
energy. The one-loop contribution to the RHS is di-
agrammatically represented in Fig. 1.

The Legendre transform from the generating functional
of connected Green's functions Z= —i ln8' to the gen-
erating functional of 1PI vertices I (a) =Z(j)—j;a; gives
the Lee identity
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FIG. 1. One-loop contribution (2.25) of the Lee identity (2.9).

For the following actual computations (2.9) will be
written explicitly in terms of the explicit forms of S;„,
and S b.

S;„„=jdx ,'(F„' )
—+—gP(iy"Xl„m—j)g, (2.10)

factors CF and C~ are defined as

( &a&a ) C fiad fabcf bcd

With the further abbreviations

as ~
E' —4 267

4m
'

R =+(nn') n—(n*)
knR'„=n„— k„,
k

knR'„=n„— k„,
kkn', kn*

np =np np =Rp Rp

(2.16)

(2.17)

(2.18a)

(2.18b)

(2.18c)

(2.18d)

= 1 8S b= dx(n"A') (n"A') .
2a P 2 P (2.11) nn*

a = 1— (2.18e)

The quark fiavors P have masses m~, the field strength
and the covariant derivative are defined by n kn'

t (2.18$

F„'.=a„~; a.~—„'+gf"~„'~;,
2)„=8„—ig r'A „',

(2.12)

(2.13)
we find, for the UV-divergent part of the quark self-
energy,

and the group generators are represented by Hermitian
matrices:

a 2
X(p) = Cb. p+ 2m + (pip—n *—8 "pn )

27TE' R

[&a &b] —&fabc&c

For the gluon propagator we obtain

(2.14)
+2a, (1+a)(gf —m ) (2.19)

&„'(q) = —is"
q +l6 qn

(1+a)n q„q+
(qn )

(2.15)

The UV-divergent part of the quark-quark-gluon vertex
contains Abelian and non-Abelian parts:

A„(p',p)=A (p' —p)=A„(k)=A„"'(k)+A„''(k).
(2.20)

The result for the Abelian graph is found to be
while the fermion propagator and the vertices are the
same as in covariant gauges. In (2.15), the planar gauge
is given by a = —1 while for a =0, we recover the propa-
gator (1.1) of the homogeneous axial gauge. We employ
dimensional regularization in a space of 2' dimensions to
calculate the UV-divergent parts of the fermionic vertices
contributing to the S-matrix element of . quark-quark
scattering in the generalized LM prescription. The
respective integrals are listed in the Appendix where we
also comment on the allowed range of values for n„and
n„*.We shall use the expressions "Abelian" and "non-
Abelian" for the graphs which appear in QED and the
additional ones of QCD, respectively. Group-theoretic

I

C~ a,—CF
2 2~a

while the non-Abelian graph contributes

A„' '( k ) = — ( A „+2B„).
2 27TE

The expressions A„and B„evaluate to

y„+ (8n„*—bi*n„)+—2a, (1+a)y„2

and

(2.21)

(2.22)

(2.23)

2 2

B = —pin* —+ (n*n") +pl n* (nn*) —a y
kn„
kn

+a a, y„+a2 +It' n„3(n ) +pin —
a&

n', , 2
kn P g3 P n2

2 2(n ) „,
)

n kn

k n+( I+a) a2 y
)2 P

gk + [A*R„'n (pf*R„+pfR—„*)nn*+AR„(n')] (2.24)



2030 GUNTER POLLAK 40

The non-Abelian part of the quark-quark-gluon vertex is the final result of a long calculation which would have nearly
been intractable without the help of the algebraic program package REDUcE.

Translating (2.9) back into the noncompact notation, a Fourier transform yields the following Lee identity in momen-
turn space:

(p „'—p„)[ ig r'A„(p' p)—] ig r'X(p '
) +ig r'X(p )

n„nf'—' " J b,„(q)( ig—y r") ( igy—r')b."(q+p —p')[q —(q+p —p') ],n' (2')' "' ' y+Ii m+—i e

(2.25)

where the form of the last term has been generated by the antisymmetric structure constant f' '. As n "b„' is propor-
tional to a, the integral on the RHS of (2.25) is found to be of order a . Hence, the validity of (2.25) for a =0 is obvious
from (2.18b)—(2.18d), and evaluating the integral shows that (2.25) holds for a&0 as well.

The four-fermion 1PI vertex consists of the "box graph" and the crossed graph. Because of the noncommuting color
matrices, the UV-divergent parts of the two graphs do not cancel each other as in @ED (Ref. 18), but give

„".'(pi p» p»p~)= (p3) . br" (pi) (p4)[ .»])" (p2) „.= — (p3), )'" (pi) (p4), )' (p2) (2.26)

Thus the UV-divergent contributions from the gluon self-energy, the non-Abelian vertex, and the box graph all are pro-
portional to C~. For B„weobtain, as in the Abelian case, '

B„=i .
—

3
(1+a) [R g„nn*(n—„n*+n,n„*)+nn„*n*+(n*)n„n ] . (2.27)

R (kn)

If such a term would not cancel in a physical observable quantity, it would, require a nonlocal counterterm with four
fermion fields in the Lagrangian. Since nonlocal divergences are not restricted by n =0, similar "counterterms" can be
expected for 1PI vertex functions involving more than four external fermion lines.

The UV-divergent part of the gluon self-energy for a pure YM theory has been calculated by Gaigg, Kreuzer, and the
present author in Ref. 23 and reads

(2.28)

where C„is given by

k„kC„= g„"(——", —2a2) —(R'„n*+Rn„*)—'+ (n*n*) +(R„*n*+h„*n„*)
3

(nn*)

+a 2a& g„—k„k 2

+(n„R'+n,R'„*) (n *)

+(n R+n R„)'—a&
— (nn*)+ (n*n*)2 (n*) „„nkn*

n kn

k n+(1+a) a2 g„(kn )

k„k"2 + [R„*R,"n —(R'„n"+R' R„')nn'+R'„R'(n") ]k
(2.29)

Special cases of this formula have been obtained by vari-
ous authors. The abbreviations (2.18b)—(2.18fl al-
lowed us to write Eqs. (2.24) and (2.29) in a compact form
exhibiting structures transverse to k„,but they might be
unsuitable to determine the structure of the bosonic
"counterterms. " Obviously, this structure is much more
complicated than in the LC gauge. An ansatz obeying
the requirements of extended BRST invariance has been
given in Ref. 23. Unfortunately, it is not likely to be
complete. Off the LC, n-point 1PI functions n ~ 3 might
require new structures not contributing to the two-point

function. As in the LC gauge, a deeper understanding of
the bosonic "counterterms" probably requires additional
information' about the specific form of the LM prescrip-
tion. The new nonlocal fermionic "counterterms, "on the
other hand, are related one to one to the respective bo-
sonic ones, as we shall see in the next section.

III. CANCELLATION OF GAUGE-DEPENDENT TERMS

In spite of the complex structure of the 1PI vertices
given above, we want to demonstrate that no gauge-
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k"u(p3)y„u(p, )=k"u(p4)y„u(p, )=0, (3.1)

dependent UV divergences are present in the S-matrix
element of quark-quark scattering. To keep the number
of graphs down, we consider two quarks of different
Aavor. As the external fermions are taken on shell, we
have

A„(k)= A—ty„y—„At,
where

3'
5m =mCF

27TE

(3.3)

(3.4)

X(p) =5m +At (gf —m )+ (P —m )At, (3.2)

where k=p3 —p, =pz —p4 is the momentum transfer.
This current conservation serves to annihilate gauge-
dependent parts of the gluon propagator (2.15). For ex-
ample, it is obvious that the fermion loop of the gluon
self-energy depicted in Fig. 2(1) cannot give a gauge-
dependent contribution, being transverse to the
transferred momentum k„H~f =0 and being gauge in-
dependent itself. Thus we only have to sum up the con-
tributions from the graphs depicted in Figs. 2(a) —2(k).

First we treat the parts proportional to Cz. The self-
energy and the contribution of the Abelian vertex can be
written in the form

a, 1
At =C~ ( —'+a)+ —[8*g—(2+a)nn *]

2776 R
(3.5)

and At =yoAt yo. This entails that the mass and the field
renormalization are given by mo =I—5m and
tfr' '=(1 At)—g. A gauge-dependent matrix (1—At) re-
places the familiar renormalization constant Zz '

Hence, we have to reexamine the Lehmann-Symanzik-
Zimmermann (LSZ) reduction technique. ' We find that
we must put u (p)(1 —At) and (1—At )u(p) at the external
lines. Summing up all contributions to order g including
the effects of mass and wave-function renormalization, we
obtain

u(p3) [5m+At($3 —m )+(gf3 —m )At] y„+y„[5m+At(gf,—m )+(gf, —m )At]
P, —m " "P, —m

1
5m —Aty„—y„At u(p, )A„,u(p4)y u(pz) (3.6)

Q

FIG. 2. One-loop Feynrnan diagrams contributing to the S-matrix element of quark-quark scattering.
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and corresponding expressions from the graphs turned
upside down. With the help of

JTf, (P —m )u (p)

(gf, —m )+At
gf+m 1+~

2m

u(p)

=Jku (p) (3.7)

the contributions from the upper (lower) fermion line are
seen to vanish identically, just as in QED in covariant
gauges. Hence, the form of the gluon propagator is ir-
relevant in this case and we conclude that the UV-
divergent part of the S-matrix element contains no
gauge-dependent terms proportional to C~.

Let us now investigate the contributions proportional
to C„.If we consider for the moment the special case
of the homogeneous axial gauge o.=0, we can use that ac-
cording to the Ward identities the Cz -dependent part of
A„'(k)+A&(k) is transverse to k" and that the gluon self-

energy even satisfies k"H„=kII„=O.Therefore, the
gauge-dependent parts of the gluon propagator (2.15)
vanish either at the 1PI vertices or by current conserva-
tion (3.1), leaving only the "Feynman part"
—i5' g„,/k . We can thus compare directly Eqs. (2.24)
and (2.29), and set to zero all terms k", k, and k'. In this
way we observe that the gauge-dependent part from the
gluon self-energy cancels with corresponding expressions
of the quark-quark-gluon vertices, up to a part propor-
tional to (kn ) which exactly matches the contribution
of the four-quark 1PI vertex (2.27). Hence, for a =0, the
S-matrix element to one-loop order contains no gauge-
dependent UV divergences. If we not turn to the case
a&0, we need only consider the two blocks in Eqs. (2.24)
and (2.29) having a in front, because these are the only
nontransverse parts where the above argument is
insufficient. These pieces have to be contracted withg„—k„n (kn) ' instead of a mere g„.If this is done,
their contributions again cancel exactly, thus gauge in-
dependence holds also for aAO.

Examining once again the Cz-dependent divergences
which we have just observed to vanish in the S matrix, we
find a one-to-one correspondence of terms pf, g* to terms
R'„,8'„* which holds in an analogous way for
y„~g„k„k„/kand k—~O. In other words, the sum
of the Cz -dependent counterterms can be written as

redefinitions are not immediately applicable, since Q in
(3.8) is nonlocal. However, our calculation has revealed
that the gauge independence of the S matrix is due to the
fact that all nonlocal gauge-dependent terms combine
into (3.8).

IV. CONCLUSIONS

Investigating the consistency of the generalized LM
prescription for values of n„and n„*as specified in the
Appendix, we have considered QCD in a family of gauges
comprising the homogeneous axial gauge and the planar
gauge. The calculation of all 1PI vertices contributing to
gauge-dependent UV divergences of the S-matrix element
for quark-quark scattering has been performed to one-
loop order. The result of this calculation which made ex-
tensive use of the program package REDUcE is that all
terms dependent on the gauge parameters n„and a or on
the auxiliary vector of the LM prescription n„cancel in
this matrix element. Moreover, our results for the
quark-quark-gluon vertex are found to agree with the
Slavnov-Taylor-Lee identity for arbitrary values of o..
Thus the generalized LM prescription, in spite of the vast
number of nonlocal divergent structures in 1PI vertex
functions and even in Green's functions, appears to be a
consistent technique to handle the unphysical poles
(qn) ~ for a large family of axial gauges, including the
LC gauge and the temporal gauge. The nonlocal "coun-
terterms*' generated by this prescription seem to cause no
harm for the physical (observable) quantities, as they
satisfy the "minimum requirement" of proportionality to
tht: equations of motion. A formal proof of this behavior,
however, is considerably rebore difficult than in the special
case n =0, since the structure of bosonic "counterterms"
is not fully understood as yet. Another interesting issue
would be to check whether this cancellation of gauge-
dependent terms also works for infrared divergences as
has been demonstrated for the homogeneous axial gauge
in the PV prescription by Konetschny.

ACKNOWLEDGMENTS

The author is indebted to P. Gaigg, Professor M.
Schweda, and especially to A. Rebhan for valuable advice
and stimulating discussions, to Professor W. Kummer for
a critical reading of the manuscript, and to Professor G.
Leibbrandt for useful correspondence. This work was
supported by Ponds zur Forderung der wissen-
schaftlichen Forschung under Contract No. PG827.

(D„'F„—ger'y g)0' . (3.8)
APPENDIX

g(iS m) =0, (i+ m)—$=0, — (3.9)

as can be seen from (3.2) and (3.3), and the C~-dependent
ones as in (3.8). This implies that they can be absorbed in
a redefinition of the fields A, P, and g. The usual proofs
that the S matrix is not affected by local field

0„'itself contains terms gr'y~g and the structure of non-
localities is much richer, but aside from that, things are
quite analogous- to the LC gauge. ' All gauge-dependent
terms turn out to be proportional to the classical equa-
tions of motion, the C+-dependent ones to

Here we list the UV-divergent terms of the integrals
that have been used to derive Eqs. (2.19)—(2.27). The real
Lorentz vectors n„and n „*can be chosen independently,
as long as

R =(nn*) —n (n*) &0 (Al)
and additionally on the LC

n'=O=-=nn' &O . (A2)
Therefore, difT'erentiation with respect to n„where n„is
kept fixed yields consistent results. ' The expressions ob-
tained by the procedure outlined in Ref. 23 read
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d q
1

[(q —p)' —m ](qn)2

nn* —R
(A3)

d q = m n~
q 1 nn* —R

[(q —p) —m ]qn d;„8 " n2
nn —R

n +2 pn pn

(pn *) n 2—(pn )(pn ')(nn *)+(pn) (n *)+
R 2 np

—(pn ) (nn*)n +2(pn)(pn')n (n') (p—n) (nn*)(n )

n R

+2(pn)
(n 2)2 n„I, (A4)

2'
q
—p, '

q
—p, ' —m' qn

nn* —R n„I,
n

(A5)

q~q~
'q-p ' q-p. '--'

q ",
nn*n„*n* (n") —(n„n*+n n*)+ n„n +R

2
gp~ ~ npn~ I

n
(A6)

gpq~

q
—p, q

—
p2

—m qn

1 1 * 2 pn nn '(n *)(pn*n —pn nn')n„*n* —[pn*nn* pn{n*) ](—n„n'+n n„')+ pn*{n*) — n„n
n

+(g„pn*+p„n*+pn„')— p„n,+p n„+pn g„ 2
~ npn~

n

where
~ 2l 7T

p=p]+p2 ~2 co
(AS)

I(a P)= d q
(q +2pq L) qn *qn +i—e

(A12)

n (n*) &0 or n =(n*) =0, (A9)

nn*) 0 . (A10)

It is then easy to show that there exists a Lorentz frame
where n„and n„*take the form

and agree completely with Leibbrandt's formulas, pro-
vided those are expressed in terms of n„and n„*(Ref. 21).
The range of values for n„and n„' as specified by (Al)
and {A2) is the one given in Ref. 19 where the LM
prescription was generalized by analytic continuation to
all values of n„and n„*allowing Wick rotation. For the
actual computation it is convenient to restrict oneself fur-
ther by

n„=(n0,0,0, n3), n„'=(n0, 0,0, n3 ) . (A13)

(which contains only Lorentz-invariant quantities) in the
Lorentz frame (Al 1) absorbing the positive scaling factor
A, in the ie term. The result can be written in terms of I.,
p, pn, pn, n, (n ), and nn which in every Lorentz
frame take the same values as in the particular frame
(All). Thus, we are able to calculate I(a,P) for all
choices of n„and n„*obeying (Al), (A9), and (A10) with
the methods developed in Ref. 17. Using Feynman pa-
rameters and difFerentiation with respect to p„,as out-
lined in Refs. 18 and 23, we obtain (A3)-(AS) from (A12).

However, (A3)—(AS) are still valid if (A9) and (A10)
are dropped. Equation (Al) alone is su{licient for the ex-
istence of a Lorentz frame where

n =(no, O, O, n3), n„*=X(n0, 0, 0, n3), —

A, )0, no%0, n3&0 .

We calculate

(A 1 1)

This fact can be used to compute (A12) directly, perform-
ing a change of variables dqodq3~d(qn)d(qn*) where R
appears as the corresponding Jacobian. In this way, we
obtain expressions for (A12) whose divergent parts again
lead to (A3) —(AS).
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