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Discrete analogues of the topological charge and of the Bogomolny equations are constructed for
the nonlinear O(3) o. model in 2+ 1 dimensions, subject to the restriction that the energy density be
radially symmetric. These are then incorporated into a discretized version of the evolution equa-
tions. Using the discrete Bogomolny relations to construct the initial data for numerical simula-
tions removes the "lattice wobble" sometimes observed at low kinetic energies. This feature is very
important for the delicate question of instanton stability.

I. INTRODUCTION

The nonlinear O(3) o. model in 2+1 dimensions has
long been of interest; it has, for example, appHcation as
the continuum limit of the (classical) two-dimensional
Heisenberg ferromagnet. Its minimum-energy static
solutions (sometimes called instantons) were first ob-
tained explicitly by Belavin and Polyakov. The instan-
tons have no fixed size and so their stability is a central
question. There is a possibility that under small pertur-
bations they could shrink toward infinitely tall spikes of
zero width. General time-dependent solutions cannot be
constructed explicitly, and so it is natural to investigate
numerical evolution techniques which discretize the par-
tial differential equations.

A study of instanton stability in the lattice Heisenberg
model is hampered by the absence of explicit static solu-
tions on the lattice, although some progress can still be
made: for example, Voruganti has recently investigated
whether the inclusion of a Chem-Simons term can stabi-
lize the instanton size. This paper will get around the
problem by discretizing the (unmodified) O(3) model in
such a way that there are explicit instantons on the lat-
tice, which may then be used as the basis for a numerical
study of instanton stability.

An intrinsic feature of the O(3) cr model is its nontrivi-
al topology. Briefly, all finite-energy field configurations
belong to a particular topological sector, labeled by an
integer-valued topological charge X. The charge X is
conserved as the configuration evolves in time. The in-
stanton solutions satisfy a set of first-order differential
equations, namely, the Bogomolny (self-duality) equa-
tions, which themselves imply the fu11 second-order field
equations. Within each topological sector, the energy of
these solutions saturates the so-called Bogomolny bound
(a lower bound on the energy).

It is not clear how best to reconcile the nontrivial topo-
logical aspects with a lattice formulation, although there
have been several proposals. This paper will show
that, by constructing a discrete analogue of the Bogomol-
ny bound, one can devise a,numerical evolution which in-
corporates the topology in a natural way and which
possesses explicit instantons. In other words, the central
idea is to find a set of first-order difference relations to
play the role of the Bogomolny equations on a lattice.

II. RADIAL SYMMETRY IN THE O(3) cr MODEL

To establish notation, recall that the O(3) o model con-
tains three real scalar fields, P

—= ( P „P2,P3 ), which are
functions of the spacetime coordinates (t,x,y ), some-
times also written (xo,x„xz). Imposing the constraint
P.P = 1 on the free field theory gives rise to the field equa-
tions

a~a„y+(a~y. a„y)y= o .

Here the greek indices take values 0, 1,2 and label space-
time coordinates, and B„denotes partial difFerentiation
with respect to x". The kinetic and potential energies T
and V, respectively, are given by

T=,' f (a,y) (a,y)d'x, (&.2)

v= ,' f (a;p) (—a;p)d x, (2.3)

with the convention that latin indices only take the values

Solutions of these relations saturate the topological lower
bound on the (discretized) energy.

Only field configurations for which the energy density
(but not necessarily the fields themselves) is radially sym-
metric will be considered here. In principle this restric-
tion could be lifted, but the construction of the discrete
Bogomolny relations is then more complicated. Howev-
er, for the problem of instanton stability, the restriction
to axia1 symmetry is not a serious constraint, since non-
axial modes are unlikely to lead to instabi1ities. It is
worth remarking that Mikhailov and Yaremchuk have
considered imposing radial symmetry on the fields them-
selves. Then the model is integrable via an inverse
scattering method, but all the solutions obtained in this
way have topological charge zero.

This paper is arranged as fo11ows. The next section re-
views the familiar Bogomolny bound and then
reparametrizes the fields to impose radial symmetry.
Only then is the model discretized and, in Sec. III, the
discrete Bogomolny relations constructed. Section IV
discusses their properties (with some of the more
mathematical details gathered in an appendix), and in
Sec. V they are incorporated into a full evolution scheme.
Some preliminary results, indicating that the numerical
model is working well, are presented in Sec. VI.
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1,2. Summation over repeated indices is implied
throughout. The (integer-valued) topological charge is
given by

N=+ J~„y (a. , yXa, y.)d'x,1
(2.4)

where e,- is the antisymmetric symbol on two indices
such that e,2= —e2, =1. The sign of N is determined by
the signs of the individual components of P, and also by
the choice of the leading sign in Eq. (2.4). We shall as-
sume that things are always arranged so that N~0.
[However, one should consistently choose either the
upper or lower signs in Eqs. (2.4), (2.5), and (2.7).]

The Bogomolny bound arises from consideration of the
identity

f [(a,y+e,,yXa, y) (a, y+e, „yXa„y)]d'x o0, (2.5)

which may be recast using Eqs. (2.3) and (2.4) into the
form

V~2~N . (2.6)

Equality in (2.6) holds if and only if

d;P+e)QXB~Q=O . (2.7)

p, +i/~
u = 1—

3

(2.8)

The radially symmetric instantons of charge N are given
by u =A, /z where z=x+iy and A. is a real constant.
Note that the global O(3) invariance of the model has
now been removed by implicitly choosing u ~ oo

[equivalently $~(0,0, 1)] as z~O, and by taking k real.
When N =0 the field is constant and the energy density is
zero everywhere. For N=1 the instanton looks like a
lump peaked at the origin, and for N ) 1 it is a ring cen-
tered on the origin and peaked at

1/2N

N+1 (2.9)

where r is the polar radius in the xy plane. Physically, A.

may be interpreted as the instanton size.
With these observations in mind, one may write down

a more general family of radially symmetric
configurations, namely,

(2.10)

These are the Bogomolny equations. The instantons are
the time-independent solutions of (2.7). They have zero
kinetic energy; so V is equal to the total energy E and
(2.6) becomes E =2vrN.

The fields take values on a sphere S of unit radius, and
it is often useful to relate P to a complex scalar field u by
means of a stereographic projection from the north pole
of S onto the complex u plane:

field of the form (2.10), at least in some global gauge.
The field u provides a concise description of the radial

configurations. However, it is not suited to numerical
implementation, since it possesses a singularity (at the
origin). Instead, one reverts to the P picture, in which
(2.10) is equivalent to

P&
=f(r, t )cosNO+ g (r, t )sinNO,

Pz = —f(r, t )sinNO+g ( r, t )cosN 8,
$3=h(r, t ),

where f, g, and h satisfy the constraint

f+g+h =1

(2.11)

(2.12)

and 6I is the polar angle in the xy plane. Roughly speak-
ing, f comes from the real part of A, and g from the imagi-
nary part (so the instantons have g =0). The boundary
conditions are h (0)= 1 and, for NWO, h ( oo ) = —l.

Now one is in a position to reformulate the Bogomolny
bound in terms of the single spatial coordinate r. Set
g—:0 in (2.11) (since for the moment we are concerned
only with instanton solutions), choose f to be positive,
and choose the lower signs in Eqs. (2.4)—(2.7). T'hen sub-
stituting for P in Eqs. (2.2) and (2.3) yields

hT= ,' J —(2n.r dr), (2.13)
1 —h'

p i I hr N (1 h )

1 —h r2
(2.14)

where the subscripts r and t denote partial differentiation.
The topological charge density becomes simply

Nh„
~, y (a, yxa-y)=—

8~ '~ ' j 4~r
(2.15)

The Bogomolny bound V ~ 2~N is essentially the identity

+ (2m.r dr ) ~0 (2.16)
N&I —h'

1 —h r

and the Bogomolny equations are

rh„+N(1 —h ) =0 . (2.17)

Explicitly, the instanton solutions are given by

(f,g, h)= 2grN g2 r2N

g2+ 2N ' ' g2+ 2X (2.18)

III. BOGOMOLNY RELATIONS
IN A DISCRETE FORMULATION

for arbitrary real constant A, . Note that (provided NWO)
h decreases monotonically as a function of r, from h = 1

at r=O, to h = —1 as r —+ ~.

where now A, is allowed to be a (possibly complex) func-
tion of r and t. The remainder of this paper deals ex-
clusively with these configurations. It seems that all radi-
ally symmetric energy densities can be derived from a

So far, all we have done is to reexpress the (radially
symmetric) instanton solutions in terms of a single real
field h, which is a function only of the polar radius r. It
will now be seen how this description is useful in con-
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structing discrete analogues of the topological charge and
of the Bogomolny equations.

Consider a discrete set of values h„(n KZ, n )0) with
the properties that h0=1 and h„~—1 as n~oo. (In
both this section and the next, the special case N=O will
be avoided, in order to ensure h„~—1. ) One expects
the Bogomolny bound to take the general form

(a„+P„)= V 2rIN—)0. .
n=0

(3.1)

By analogy with Eqs. (2.5) and (2.16), the cross terms of
the infinite sum in (3.1) should yield the topological
charge; the remaining terms give the potential energy. So
to fix up the charge one may take

a„P„=,'AN(h„—+,—h„) . (3.2)

Turning to the energy, the form of (2.14) suggests the
choices

CX n N (3.3)

2

1/2
h„+,—h„

Ql —h„
(3.4)

The only problem with this is that (3.3) and (3.4) are
undefined when n =0. Clearly the origin must be treated
in a special way. One solution is to arrange that
aa+p0=0 identically, while still being consistent with
(3.2). So choose

1/2

Q 1 —h 1, (3.5)CZO

(3.6)

Putting the pieces together gives the following discretized
potential energy:

IV. INSTANTONS ON THE LATTICE

All lattice instantons satisfy the Bogomolny relations,
but does the converse hold, i.e. , are all solutions of (3.8)
lattice instantons'? The answer is no: the requirement
that h„& —1 for all n puts a lower bound on the allowed
values of h„as the following argument shows. From
(3.8),

h„+i=h„——(1—h„) (4.1)

and so, assuming h„) —1,

h„+))—1 ~h„+1)—(1—h„)
N

ton size in some way. It is simplest to think of h1 as the
free parameter: roughly speaking, the closer h, is chosen
to 1 then the larger the width of the corresponding in-
stanton. One should also be clear about the role of N.
There is no analogue of Eq. (2.4), giving the topological
charge in terms of a specified set of h„. Rather, N is now
also a (positive integer) parameter to be specified.

Given h, and N, it is clearly very simple to generate all
other h„by repeated application of (3.8). So far, (3.8) has
resisted all attempts to write down the general solution in
a closed form. But despite this lack of explicit solutions,
one can still make considerable progress in investigating
the properties of lattice instantons: this is the subject of
the next section.

As a final remark, one might ask how things would
differ if the restriction of radial symmetry were dropped.
The answer is that one would now need two scalar fields,
labeled with two indices each. Moreover, to get the topo-
logical charge appearing in the Bogomolny bound
correctly, the right-hand side of (3.2) would look like the
area of a spherical triangle (see, for example, the paper by
Berg and Liischer ).

V=~N(1 —h, ) n
h &1——. (4.2)

QO (h„+)—h„) N (1 —h„)+—„' g (2mn) "., " +
n=1 1 —h„ n

(3.7)

Apart from the leading term, which comes from
a0+pa, this is perhaps what one would have written
down immediately as an analogue of (2.14). The advan-
tage of the above approach lies in the appearance of the
associated Bogomolny relations. There is equality in (3.1)
if and only if a„+p„=O for n ) 1. (Recall that
a0+p0=0 identically. ) Substituting for a„and p„ from
(3.3) and (3.4) one finds

h, &„h2&O, h, & —,.
Using the explicit Bogomolny relations, namely,

h2 =2h
1 +hi 2 h3 =h2+h2 1

(4.3)

(4.4)

The condition (4.2) is automatically satisfied if n 2N,
but for n (2N it gives a set of 2N —1 inequalities, which
are equivalent to putting a lower bound on h, . When
N = 1 one requires simply that h, )0 (and, of course,
h, ( 1). For N =2, (4.2) becomes

N(1 h„)+n (—h„+,—h„)=0 . (3.8)

This equation is the central topic of the paper. The
proposal is that instantons on the lattice should satisfy
(3.8). This discrete Bogomolny relation is a nonlinear
first-order difference equation for h„, and so its solutions
contain one degree of freedom, which specifies the instan-

one finds that the three conditions in (4.3) are all satisfied
if and only if h, )&3/2.

These results are a little curious. One possible inter-
pretation is that the lattice "wants" to support only those
ipstantons larger than a certain width. This is somehow
in keeping with the intuitive notion that a good discrete
representation will put several lattice points inside the in-
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stanton. From now on it is assumed that h, is always
large enough to satisfy (4.2).

One further check must be made. If ~h„~ & 1 for some
n then from (4.1) h„+, &h„&1. Hence, subject to the
above provisos on h, , t h„ I is a monotone decreasing se-
quence bounded below by —1, and so must tend to some
limit I, where I » —1. For an instanton solution, one re-
quires / = —1, and it is easy to show that this is indeed al-
ways the case: since {h„ I tends to a limit, the series

(h„—h„+, )
n=I

converges. By (4.1) this series is equal to

i.e., step (4) is perfectly well behaved. The only problem
will occur in step (3) if no (2N and the value of h„

0
causes (4.2) to be violated [in which case the derivation of
(4.8) breaks down anyway]. So to be completely safe, one
should always choose no & 2N.

To sum up, lattice instantons may be generated by
choosing h i and then repeatedly using (4.1), but there is a
lower bound on the allowed h „which is dependent on N.
It is much better to fix h„ for some large no; first because

0
one need not worry about the allowed values of h„, and

0
second because h„has been related, albeit approximate-

0

ly, to the width X.

(4.5)

and if I ) —1 then (4.5) diverges. So I = —1.
One could argue that the classification of lattice instan-

tons is now complete. However, h& is not a convenient
parameter to work with in practice. It would be much
nicer to have a lattice analogue of the instanton width A, ,
which appeared in (2.18). One possibility is to set

1+h„
1 —h„

and then to define

(4.6)

(4.7)

(n +02N —1)! 1+h„
exp( 4N So)—

(no —1)!

provided this liniit exists. The idea is that one could
specify A, and somehow relate it back to h &. It turns out
that A, is indeed well defined: the proof of this is given in
the Appendix. However, it seems difBcult to relate A, to
h &. Instead, it may be related to h„ for large no.

0

V. THE FULL DISCRETE EVOLUTION SCHEME

e =—' f+g+h+ (f+g)
r

(5.1)

It is now convenient to write

We shall now address the question of incorporating the
notion of lattice instantons into a full numerical evolution
scheme. One possibility is to write down the general
time-dependent equations of motion for the continuum
model and then to discretize them in some way, but the
lattice instantons of Sec. IV will not, in general, be static
solutions of these full discretized equations.

A better plan is to construct a discrete action in which
the potential energy (3.7) of the lattice instantons ap-
pears, and then to vary the action with respect to the
fields at each site on the spacetime lattice. This method
guarantees that solutions of the Bogomolny relations (i.e.,
the lattice instantons) are automatically solutions of the
full evolution scheme.

In the continuum model, substituting (2.11) into (2.2)
and (2.3) gives the kinetic and potential energy densities,
6& and ez.

+O(no ), (4.8) f (r, t)+ig (r, t) =R (r, t)e'~'"'", (5.2)

where

no —1

2n
(4.9)

n

2%
-1+ 1+' —+h... (4.10)

Consider (4.10) for a moment. As h„+, varies between
—1 and 1 so does h„, and if ~h„+, ~

&1 then h„)h„+i',

This result is also derived in the Appendix. It suggests
the fo11owing procedure for constructing instantons on
the lattice.

(1) Specify A, and choose no large enough so that
O(n 0 ) may be neglected.

(2) Calculate h„using (4.8).
0

(3) Calculate h„ for n ) no using (4.1).
(4) Calculate h„ for 0&n (no by solving (4.1} as a

quadratic for h„:
1/2

h2

1 —h
(5.3}

The first two terms are just the potential energy density
(2.14) of instanton solutions; they will be discretized ac-
cording to (3.7). In the full lattice formulation, the fields
acquire a superscript to label the time slices. The discrete
action derived from (5.3) is

so replacing f and g with R and g. (Note the instantons
have g=0, i.e., R =f, $=0. ) We shall always choose
R &0. The constraint on the fields becomes R +h =1,
and so it is straightforward to eliminate R in favor of h,
eventually having a theory containing just h and g. From
(5.1) the action density may be written

XRh2+R2+ . +R2q2 h2 R2 R2q2



ROBERT LEESE 40

S=mN.Q(1 —h1 )+ ,'~—g g n
P7l m n=1

(/ m
/ m)2 N2(1 / m2)

hm2 n2

(/ m+1
/ m)2

g2( 1 / m2)

hm2) (qm qm)2 (pm+1 ym)2 (5.4)

where 6 is the time interval between successive time slices. The evolution equations arise from varying S with respect to
h„and f„separ ately. For convenience, introduce the shorthand notation

h=—h hL =—h„ hU—= hn
+'

hR =—hn+1 hD —= hn (5.5)

and similarly for g. (Think of L, R, U, D as meaning left, right, up, and down. ) Then varying with respect to /1„

gives

(/1 —hU)(h/2U —1)=A(l —
/1 )

where
T

(/1 —hR )(hhR —1)

(1 —h )

h —hD
+/1[o'(1/ A)' ——(0—1/U)'l (n») .

+N(Nb+I) — +h[5 (g pR )
—(p p—U) ]—(n=1),

D

(/1 hR )(/1 h—~ —1)
2 2 2 2(1—

/1 ) n n hl —1

(5.6)

Varying with respect to P„gives

n(h —1)[5 (g g~ ) —(g——
g/iU)] n(h —

D
—1)(g—gD)+(n —1)5 (hL —1)(g—

g& )=0 (n ~ 1) . (5.7)

Equations (5.6) and (5.7) together form the evolution
scheme for /1 and p. Note that (5.7) is linear in 1)'jU and so
is easily rearranged to give gU explicitly. But (5.6) is
quadratic in hU (unless /1 =0, in which case it is linear).
The choice of solution is fixed by requiring that as 6~0
(and hence A —+0) then hU~h:

A (/1 =0),
(1+h —(1—h )v'1 —4h A ) (h &0) .

2h

(5.8)

VI. PRELIMINARY RESULTS

It should be emphasized that if one sets h =hU =AD
(i.e., looks for time-independent solutions on the lattice)
then the Bogomolny relations (3.8) imply (5.6). It is this
feature that distinguishes the scheme from a more naive
approach; in other words, one gets exact static solutions
on the lattice.

To be completely rigorous, one should carry out some
sort of stability analysis for the discrete model. However,
(5.6) and (5.7) are sufficiently complicated to make this a
far from trivial task. For the moment, one must be con-
tent with the fact that extensive use of these difference
equations has not revealed any instabilities.

Ro

V(Ro, m )=—21r g ne1,(n, m),
n =1

Ro

21r g n [eT(n, m )+ e1,(n, m ) ]
W(Ro, m )—=

T(Ro, m )+ V(Ro, m )

where R0 is assumed to be an integer and

(/ m+1
/ m)2

n n

hm2
1

ET(n, m )—:
42

(6.2)

( ~ n,„),together with a measure W of the configuration
size. In the continuum model one has

Ro
T(Ro, t)=2'j reT(r, t)dr,

0
Ro

V(Ro, t):—2~j rE1,(r, t)dr, (6.1)
0

o2' J r [FT(r, r )+@1,(r, t)]dr
W(Ro, t)—=

T(Ro, t )+ V(Ro, t )

The discrete versions of T, V, 8' come from the discrete
action (5.4):

Ro

T(Ro, m)—=21r g nf. r(n, m ),
n =1

In this section we shall compare the results of the nu-
merical evolution with the continuum behavior, in the
cases of a charge-one instanton and a slowly moving
charge-two ring.

The lattice formulation necessarily has a spatial bound-
ary at n =n „,say. It is therefore useful to calculate the
kinetic and potential energies within some radius R0

+(1 / m2)(pm+1 ym)2

(/2
m

/2 m)2 N2( 1 Q m2)
ev(n, m )—:— +

j. —h„ n

(6.3)
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2+R o
V(RO, t)=

A. +Ro

W(Ro, t)= (A. +R ) arctan —
A,R2 2 Ro

R 0

(6.4)

Figure 1 shows T, V, and 8'for the charge-one instan-
ton given by A. =30 over the range 0~t +100 and for
R0=100. The continuum model (finely broken line) has
T=0 (not plotted) and, from (2.18),

I

I

0 Opl

~ i( li( l)) l

I
I

II
l

The other curves are results of the numerical model with
n,„=100and 6=0.1: first for initial data taken directly
from the continuum solution (2.18) (solid line); and
second for initial data derived from the Bogomolny rela-
tions taking no =100 (coarsely broken line). On the
boundary (n =n,„) the fields are taken to be fixed in
time. The important feature is that the initial data taken
from the continuum model lead to "lattice wobble, "
which is eliminated when the discrete Bogomolny rela-
tions are used instead. Of course, this is precisely what
the discrete Bogomolny formalism was designed to do.

Note from Fig. 1 that the Bogomolny relations lead to
a value of 8' which is slightly larger than that predicted
by the continuum analysis (a feature caused by A. being
redefined on the lattice to be the limit of tA, „ I ). The ab-
sence of a natural scale in the problem means that this
small diA'erence is unimportant; what matters is that tak-
ing initial data from the Bogomolny relations leads to nu-
merical results which are qualitatively close to the contin-
uum model.

Turning now to time-dependent configurations, one
could attempt to reproduce some of the solutions which
have been obtained analytically for X=O. (Included in
these is the special case h =0; then g satisfies the radial
wave equation. ) However, taking %=0 does not test the
ability of the model to handle nontrivial topologies. We
shall instead consider a "slow-motion" approximation,
originally proposed by Manton in connection with mono-
pole scattering. The idea is that the manifold of static
configurations possesses a natural metric given by the ki-
netic part of the action; in the limit of small kinetic ener-
gies, the evolution is approximated by geodesic motion
on this manifold. In essence, one is letting A. depend on t,
but not on r in Eq. (2.10).

For %=1, the requirement of finite kinetic energy
means that A, must be independent of time as r~ Oc, so
ruling out a slow-motion approximation. In other words,
taking A, to be a function only of t leads to a divergent ki-
netic energy. But when %=2 there are sufficient powers
of r on the denominator of (2.10) to keep the energy finite.
For this case the slow-motion approximation has been
considered by Ward: one solution is

0. 0005--

5. 768—

5. &42

t

5. ~60

5. &58--l

5. 756--
I

I

5

IIIII'&bilIt

5. 752--

33. 3--

33. 2--

32, 9--

32. 8 w

32. 5

0. 0000 -—————————————————————————

I pp

A(t ) =a(b+ir )', (6.5) 80 90 &00

where a and b are real constants. The kinetic energy is
m a (so the approximation is expected to be best when a is
small) and the potential energy is 4ir. Note that because
the evolution is being approximated by a sequence of in-
stanton configurations, the kinetic and potential energies
are conserved separately.

FEG. 1. The variations of T, V, and 8' over the range
0~ t ~ 100 for a charge-one instanton in the continuum model
(6nely broken line), and also for the numerical evolution. En the
latter case, initial data are taken both directly from the continu-
um model (solid line) and from the discrete Bogomolny relations
(coarsely broken line).



2010 ROBERT LEESE

In terms of the (h, R, Q) parametrization, (6.5) corre-
sponds to

0. 020 +

(6.6)

0. Oi8--

0. 017—

0. 016 —~

g(r, t) = arctan
2bt

b —t2 2

0. 015—

where

y:+a(—b +t ) . (6.7)

0. 012--

0. 0l 0 ———
The potential energy is peaked at r =3 ' y: physically,
one has a ring which contracts to a minimum radius at
t =0 and then expands again. From (6.6), one obtains
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y'
R 0

(6.10)

where in (6.10) the principal range of arctan is taken to be
[O, ir).

Figure 2 shows these quantities (finely broken lines) for
R0=150, a =0.001, b =1000 over the range 0~t ~1000.
Also shown are numerical results for n „=150 and
5=0.1, first for initial data taken directly from (6.6) (solid
lines) and second for initial data derived from the discrete
Bogomolny equations with no = 150 (coarsely broken
lines). The boundary conditions on g and h are

~00 &00 500 700

X~

&00 ~000

max lllRX

h, , =h,
max max n max

( 1 —Ii„
max

(6.11)
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In other words, P has zero gradient on the boundary and
h falls off as a charge-two instanton Geld. This choice
means that energy may flow off the edge of the lattice (or
alternatively into the lattice from outside): in Fig. 2 ap-
proximately 0.75% of the original energy is "lost" as the
ring expands up to t =1000. Note that once again the
solid lines are affected by lattice wobble. On the other
hand, using the Bogomolny relations gives a much
smoother numerical evolution.

One may ask to what extent the boundary conditions
afFect the numerical results. This may be studied by tak-
ing a larger n,„(i.e., putting the boundary further
away), but keeping R0 fixed. Figure 3 is the same as Fig.
2 but with n „=300. The greatest change is in T: the

39 ~

35--

&00 600 700 900 1000

FIG. 2. The variations of T, V, and 8' over the range
0 t ~ 1000 for a slowly expanding charge-two ring in the ana-
lytic slow-motion approximation (finely broken line), and also
for the numerical evolution. In the latter case, initial data are
taken both directly from the slow-motion analysis (solid line)
and from the discrete Bogomolny relations (coarsely broken
line).
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solid line still Auctuates wildly, but the coarsely broken
line now exhibits the gradual decrease predicted by the
slow-motion approximation. The evolutions of V and W
are virtually unchanged, So it seems that to a large ex-
tent the boundary conditions (6.11) are transparent to the
flow of energy, but they are not completely invisible.
However, since we are using a one-dimensional lattice, it
is usually computationally feasible to make the boundary
e6'ectively invisible by taking n,„»RO.

VII. CONCLUDING REMARKS

0. 00&

&00 200 300

200 300

500

I

600 700 800

&000

The development of a set of discrete Bogomolny rela-
tions removes the lattice wobble, which is observed in nu-
merical simulations at low kinetic energies, by providing
explicit instantons on the lattice. Two particular cases
have been studied in some detail and the numerical
scheme appears to be working very well. Now one can
return to the original question of instanton stability. It
may be that the absence of a natural scale in the model
means that if an instanton is "squashed" then it eventual-
ly becomes an infinitely tall spike; on the other hand, the
condition that the fields be fixed at infinity (to ensure
finite energy) may rescue the situation. Clearly it is
essential that the lattice wobble be eliminated if one is to
study small perturbations.

Work on this question is currently in progress and de-
tailed results will be presented elsewhere. Early results
indicate that a perturbed instanton loses kinetic energy
by emitting a pulse of radiation, which travels outward at
the speed of light. But it does not completely overcome
its tendency to shrink (or expand, depending on the sign
of the initial perturbation).

Finally, the technique of discretizing the Bogomolny
bound, in order to obtain static solutions on the lattice,
may be applied to other models which have nontrivial to-
pologies. A few possibilities are the sine-Gordon equa-
tion in 1+1 dimensions, the Maxwell-Higgs model in
2+ 1 dimensions (which can describe vortices in super-
conductors), and the Skyrme model in 3+1 dimensions.
Although there have been many numerical studies (see,
for example, Refs. 10—14), this approach to a discrete
evolution scheme does not seem to have been considered.
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APPENDIX

3P +

900

The proof that A, , as given by (4.7), is well defined in-
volves several intermediate results (lemmas 1—3) and also
a further di6'erence equation, closely - related to the
discrete Bogomolny equations, and derived as follows.
Take e small and look for a solution to the Bogomolny
relations of the form

FIG. 3. The variations of T, V, and 8 for a slowly expand-
ing charge-two ring. The parameters are the same as in Fig. 2,
except that, in the numerical evolution, n, „ is set to 300, in-
stead of 150.

1 —an~h„= =1—2a„e+O(e ) .1+a„e (A 1)

To leading order in e, the Bogomolny relations become
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2N
an+ i =an 1+

n
(n)1), (A2)

1+h„'

1 —h„'
(A6)

which has general solution

(n +2N 1)—!an=
(2N)! (n —1)!

(A3)

1 —a
I n' -1+. (A4)

which, it is easily checked, are the general solution of the
difference equation

This provides the motivation for de6ning a new set of lat-
tice quantities:

(2N)! asn —+~ .
a)

(A7)

The relevant sequence of lemmas may now be construct-
ed.

Lemma 1. Suppose that [h„' j and [h„"j both satisfy
(A5) and that h„' )h„" for some n Th.en h„'+, ) h„"+,.

Pvoof Let D =[1+(Njn)(1—h„')][1+(Nln)(1—h„")])0; then (A5) implies
r

where the last equality follows from (A4). Using the ex-
plicit form of a„given in (A3),

h„' —(N ln )(1—h„' )
h„'+i =

1+(N In )(1—Ii„' )
(A5) h' —h" =— Ii' ——(1—h')n+1 n+1 D n

n
n 1+—(1—h„")

n

Now assume that a, is chosen to be positive. Then an & 0
for all n ~1; moreover an+i)a„and a„—+~ as n~~.
So from (A4) it is seen that [h„' j has the following prop-
erties in common with [h„j:

—(h„'~h„"}

=—(h' —h") 1+ 2N
n n &0.

It is useful to define counterparts to the A,„ for the new
quantities h„:

Lemma 2. Suppose that [h„j satisfies the Bogomolny
relations (4.1), that [h„' j satisfies (A5), and further that
h„' =hn for some n. Then h„'+, ) h

Proof. Let D=l+(NIn)(1 —Ii„))0; then (4.1) and
(A5) imply

li„'+ i
—h„+ i

=—h„——(1 —h„)— 1+—(1—h„) h„——(1—h )
1 N N

n n n

(1—h )(1—h ))0.1 N 2

D 2n
n n

Lemma 3. [A.„j is bounded.
Pvoof. Lemmas 1 and 2 together show that if h„' =Ii„

0 0
for some no then h„' & h„ for all n )no. Therefore
A,

' ) A. for n &no. But, given 6)0, A,
' (A, ' +5 for

sufficiently large n. Clearly [A,„j is bounded below by
zero, and so

0~A. ~A, 'n—

N
2 ziv 1 ——(1 —g )
n+1 1 n n

A,
2

1+—(1+h„)
n

(A8)

The fact that [ A,„j is bounded, together with the form of
(4.6), means that h„must approach —1 at least as fast as
1/n, i.e. , for sufficiently large n, h„= —1+O(n ).
Therefore, expanding (A8) in powers of 1 jn:

for suf5ciently large n.
The final stages of the proof now follow. From (4.1),

1 —h„+,=(1—h„) 1+—(1+h„)N
n

~n+1 2N N(2N 1)
g2 n n 2

n

N(2N+1) 3)
n

1 — +O(n )
n

(A9)

1+h„+,=(1+h„} 1 ——(1—h„)

Dividing one of these equations by the other, and using
(4.6),

which shows that [X„j is monotonically decreasing for
sufficiently large n. Since [A,„j is bounded below by zero,
it must tend to a finite limit X .

Equation (A9) may be used to provide an. approximate
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value for A, . By definition

oo

n=nO
(Alo)

&2 '2N
~n+& 1 an1+—

nn

2N
11+—
n

2N
n

Take logarithms and choose no sufficiently large so that
for n ~no the O(n ) terms in (A9) are small compared
with O(n ). Then

1+ N(2N —1)
(

n
(A15)

N(2N+1)
ink, -ink„

n=n 0
n

2 "0
Ink, „—N(2N+ 1)

6 „) n
(A 1 1)

If we again choose n o sufficiently large so that the
O(n ) terms are small then

=1,'„exp[SoN(2N —I )] . (A16)

But now recall that h„=h„' and so A,, =A, '„. Hence

comparison of (A14) and (A16) yields

where in the last step we have used the result k =A, ' exp( 4N So—} . (A17)

2n

m2

6

Introducing the notation

(A12) In Eq. (A7), X' was given in terms of a„but it may
equally be expressed in terms of a„(or h„) by using

0 0

(A3), (A4), and the fact that h„=h„'
0 0

So —=
0

2n
(A13)

(no+2N —1)!
(no —1)! an

0

we get
1 —h

nO

(no+2N 1)! 1+6„
(no —1)!

(A18)

A
2 = A,„exp[

SON�(2N

+—I ) ] . (A14)

However, as it stands, (A14) is of limited use because it
still involves A,„.It is much better to rewrite it by relat-

0

ing A,„ to A,
' . Using (A6) and then (A3} one finds 1 —A

nO

So finally we obtain Eq. (4.8):

(n, +2N —1)! I+~.,
(no —1)! exp( 4N'So) . — (A19)

'A. A. Belavin and A. M. Polyakov, Pis'ma Zh. Eksp. Teor. Fiz.
22, 503 (1975) [JETP Lett. 22, 245 (1975)].

~P. Voruganti, Phys. Lett. B 223, 181 (1989).
R. Rajaraman, Solitons and Instantons (North-Holland, Am-

sterdam, 1982), p. 48.
48. Berg and M. Liischer, Nucl. Phys. 8190, 412 (1981).
5R. Ben-Av and S. Solomon, Weizmann Institute Report No.

WIS-88/11/MAR-PH (1988).
F. Fucito and S. Solomon, Nucl. Phys. 8251, 505 (1985).

7A. V. Mikhailov and A. I. Yaremchuk, Nucl. Phys. 8202, 508
(1982).

8N. S. Manton, Phys. Lett. 1108, 54 (1982).
R. S. Ward, Phys. Lett. 1588, 424 (1985).

IOM. Peyrard and D. K. Campbell, Physica 9D, 33 (1983).
J. J. M. Verbaarschot, T. S. Walhout, J. Wambach, and H. W.
Wyld, Nucl. Phys. A461, 603 (1987).

' A. E. Allder, S. E. Koonin, R. Seki, and H. M. Sommermann,
Phys. Rev. Lett. 59, 2836 (1987).

~3K. J. M. Moriarty, E. Myers, and C. Rebbi, Phys. Lett. 8 207,
411 (1988).

'4E. P. S. Shellard and P. J. Ruback, Phys. Lett. B 209, 262
(1988).


