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Correlation function for N = 1 superconformal models on the supertorus
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We calculate the partition function for %=1 superconformal models on the supertorus with

(+,+) boundary conditions. Also the two-point correlation function of the N =1,c =
—,
' supercon-

formal model on the odd spin structure of the supertorus is constructed using a supersymmetric
Coulomb-gas formalism.

I. INTRODUCTION II. N =1 SUPKRTORUS

The constructions of correlation functions on higher-
genus (super) Riemann surfaces are important not only
from the viewpoint of (super)conformal field theories but
also in the perturbation theory of string models, which
was proposed by Gepner. Beginning with Verlinde' on
the relation between modular transformations and fusion
rules, a great deal of papers have dealt with the proper-
ties of conformal field theories on the torus. The Gepner
models, which describe string propagation in Calabi- Yau
space, are built from the summation of nontrivial confor-
mal field theories. The study of string perturbation
theory along this line requires the explicit construction of
the correlation functions on higher-genus Riemann sur-
faces.

In this paper we wish to construct the two-point func-
tion of the X = 1, c =

—,
' superconformal model on the odd

spin structure of the supertorus. The construction of a
correlation function for these models on even spin struc-
tures of the supertorus is essentially equivalent to the
construction of a correlation function on even spin struc-
tures of an ordinary torus. On the other hand, the essen-
tial idea of a Coulomb-gas representation is to express all
primary fields in terms of vertex operators of a bosonic
scalar field. In this formalism one can introduce a back-
ground charge e at infinity on the complex plane. How-
ever, we have to remark that the metric dz dz on the
torus has no poles or zeros, which are necessary for im-
plementing a background charge. . Therefore, on the
(super)torus, one can introduce the fioating charge in-

stead of the background charge on the complex plane.
The organization of this paper is as follows. In Sec. II

we review the % = 1 supertorus, and we derive the parti-
tion function for the X =1, c =

—,
' superconformal model

on the supertorus in Sec. III. Section IV is devoted to
find the partition function of the N= 1 superminimal
model on the supertorus. We construct correlation func-
tions for the X = 1, c =—', superconformal model in Sec. V
and we summarize our results in Sec. IV. Finally we
derive the properties of supertheta functions in the Ap-
pendix.

Because a subgroup of G on the supertorus [ =SPL(2, C))
is isomorphic to a fundamental group of a torus, it must
be Abelian and has precisely two commuting generators.
Furthermore, it can be chosen to preserve the Aat super-
geometry on the CSP characterized by the complete
frame fields and its dual fields:

E =dO, E =dO, E+ =d +OdO, E =d —OdO

and

E =D =0 E-=E-= —8

E =D, =a,+Oa„E =D,-=V,——Oa, .

The generators of this subgroup can be given by

z'=z + 1, 0'=0,
z' =z +w+ 05, 0' =0+6

(2)

for the odd spin structure [(+,+) boundary conditions]
aI1d

z'=z+1, 0'=0,
z'=z +~, O'= —0

for the even spin structure with (+, —) boundary condi-
tions. The other even spin structures are obtained by re-

We begin by reviewing the results on the uniformiza-
tion theorem of genus-1 super Riemann surfaces. A su-

pertorus is obtained as the quotient of the complex super-
plane (CSP) with coordinates (z, 0) by a supergroup
G =Osp(1, 2) of superconformal transformations of the
form

az +b yz +5z'=
cz+d (cz+d )2

8'= ~ + ( 1+—,'5y)
cz +d cz +d

a b
with d ESL(2,Z) .
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placing signs ( —,—) or ( —,+) in the transformations of
8 in (4). The even spin structures are just the superspace
version of a torus and lead to no difhculty. However, the
periodicity of (3) for the odd spin structure induces some
problems. For example, the requirement of the periodici-
ty (3) on a scalar superfield gives boundary conditions
that mix the component fields. Avoiding this difhculty,
we introduce new coordinates W = (co, P) related to
Z =(z, O) as

which is exactly the same form as the modular transfor-
mation law in the torus. Using this, we will construct the
supertheta functions in the Appendix.

III. PARTITION FUNCTION FOR N = 1, c =—
SUPKRCONFORMAL MODEL ON THE SUPERTORUS

The action for a free scalar superfield S on the odd spin
structure of the supertorus is given by

COI COI
z =co+$5, 8=/+5 f d ZDgSDsS .

2m ST
(12)

where ~I and ~I denote the imaginary part of m and ~.
Rewriting co and P in terms of (z,z, 9, 8,5,5, r, r), we have

I
gg ]+ 1 0 5

7 I 2%I

In order to obtain a simple situation on the boundary
conditions, using (9), we can transform (12) into

~ = g f d'~ a.a, a e, +q,a.q, q, a y—, +
+I

~I/=8 — 5 1+
I 2w

In this system the periodicity (3) reduces to

(6) F) ——
Q, a„@1— Q, a N)

i5 i6—

F255 — g&sFO

4gg (13)

7I 7I TI 7I

0+, 04 D- — 0D~+
2~I 4&2I & 2~I wr

The presence of 5, 5-dependent terms in (8) shows a gravi-
tino zero mode on the torus in (co,P) coordinates system.

Let us define the integration on the odd supertorus as

f d Zf(ZZ)=f d Pf d coE'

Xf(Z( W; W), Z(W, W)),

where Z ( W, W) is the transformation in (5) and
E' '=(r+$5)z jr& Here 8 and. T mean that the P in-
tegration is the ordinary Berezin integration and the co in-
tegral is over a torus with (O, l,r, ~+1). On the other
hand, the supermodular transformations on the odd su-
pertorus are given by

a~+& ~, 6
cr+d (cr+d)3~z

where (r, 5)E supertorus and

a b
HSL(2, Z) .

(10)

In terms of a new parameter T=~+0'6, these can be
rewritten as

aT+6
cT+d

co —co+ 1, P —P, co =co+ r,

However, supercovariant derivatives D6 and Dz take the
more complicated forms

Here we can eliminate the auxiliary field F by its equation
of motion. The partition function for 4, leads to

1/2
1

lq(r)l'
'Zo = D+ie

27 I

where

f d co a~@)a

and g is the Dedekind function. To calculate the fer-
mionic part, let us define the measure for the zero modes
as

DSO =C dFod god $0, C =const . (16)

For convenience, we choose C such that the partition
function takes the form

Zi= DSOD i, i e
+I

where 3„=A —A z, . Note that there is no contribution
from the 6, 5-dependent terms because of the presence of
the gogo term. Also we remind the reader that there is
no contribution to the partition function from the double
periodic free fermion action (Ising model) on the torus,
due to the absence of the gogo term in action. However,
on the supertorus there is a direct contribution from the
fermion action to the partition function.

As is shown in Refs. 5 and 9, for the case of the
(super)torus, one has to account also for the classical part

where we have split S (.=So+S,) into a zero-mode part
So and a nonzero-mode part S, . The component expan-
sion of S is defined by

S( W, W) =4(co, co)+ctpg(co, co) PP(co, co—)+ctppF(co, co) .

(14)
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of action because in a finite geometry the boundary con-
ditions generate various constraints. This comes from
the classical solutions and their winding on the homology
cycles of the torus. Then, for variations 64 =2am,
6N'=2~m' along two generators of the superspace ver-
sion of the torus in (7), the corresponding continuum lim-
it is the frustrated partition function

Z,dd= g Z'
~
= g q™q',

m, m'EZ m, eEZ
q e 27jl7

(24)

A simple supermodular-invariant object is then obtained
by summing over m, m'. After a Poisson transformation.
on m' one obtains

Z'
~
= DS e

64' =2~m '

(I&)
where conforrnal weights x and spin s are given by

This is evaluated writing S~S+S,1, where S is now a
periodic quantum field and S,1

is given by

x =h, +h, , s=h, —h,

with

(25)

Sci 277 Im
m m'T vr5(m r m')—

z + CO

2+I 1
h =—eem 4

1/2
2 +m

2

1/2 2

—m6(mr —m')
(19)

as a solution to the equation

+ ~~ D D-s — '
(spa. +spa )s

+ '
(5D,a.—SD,a)s =0-.

7I
Then Z'

~ factorizes as

(20)

Z'
~ =ZOZ, exp( —A„)=Z, Z

Considering (13) and (19), A, &
leads to

~g /m' —mr/
2 VI

(22)

a~+b 6
Pl, tlat +d ( +d )3/p

:Z +d +b (r 5)

(23)
I

Note that there is no contribution to A, 1
from the

fermion-dependent terms in (13). Under these supermo-
dular transformations in (10), Z' transforms in the
same way as the frustrations

1
h em

1/2
2—e — +m

1/2 2

2

Z„,„(g/2) = g Xz(r s) g Z (g/2), (26)
r s =0, 1 m =r[2]

m'=s[2]

where Xz(r, s) denotes the partition function of an Ising
model with twisted boundary conditions e' " (e' ') on the
spin variables. Here (k) stands for "modulo k." Also
Z ~ is already defined in (21).

Finally we obtain the partition function for the X =1,
c =—', superconformal model on the odd supertorus:

In order to obtain the full partition function for the
%=1, c =

—,
' superconformal model on the odd super-

torus, we have to consider the coupling between @ and P,
which is purely induced by the boundary conditions.
Through the SU(2) k =2 Wess-Zumino-Witten (WZW)
model and requiring supermodular invariance, this cou-
pling contribution is just the partition function for the
X =1, c =

—,
' superconformal model on odd (+,+) spin

structure of the torus as

+Z„,„= g Z Z (g/2)+Z g — g + g + g Z (g/2)
m, m'EZ m, m'Ee mEe, m'Eo mEo, m'Ee m, m'Eo

+Z3 + g + g — g Z (g/2)
m, m'Ee m Ee, m'Eo m Eo, m'Ee m, m'Eo

+Z4 g + g — g +
m, m'Ee m Ee, m'Eo m Eo, m'Ee m, m'Eo

I

Z (g /2) (27)

with

0 (0)
Z =— v=234

2 g(r)

Here e (0) denotes even (odd) integers.

IV. PARTITION FUNCTION FOR THE N = 1, c (
q

SUPERCONFORMAL MODELS ON SUPERTORUS

Using the super Coulombic partition function in (27),
one can reproduce the superminimal partition function
on the supertorus.
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3C—
2

(2&)

with g =p/2p', e =(p' —p)/2p'. The diinensions of the
operators read

Before we proceed, we notice that on the supertorus
there is no room for implementing the background
charge e because the metric d Z on the supertorus has no
poles or zeros, which are necessary for the background
charge. However, instead of the background charge, we
can introduce a Aoating charge e„on the supertorus.
Starting from a free superfield in the complex superplane
and adding a charge e at infinity to c =—', leads to

of the field S, Vz =exp(iES), satisfying

—2E j( Vz(z»0, ) V z(zz, 0z) ) —IZ1z I (32)

with Zi2=zi —z2 —0]6t2 and the dual operator VM, its
correlation functions of which can be obtained by impos-
ing a discontinuity of 2aM on the field S when one
crosses a line connecting (z„0,) to (zz, 0z):

M /2( VM(Z1 01)V—M(zz z) ~ IZizl (33)

Combining (32) and (33), one gets a more general object
VEM '

( VEM(zl & 01)V—E —M(zz& 02) &
—IZ1z I

h„,=, +(rp —sp') —(p —p') t (2 —t)
8pp' 16

with the constraints

(29) X exp[ —2iEMa(Z, z )],
(34)

1 ~r ~p' —1, 1 ~s ~p —1, t =Ir —sl mod2 .

Here t is O(1) for the Neveu-Schwarz (NS) [Ramond (R)]
sector. Unitary theories correspond to Ip

—p'I=2; the
simplest realization of this model is the tricritical Ising
model. ' According to Ref. 11, minimal superconformal
partition functions are still classified by a pair of simply
laced algebras (G, G') of Coxeter numbers p and p'. For
the 6 = A case, modular invariance requires dimensions
(29) with rp —sp' =2n, n H X (exponents of G'). This im-
plies that one should supplement the free superfield by a
set of N —1 fractional electric charges e„=n /p'.

Turning to the supertorus, a way of introducing an
electric floating charge to (27) respecting supermodular
invariance is to include an interaction term between the
shifts m and m', cos(2vre„mAm'). Here A denotes the
greatest common divisor of m and m'. As a result, we
can build the partition function for the IV=1 super-
minimal model on the supertorus with (+,+) boundary
conditions:

S.i
=C'.i+4'f.i

where

(3&)

01(co—co1)
&P,, =M Imln

01 CO COz

2' 1m' Re(co, —coz)
Tg

i6 — i5a.e„a, q„= a e„~.

where a(Z, z) is the angle of the Z, z vector with arbitrary
direction. Then VEM has a dimension x and spin s given
by (25).

On the supertorus, to take into account the discon-
tinuity of 2nMon a c.ut relating (co„P,) to (~z, Pz) we in-
troduce the classical field S,&

which satisfies the follow-
ing: (i) doubly periodic, S,~(co+ 1)=S„(co),
S,~(co+r) =S,~(co); (ii) singular at (co„P,) and (coz, Pz) and
(iii) satisfies the classical equation in (20), at
(co, P)W(co&, P& ), (coz, Pz). One candidate is given by

Z=

r, s =0, 1 m =r[2]
m'=s t'2]

nX g cos 2m, mAm'
nEN p

(g)
m, m'6Z

+ g Xz(r, s) g Z (g)

(3O)

Although g, ~ (itr„) is not periodic in the r direction, these
terms do not contribute the final expression of correlation
functions. The reason comes from the fact that itr„(it„)

is dependent on odd Teichmiiller parameter 6 (6). Since
the final expression of the correlation functions takes

Ized(~)I Z, m'~ VEM V z M~m, m—' &—
66

m, m'

with g =p /2p'. Here, for p =p' —2, we have
g =(p' —2)/2p', c =—,'—l2/p'(p' —2). For a tricritical
branch (p =p'+2), we have g =(p'+2)/2p', c =

—,
' —12/

p'(p'+2).

(g-)dependent terms cannot contribute to the
correlation functions. In other words, we are unable to
accommodate the fermionic propagators with this solu-
tion.

Another one is given by

V. CORRELATION FUNCTIONS
ON THE ODD SUPERTORUS S,]=M Imln

Let us start with the theory of a Gaussian free
superfield on a complex superplane:

2&
1m[co+ —,'(P, +Pz)P]Reer, z+I

J d ZDsSDsS .
2& esp

(31) R [0(W 0)+0 0 ]—(36)

In this theory, the basic operators are the vertex operator wltll co1z = co1 coz
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This is doubly periodic and singular at (~„P,)
(c02, $2). Note that (36) satisfies D&D&S,)

=0 instead of
(20). In the strict sense, S,) should satisfy (20). However,
considering the fact that the zero-mode-dependent term
(5- or 5-dependent term) does not contribute to the corre-
lation function, this case is not un-natural. The desired
discontinuities around (co, p) =(co„p)) and (co2, $2) appear
as

takes the form

«EM(~l 41)V E —M—(~2 42) ~

8', (Ol r) M 8 ', (Ol r) '"EM

8(

2X exp — (5EM co)2+ 5EM m(2)
+I

(43)

+E ( $(co„g, ) $(co 2, (t2))

—g f d2~f d2yD&S„D,-S,) (38)

where (S(co„p,)$(co2, $2)) is the propagator of super-
field S on the superspace version of the (+,+) torus,
which satisfies

f(„~ )(D~S,)dcodp+D~S, )dcodp) =2~M,
(37)

f( ~ )(D~S,)de dct1+D~S,)dead/) = 2rrM—.

Then, writing S~S,1+S, the calculation of the function-
al integral leads to, as in (21),

( VEM(~1 01)V E —M(~—2 42) ~

~ exp iE[$,1(co),p) ) —S, )( c02, $ 2)]

with

1 v'2 V'g
5EM E+ M ~ hEM 5EM2 g 2

1 &2 &g
5EM

———— E + M, h EM 5EM——
2 g

This is not the product of an analytic function by an anti-
analytic one due to zero modes. For MAO, it is not dou-
bly periodic, since shifting co12 by 1, ~, or 1+~ is
equivalent to adding a new frustration line wrapping
around the superspace version of the torus. Further, con-
sidering the corresponding contribution from a soliton
sector ( m, m '), we get

( VEM(~1 (t'1) V—E —M(~2 02) &

D& D& ($(~„ct),)$(~„P,) )

5 (co, —co2)— (39)

X exp m&2g
m' —mw

~EM ~127"

The explicit form of this propagator is given by

2($(co„g,)$(co„g,) ) = ——ln
g 8I(0lr)

+ m' —m7-~
EM~12

+I
(44)

The correlation function for a free superfield is given by

( VEM(~1&0) ) V E —M(~2&02) —~

Xexp —m'
IQ1 c012

2

(40)

m, m'GZ
mm'

X ( V (co„P,)

If one expands 8„8„c0,2, and c0,2 in terms of $„1t and
1 2

, then one can easily find (N4&), (Pg), and (Pg),
which are all orthogonal to the zero modes.

In order to calculate the classical action, we should in-
troduce the other field such as S,1..

X V E M(~2 ct'2))~ ~. .

(45)

Finally, let us transform the (co, P) coordinates into
(z, 8) coordinates. The relation between co)2 and Z, 2 is
given by

S,1
=M ln

8)(~ ~2 pet)2l r)——

2&
Redo Rec012

since this leads to

(41)

~12' Z12
(Imz, )(8, +82)5 i9,61+

27 I

i 0251+
27 I

( Imz2 )( 8, +82)5+ (46)

D~D~S„)= —- [5 (co —co))5 ($—P))

instead of D&D&$„=0. Considering these together, (38)

Considering the presence of the 55 term in (45), we can
substitute r into T,2

——r+(8)+82)5 in the odd sector.
After a calculation, we arrive at the correlation function
of the X =1, c =

—,
' superconformal model on the odd spin

structure of the supertorus:
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& VEM(zl 81)V E——M(z2 82) ~

66

Z,' —3/2 (ImT, 2)'" m, m'EZ
exp rr—

/m' —mT12/'

Im T12

81(0~ T12) ' 81(0~ T12)

81(Z12 l T,2 ) 8,(Z12 I T,2 )

Z 2X exp —
I T (5EMZ12+5EMZ» )
m

m IT12

mT ™126 Z
m —m T12

6EMZ12
Im T12 12

(47)

with

Z'
e, mEZ

+ g %2(rs) g Z (g),
r, s =0, 1 m =r[2]

m'=s [2]
27Tl T)2 (48)

Here 8,(Z,2~T,2) is the supertheta function, which is
defined in the Appendix. Using the properties of the su-
pertheta function, we can check that

Z',
& V,M V, M ),(Z»+1)

=Z' Mexp[2imE(m —M)]

X&V V ) (Z, ), (49)

Zm ~ & VEM V E M ) m(Z»+ T,2)

=Z' +M exp[2i m E (m ' —M) j

X & VEM V E M ) +M .(Z12). (50)

Hence, the correlation function of (47) is doubly periodic
only for E,M =integers. Also this correlation function is
supermodular invariant.

VI. SUMMARY

We derived the partition function for the N =1, c =
—,
'

superconformal model on the odd (+,+) spin structure
of the supertorus. The partition function of this model
on the even spin structures is essentially equivalent to the
partition function on the even spin structures of the ordi-
nary torus. Also, introducing the Aoating charge instead
of the background charge, we have built the par-
tition function for the %=1 superminimal model on
the odd supertorus. Further, using the supersymmetric
Coulomb-gas representation, we have constructed the
correlation function (two-point function) on the odd su-
pertorus. Although we can derive the multipoint correla-
tors without any further difficulty on the odd torus, the
multipoint correlators on the odd supertorus may not ap-
pear as a straightforward extension of the two-point
correlator because of the presence of the nontrivial
boundary conditions (3) and the complicated zero modes
on the odd supertorus.

Finally we note that the supertheta functions play an

important role in constructing the correlation function
on the odd spin structure of the supertorus.
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APPENDIX: THE SUPERTHETA FUNCTIONS

The following definition of the supertheta function de-
pends critically on the fact that the numbers of bosonic
moduli and ferrnionic supermoduli on the %=1 super-
torus with the odd spin structure are equal. Thus the
combination of T=w+06 can be formed, and this will
not generalize to higher-genus super Riemann surfaces
because for genus-g super Teichmuller spaces there exist
(6g —6) even and (4g —4) odd moduli parameters. Un-
der the supermodular transformations, the coordinates
transform as

z'= z
C7+d

c06z, 8
(cr+d) (cr+d)'~

6
(cr+d)

(A 1)

where (z, 8) H CSP and

a b
ESL(2,Z) .

Using this fact and (11), we can also obtain the following
supermodular transformations:

Z12 &T12 +b
Z12 7 T12cT12+d cT12+d

(A2)

E =(Dg8')E +(Da8')E',
E' =(D 8') E' E' =(D 8')E'- (A3)

and

Under the supermodular transformations, the frame fields
and their dual fields transform like

E =(Ds8')E +(Ds8')E',
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EiI =(Dse') Es+(Diie') '[Ds(Dse') ']E+,
Es =(Dse') Es+(Dse ') '[Ds(Dse ') ']E

E'+ =(Dse') 'E+, E' =(Doe') 'E

(A4)
TO' 0

1

T12
E

1/2
T12

9't(0~ T,~ ),

Also the supertheta constants transform as

with D&e'=(cT+d)', D&e'=(cT+d)'~, T=~+295,
and T=F—286.

Let us define the supertheta functions as
S:8I(0~ T,&+1)=exp OI(0~ T, z ) .

4

(A8)

X Z +-E'

12 (A5)

2
E8, (Z ~z~ T& z)=gexP. mi T,z n+ — +2 n +-

n

Here a tilde (prime) means the supermodular transforma-
tions (differentiation with respect to Z, ~).

The nontrivial example, which is expressed by this su-
pertheta function, is the two-point function of a scalar
superfield on the (+,+) supertorus:

with
ImZ12(s(z„e,)s(z, e )) =

2 Im
1 9,(z)~ l T,~)

2

ln
4m' ei(0~ Ti )

E8, (z,~+

E8, (z,~+

E'

l T,p) =( —1)"8 (ZfQ l T)p),

E'

(Zjpl Ttp),

Exe, (z, ~ T,z) .

(A6)

which satisfies the following equation:

4Ds D& (S(z„e,)s(zz, ez))

=5 (z, —z~)5 (8,—8~)

ImZ12
(8, —8~)— 6

Im T12 Im T12

(A9)

Under the supermodular transformations in (A2),
8, —:9[', ] the supertheta function leads to

ImZ12
X (9,—8~) — -5 . (A10)

Im T12

1

T12
E

' 1/2
12 Z122

exp 'JTE

12

(S(z„e,)s(zz, e~)) is also doubly periodic under
Z» ~Z, 2+ 1 and Z, 2+ T,2, and is supermodular invari-
ant. Furthermore, (A10) satisfies

X et(Z/Q I T12 )

S:e)(Z)~IT&&+1)=exp 9&(Z]/IT)~) .
4

(A7)

d Z D D& S z101 S z202 =0 . A11

This means that two-point function (S(z„e,)S(zz, ez))
is orthogonal to zero modes.
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