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We present an alternative proof of Zamolodchikov’s c-theorem using finite-size field-theory

methods.

We find that although the existence of a ¢ function which decreases along

renormalization-group flows and coincides with the conformal anomaly at the fixed points is in-
dependent of the renormalization scheme, the relationship between the ¢ function and the beta func-
tion is scheme dependent. We discuss some of the consequences of our proof.

Zamolodchikov’s c-theorem' has rapidly become an
important tool in the study of two-dimensional field
theories. It has been applied to statistical-mechanical
models,? to the study of the topology of the space of all
conformal field theories,> and to the generation of the
effective action of the bosonic string theory.* For this
reason we should try to understand this theorem from as
many points of view as possible. In this paper we provide
an alternative to Zamolodchikov’s original proof which
uses only basic concepts of the renormalization group
and finite-temperature or finite-size field theory. A Wil-
sonian approach using an infinite-dimensional space of
coupling constants is certainly mathematically appealing,
but for computational purposes of great relevance, for ex-
ample, to statistical mechanics, one is usually restricted
to considering only a finite number of operators and a
controlled perturbative approach, since more sophisticat-
ed tools are unavailable at present.

Our reasons for presenting this proof are twofold.
Firstly, as mentioned above, we hope this proof will lead
to new insights about the c-theorem. Secondly, we would
like to address some subtle but important questions in the
original proof. For example, the fact that the stress ten-
sor requires a subtraction is completely glossed over in
Ref. 1 (although Polchinski® has noticed this and filled in
the gap in the proof). Furthermore, one of the main in-
gredients in the construction of the c¢ function is the ex-
pression

o=po0, , (1)

where O is the trace of the energy-momentum tensor, O;
are operators with couplings g;, and B’ are the corre-
sponding beta functions. As far as we know this expres-
sion is usually proven in a particular renormalization
scheme, usually dimensional regularization with minimal
subtraction. This then brings up the question of whether
the relation between the ¢ function and the beta functions
is renormalization-scheme independent. In particular, ©
must always be subtracted and this procedure depends on
the renormalization scheme used. This then raises ques-
tions about the original proof since Zamolodchikov
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makes critical use of the fact that the two-point correla-
tion function of © is positive definite. If © requires sub-
tractions, there is, in principle, no guarantee of this posi-
tivity. The formal proof makes no mention of these
subtleties.

Let us first recall the statement of the c-theorem. If the
space of all two-dimensional (2D) renormalizable and
unitary quantum field theories is represented by the space
(infinite dimensional) of all coupling constants g; of these
theories,® then the theorem claims the existence of a func-
tion c(g;) such that (1) ¢(g;) is non-negative and nonin-
creasing on infrared renormalization-group flows, (2) the
stationary points of c(g;) correspond to critical fixed
points of the field theory, and (3) at these fixed points,
c(g) corresponds to the central charge of the Virasoro
algebra (the conformal anomaly).

Before we proceed with our proof we must set down
some preliminary results. For simplicity we consider a
theory with only one bare coupling gz and an action of
the form

S=S,+gp [d* O(r). 2)

The action S describes a critical theory and the operator
O(r) is a scalar scaling operator with dimension X in the
theory described by S,. The operator O will be relevant
for 2—X >0, irrelevant for 2—X <0, and marginal for
X=2. We are ultimately interested in the relevant case
since in this case, there exists the possibility of an IR
stable fixed point at g=g* at which the long-distance
properties of the theory will be described by a conformal-
ly invariant theory given by S(g*) and a new value of the
conformal anomaly c(g*).

In our proof we essentially follow the approach advo-
cated by Ludwig and Cardy.” The main point is that con-
formal invariance predicts that the finite-size (or finite-
temperature) corrections to the free energy density in a
conformally invariant theory are given by®

_ 7c
HL)=F, =5 . 3)
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In the above expression, L is the width of the semi-
infinite strip (or inverse temperature), and ¥, is the bulk
free energy (calculated in the L — < limit). The constant
¢ is the conformal anomaly. This expression is valid in
the critical (fixed-point) theory in flat space. The crucial
observation is that the free energy density, like the stress
tensor, does not acquire an anomalous dimension under
renormalization and scales with scaling dimension X =2.
This fact allows us to write the finite-size corrections to
the free energy density in a form similar to that in Eq. (3),
even away from the critical point:

’ITC(gB,L,Q)

rEa @

H(gp, L)=Fy(gp,a)—

where the function c(gy,L,a) is a dimensionless function
of its arguments and a is an ultraviolet cutoff introduced
to regularize the theory.

Now, all the required subtractions can be absorbed in
the bulk contribution F, in Eq. (4) since the short-
distance singularities are insensitive to finite-size (-tem-
perature) effects and are subtracted at L =c (T =0).
The free energy density #(gg,L ) may be written as

L
- g [dwo]) |
0

f7(gB,L )=— v
(5)

InZ,— LV1n<exp

where V is the strip volume, Z is the partition function
for the action S, and the angular brackets denote an ex-
pectation value taken in the finite-size S, theory. From
Eq. (5) we may read off the expressions

dc(gp,L,a) 6L> ) L
= o ,
52, -7 <fd w (w)>

s (6)
d%(gp,L,a)
9g;
2 L
=§L—I7<fd2w1fd2w20(wl)0(w2)> ,
o gp,conn
with (- -- )83 being the expectation value in the full

theory with action S(gp). Note that c(gg,L,a) does not
require any IR cutoffs because the correlation functions
fall off exponentially at large distances. If there is a non-
trivial fixed point at g =g*, then at this point the opera-
tor O scales with anomalous dimension X +y(g*) [where
v(g=0)=0]. At the fixed points the theory is scale in-
variant, so we expect that operators with nonzero scaling
dimensions will have vanishing ground-state expectation
values. However, care must be taken in making this
claim. The operator O may require normal ordering
(subtractions) as well as multiplicative renormalizations.
However, we will now argue that the required subtrac-
tions are done in the bulk geometry (L = o0, T'=0) and
are taken care of by ¥, in Eq. (4). Computing {O(r)) in
the plane with an UV cutoff @ and an IR cutoff u ™'
yields, to lowest order,

8B AX—1)_
X(u a

2A1-X))
2—2

(O(r))=
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We may also calculate this on the strip, using Eq. (6) and
a result from Ref. 7. We find

dc

=(0(r))
9gp 5
) 2X—1)
o
:gB T Iz(X,a) N

where I,(X,a) is defined by’

2(1—-X)

Zma +1,(X,0) .

L

_m
1—-X

I,(X,a)=—

We see that the a-dependent piece is L independent and
cancels against the a-dependent piece computed on the
plane. This argument is in fact quite general. The UV
singularities at finite temperature or finite size are the
same as at zero temperature or infinite size and they are
canceled by the zero-temperature counterterms to all or-
ders. This is a well-known result from work on finite-
temperature field theory.

Now at the fixed points g =0, g*, O scales with definite
conformal weight and is covariant under conformal
transformations. Having been subtracted in the plane, its
expectation value on the strip must vanish at these
points. This implies that

% _,
og
at the fixed points. We are now ready to begin our proof
of the c-theorem.

Define the renormalized dimensionless coupling con-
stant Az by

@)

gp=Aru Z[Ag,pal,
Z[Ag,pal=1+z (ua)Ag+ -+ ,

(8)

where p is a renormalization scale (with the units of
mass) and e=X —2. Note that there is no L dependence
in this equation since the renormalization constants and
counterterms are those of the L = o theory.

The fact that the free energy density does not pick up
an anomalous dimension, and that c(gp,L,a) needs no
subtractions implies

c(gg,L,a)=c(Ag,Lpu), 9

where c¢(Ag,Lu) is finite when all cutoffs are removed
keeping Ay fixed. The u and L dependence must be as
shown since ¢ is a dimensionless object, as is Ay. From
the above equation we may deduce the renormalization-
group (RG) equation

p%w(x,()a)m (g, Lp)=0 (10)
with
3
BAg)=u— Ar .
R /‘La‘u gpa R

Writing Lu /27 as e, the above RG equation becomes
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9
FY

‘%HMR) c(hg,e")=0 . (11

This equation can be solved as usual to yield ¢ =c(A(¢)),
where the running coupling constant A(?) is defined via

oAM) _
ot B(A(2)) (12)

with the boundary conditions A(t=0)=Ag. Our next
task is to calculate the derivative dc(Agz,Lu)/dAg, in
terms of the beta function. The first step in doing this is
to note the following result of Ludwig and Cardy:’

D /2)F(1—D) xom

r'’(1—D /2)I(D)

d%c

2
ag fixed pts

2m

_ 2
24 I

(13)

where at g=0, D=X whileat g=g*, D=X+y(g*). At
these fixed points the coupling has dimension D —2.
Now, at the trivial fixed point g =0 the product of gam-
ma functions in Eq. (13) can be written as

2 —
F2(X/2)1"(1 X) ~£ 10+, (14)
rX(1—-x/2)rx) 4

where we have taken e=X —2 to be much less than one
in absolute value. The reason for this expansion in € is
that this is the only way to study the nonrenormalizable
(2 < X) and superrenormalizable (X <2) regimes in a con-
trolled manner. In particular, any perturbative approach
will face severe ultraviolet divergences in the irrelevant
case and infrared ones in the relevant case so that the
perturbation expansion must be controlled in some
manner. We choose to do this via an expansion in e.
This is completely analogous to the € expansion in the
theory of critical phenomena® and is the usual way in
which one enters the nonrenormalizable and superrenor-
malizable regimes with a finite number of couplings to all
orders. Note that the expression in Eq. (17) has a pole at
X=1. This pole occurs if the operator O is highly
relevant; this case is outside the regime we are equipped
to explore via perturbation theory. Let us now write
¢ =cy+¢C where ¢y is the conformal anomaly of the S,
theory. Then ¢(g=0)=0 and we can expand T in a
power series in the renormalized, dimensionless coupling
Ag:

Ay A A
—Re+—Rc1(e)+TRc2(e)+--- ,

C(Ag)=cqy(€) ) 3

(15)
where c((€) is a constant given by
cole)=24m’[L+0(e)+ -+ - ]. (16)

Note that since cy(€) is finite as is c(Ag,Lu), the
coefficients ¢,c, are finite functions of € (i.e., they have
no poles at e=0). We have written € in this way so as to
be able to compare dc /0Ag =03 /A with the beta func-
tion. We may write

dc(Ag)

=co(€)[Age+Ar]ie (€)+Ake,(e)+ -] 17
g

and we know that this must vanish at the fixed point A%.
On the other hand, we can compute the beta function
in any renormalization scheme to find

Br=Age+Bi(eIA: +By(e)A3 + - -+ . (18)

The coefficients c¢,,, in Egs. (15) and (18) may be ex-
panded in a power series in €:

=2 Cpm€"s By= 3 Bynm€" . (19)
m=0 m=0

For example, in minimal subtraction, the f3,’s have no €
dependence so that B,=pf,o In particular the only
universal coefficient is given by

Bio=md , (20)

where d is the coefficient of O in the operator product of
O with itself. Thus the result in Eq. (20) is completely
determined by conformal invariance. In the case of the
¢,’s, they have contributions from two sources: a univer-
sal one and a nonuniversal one. The universal one is
completely determined by the correlation functions of the
bare operators on the strip. The second contribution
arises from coupling-constant renormalization and is
nonuniversal. Both these contributions can generate an €
dependence for the ¢,’s which may be quite complicated
in general, despite the fact that the € dependence of the
nonuniversal piece may be quite simple in some schemes.

The fixed point of the system can be found by expand-
ing A* in a power series in €,

A= A€, @1)

n=1

inserting this into the beta function above and setting this
equal to zero order by order in €. Doing this we find the
relations

1+ 2181,0=0, AyB10FtA B, +AIB, =0, (22)

as well as higher-order ones. However, the fact that
dc /0A vanishes at the fixed points implies that the fol-
lowing equations (together with others arising from
higher orders in €) must hold:

1+A1c10=0, Ayc;o+Ac;;+Aic,=0. (23)

By comparing the above equations we see that B, ,=c,
and to second order in A and €, Oc /67»———677'2[3’;‘. This
equality, however, is a feature of the universal terms in
the expansions of ¢ and f8 to second order, and does not
hold to higher order. Regardless, we can write the fol-
lowing relation between the beta function and dc¢ /9A:

g—;-——co(e)b’kF(M . (24)
The function F(A) can be obtained as a power series in A,
€, and is analytic in € between the two fixed points under
consideration. This follows since both 3, and dc /dA are
both analytic. We can determine the first few terms in
the power-series expansion of F(A):
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F(M)=1+ A(e)A+B(e)A’+ - - -,
A(e)=(cy =B, )+0e)+ -, 25)
B(e)=(cy; =By ) +0(e)+ -+,

where the ellipses in the expressions for A(€) and B(€)
represent higher-order terms in e. The important thing
to note is that the function F(A) is positive definite within
the € expansion between the two fixed points. F(A) has
no zeros between the fixed points since it is analytic in €
and f3, coincides with dc /3A to second order in € (up to
an overall factor). Another way to say this is that if we
try to set F(A) equal to zero within the € expansion, we
would have to try to balance a term of order one with one
of order € or smaller. This clearly cannot work. The fact
that F(A) is positive definite essentially yields the c-
theorem as stated in the beginning of this paper. If we in-
sert Eq. (24) into Eq. (12) we arrive at

& = —Bleg(F (L] . (26)
The term in square brackets is positive definite since the
order-one term in the € expansion of c,(€) is positive due
to the unitarity of the S, theory. In fact, unitarity deter-
mines the sign of the two-point correlation function from
which c(€) is determined.

Thus, we see that our ¢ function satisfies the conditions
of the c-theorem stated above.

In Zamolodchikov’s original work, it was suggested
that the ¢ function could be evaluated by using the fol-
lowing relation between the gradient of the c¢ function
and the beta function:

dc _
an =(const)B(A) . (27)

Our aim is to show that a relation of this sort is only val-
id in one renormalization scheme. To do this we will
make use of the fact that the ¢ function transforms as a
scalar under coupling-constant redefinitions, and that the
beta functions are the components of a vector field
defined over coupling constant space (again for simplicity

we consider only the one coupling case). Under a
reparametrization A—g(A) we have
d dc(g)
cM)=clgN), Bygs = gm—%. (28)

We can use this freedom in the choice of parametrization
to eliminate the function F(A) from Eq. (24). Further-
more, because F(A) is analytic in € and has no zeros be-
tween the fixed points, we can find a reparametrization
that is analytic in € to do the job:

gM)=A1+g A+g,A%+ --+),

2 (29)
og(A)
—== | =F(A).
I F(A)
If we make this reparametrization we have
9
-%-(gi’~=co<e>/3g . (30)

This coupling-constant redefinition is equivalent to the
choice of a renormalization scheme, so that the function
F(A) can be eliminated only in one scheme. Thus the beta
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function must be computed in the scheme in which the
coefficients B, are the same as the ¢, in Eq. (15).

The next question that arises is can we find a function
G(A) that satisfies the results of the c-theorem and also
satisfies Eq. (27) in any scheme? We now show that the
answer to this is a resounding no. For suppose that such
a function G(A) did exist. If we set A(A)=G(A)—c(A)
then we require that, in any scheme,

dc oh

EYS CO(G)BL EYN . (31
From Egs. (24) and (25) we see that this equation can be
integrated from A=0 to A=A*. Comparing the result
with the fixed-point conditions of Eq. (22) we can easily
convince ourselves that to all orders in a double expan-
sion in A and € that A(A*) vanishes only if 3,(e)=c,(€),
i.e., only in the renormalization scheme in which Eq. (30)
holds. Thus, no such function G(A) exists. This fact is of
great importance since it means that if the beta function
is used to calculate the ¢ function, we must be sure to be
using the correct renormalization prescription.

In summary, we have offered an alternative proof of
the c-theorem within the framework of a double expan-
sion in the couplings and €. Although our proof was
within the framework of perturbation theory, it is valid
to all orders in both A and €. Admittedly, at large orders
of perturbation theory, convergence problems in the € ex-
pansion may arise (involving Borel summability and/or
renormalons). If this occurs a nonperturbative analysis
of the underlying model must be carried out, a fact that
will cast doubt on any perturbative approach to under-
standing the theory. We have explicitly shown that some
of the relations involving the ¢ function and the beta
functions are renormalization-scheme dependent and
have given a way to find this scheme. We are in the pro-
cess of extending this work and applying it to a variety of
systems such as the Coulomb gas'® and perturbations
with vertex operators. These will appear in a later
work.!! Finally, we say some words on the case where
many couplings are involved. Whereas it might seem
that our result is rather restricted since only one coupling
constant was considered, the many coupling case can be
obtained from our work by noticing the following fact. If
we have a system with n couplings and two nearby fixed
points, the beta functions of the theory will determine a
particular trajectory in coupling-constant space (a one-
dimensional submanifold) along which n —1 of the cou-
plings can be parametrized in terms of only one linear
combination of the n original couplings. This restricts
the theory along this fixed path to depend on only one
coupling and thus we are back at the case treated in this
paper. An explicit realization of this scenario will be
found in our treatment of the Coulomb gas in Ref. 11.
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