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We show that theories with the Green-Schwarz mechanism of canceling local anomalies in even
dimensions have the possibility of the worst type of global Yang-Mills chiral anomalies given by the
homotopy group of the Yang-Mills gauge group. The examples are given for SU(3) gauge theories
in six dimensions [116(SU(3)) =Z3&] whose global anomalies are of types Z~, Zz, Z3, and Z6.

One of the miracles of superstring theories is a fantas-
tic cancellation of chiral local anomalies in both gravita-
tional and Yang-Mills gauge sectors, using the Green-
Schwarz mechanism. %ithout the Green-Schwarz mech-
anism, we would not have interesting consistent theories
in ten dimensions. Later the connection between hetero-
tic string structures and the Green-Schwarz mechanism
was clarified Once the modular invariance is imposed,
heterotic string theories in any dimensions will have the
Green-Schwarz structure of canceling local anomalies.
Furthermore, once local anomalies are canceled by the
Green-Schwarz mechanism in high dimensions, that
theory remains locally anomaly-free iri lower dimen-
sions. However, we have so far found no connections
between string structures and global anomalies, except
that usually the Yang-Mills group in string theories hap-
pens to have vanishing homotopy groups and thereby no
global anomalies to worry about for the Yang-Mills sec-
tor. On the contrary, as Witten pointed out, the absence
of gravitational global anomalies puts severe constraints
on the possible compactification of strings. That is, the
use of strings does not lead to the absence of global
anomalies. Then, we wonder whether or not' the global
Yang-Mills anomalies put severe constraints in higher di-
mensions. (In four dimensions, the global Yang-Mills
anomalies do not put strong constraints, because the pos-
sible global anomaly is only Zz [for SU(2), Sp(N) with any
N, SO(N), Spin(N) with N =3,5], ZzeZ~ [for SO(4) and
Spin(4)], and no global anomalies for other groups and
thus just doubling fermion multiplets always cancels the
global anomaly). Furthermore, seeing that even in string
theories many possibilities exist, we should not limit our-
selves to just strings. Although the search for alterna-
tives seems very difFicult, they must be anomaly-free in a
local and global sense. Looking for clues, many people
have searched for local-anomaly-free configurations in
bo'th gravitational and Yang-Mills sectors in higher di-
mensions, since critical dimensions for alternatives again
may not be in four dimensions. The use of the Green-
Schwarz mechanism greatly helped them to find solu-
tions. However, in this paper we show that global Yang-
Mills anomalies are morse mith the Green-Schmarz mecha-
nism than with the complete cancellation of local
anomalies. Thus, as in the case of global gravitational

anomalies, the absence of global Yang-Mills anomalies
will put severe constraints for model construction with
Yang-Mills gauge groups with nonvanishing homotopy
groups in higher dimensions.

A number of papers have discussed the chiral global
Yang-Mills (YM) gauge anomalies when the local YM
gauge anomaly is comp/etely canceled, i.e.,

TrX"+' =0

in (D =2n)-dimensional space-time where the gauge
group in H and XH& (Lie algebra of H). In particular,
we have proved that the global anomaly is at most of type
Zz when Eq. (1) is satisfied. There are many cases where
the global anomalies do not exist, even though
Ilz„(H)WO (Ref. 3—9). In this paper, we discuss the glo-
bal anomalies for theories with the Green-Schwarz mech-
anism of canceling the local gauge anomaly, ' which do
not satisfy Eq. (1) but the weaker factorization condition
explained below. Although the general formula for glo-
bal chiral anomalies exists, including both the Yang-Mills
and the gravitational ones, it is expressed in terms of
topological indices, which are unfortunately hard to esti-
mate, except for simple cases. " Here, we develop a sim-
ple formula which is expressed in terms of a purely topo-
logical number and a purely group-theoretical
quantity —a Dynkin index. Thus, it is easy to estimate
the global anomalies. Using this formula, we show that
the global anomalies with the Green-Schwarz mechanism
can be worse than Z2. The catch is that this formula can
be applied only to the global chiral YM gauge anomalies,
but not the gravitational ones. Because of this catch, we
disregard the dependence on the gravitational curvature
two-forms hereafter in this paper. This is the gerieraliza-
tion of the formula we have for theories with complete
cancellation of local anomalies. Note that superstring
theories in D =10 do not have global gauge anomalies,
since II,O(Es)=II&o(SO(32))=0. However, there may ex-
ist yet unknown theories which use different Yang-Mills
gauge groups, whose local anomalies are canceled by the
Green-Schwarz mechanism' or its generalization. '

Note that there are many local anomaly-free solutions
with the Green-Schwarz mechanism' ' or its generaliza-
tion. ' Note also that the modular invariance of hetero-
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tic string theories requires the Green-Schwarz mecha-
nism. ' We note here that a similar approach must have
been taken by Harvey, ' although his results are not
known to us.

The (generalized) Green-Schwarz mechanism of can-
celing the local anomalies proceeds as follows. ' ' For
the group H, we demand that the anomaly form factor-
ize, which is the 2n +2 form made of traces of curvatures
R and F in dimension 2n:

I2n + 2
—X2l X2n +2 21

where X2 is an invariant polynomial of 2m-form, made
of curvature two-forms F and R. Then, the anomaly for
this theory, ~z„, becomes

1
~SO ~21 —2X2n +2 —21

As explained in Ref. 12, this is not equivalent to the so-
called Bose-symmetrized one given by Green and
Schwarz. ' However, the difference between them is
given by exact forms and/or gauge variations of some
forms. Thus, the ambiguities of defining anomalies al-
lows us to choose this form. Note that both satisfy the
Wess-Zumino consistency condition. We add the coun-
terterm of the following, using the antisymmetric tensor
B2l-2

AS =82l 2X2n+2

with the transformation property
1~B21 —2 ~2l —2

Then the local anomaly is completely canceled. This
means that our new action, which does not have local
anomalies, is of the form

S=S0+AS .

Now, we would like to calculate the global gauge
anomalies with the additional term b,S. (We postpone
the argument on the representation dependence until the
last moment. ) In order to do so, we embed the gauge
group H into a larger group 6, whose homotopy group
does vanish in D =2n (i.e., no global gauge anomalies for
G). However, since the group is now G, the Green-

Schwarz mechanism does not work for G and thus the lo-
cal anomalies exist for G. Then, we can calculate the
anomalies for a finite gauge transformation by integrating
the local anomalies of 6 caused by infinitesimal gauge
transformations. Thus, the local anomaly form for 6 is
of the form

A=g Ag+g d g,
v=g dg

A. and V denote forms purely in x. Now, the anomaly
for a finite gauge transformation g is given by'

f j,&2„(A,V, u) =J, „,02„(A,9', v), (10)

where we integrated the gauge transformation from 1 to g
(i.e., t =0 to t = 1). Note that, in general, '

Op +i( A F )=02 +i(A +u 2)

=02„+,(A, 7)+02„(A,V, u)+

However, we have only one parameter extension of g(x)
to g(x, t) and thus in the present case we have

A2„+,(As, F~)=02„(A,V, v) .

Thus, the anomaly is given by

n02„+, AgFg .

By adding vanishing terms, we have

6S =5S0+5B2l 2X2n +
1 1

~2n ~2l —2~ 2n +2 —2l = ~ ~2n

since 6X2n+2 2l =0. We calculate the anomaly for this
particular Qz„. For a finite gauge transformation g(x),
we can find its extension g(x, t) such that g(x, 0)= 1 and
g(x, 1)=g(x), because II2„(G)=0. Then, the g gauge-
transformed A and F are given by

A g=g ' Ag+g 'd g+g 'd, g =A +v,
F~=dA~+(As) =g 'Fg =9,

where

2n +1 & 2n +1 & ~21 —1 A
& ~2l —1 A&F X2n +2 —2l

V2n+1 g~ A, F —
y2l 1 g~ A, F X2n+2 —2l F (12)

l
y2 +i(g, A, F)=

2&
m!

Tr( ——id- )2m + i

(2m + I)!

+da(g, A, F), (14)

where we have defined, for an arbitrary m,

y2 +i(g, A, F)=co& +,(Ag, Fs) co& +,(A, F) . —

Note that this form y2 +, can always be written as'

where the exterior derivative acts on the disk D "+'.
That is, the dependence on the field A and F is contained
only in the exact form e. The asterisk denotes the nor-
malization factor.

In order to calculate the global anomaly caused by a
nontrivial gauge transformation h of H [i.e., h is a non-
trivial element of II2„(H)], we limit our g for those which
reduce to the nontrivial gauge transformation h of H at
the boundary of the disk, S ". Then the anomaly calcu-
lated above corresponds to the global anomaly caused by
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II of H. Since g is now a map, (D " ', S ")~(G,H), the
extension g is now classified by the relative homotopy
group II2„+1 (G,H). Using the homotopy diagram,

(D2n+I g2n) (G,H)
(15)

f(5'"+', + ) ~ (G/H, + )

we can find an element f, which is a map S "+'~6/H,
corresponding to g. Then, the integration over the disk
for g is reduced to the integration over the sphere for f
(Ref. 8):

I = p2 +& 3 F

since dy21, =0 and the sphere has no boundary. There-
fore, we obtain the general formula for the global anoma-
ly.

Proposition. The global gauge anomaly of H is given by
n

Zn+ I~2~+
n!

(2n +1)!

f Tr(f 1df )2n +1 (18)

where f is the element of 112„+1(G/H). The group 6
contains H as a subgroup and its homotopy group
II2„(G) vanishes. The representation of 6 must reduce to
the representation of H under consideration and possibly
sin glets.

This is the same form as for the complete cancellation
of the local anomaly. Since this integration is homotopy
invariant, the global anomaly only depends on the non-
trivial elements in II2„+,(G/H). Since it is homomor-

l 2l —1(f& A&F)X2n+2 2I(F)]—
since the integrand vanishes on the boundary S " of the
disk D "+'. Because

f 2 ~1 (f& & )2l 2 2n+2 2I

f 2„~1Id [~(f~ A~ )2l 2X2n—+2 —2l(

++(f~ A~ )2I —2dX2n +2—2l(

we can ignore the dependence on A and F in y(f, A, F).
The second term in Eq. (16) indicates that the global
anomaly depends on the field strength F. Note that the
index formula for the global anomalies also shows this
fact. " However, in the present case the local Poincare
lemma

X2„+2 2I(F) =dco2n+1 I( A) F)

holds globally for l ~ 1, because the de Rham cohomolo-
gies on the sphere are nonvanishing only at the dimension
of the sphere. Thus, it can be ignored, because then the
second term can be rewritten as

0
2„~112l —ld~2n +1—2l 2„+1 () 2l —1~2n + 1 —2l )

0 0+f 2n ~1dl 21 —1~2n+1 Zl—
(17)

phic, no global anomaly exists for a homotopy group
II2„+,(G/H) being finite.

So far we have ignored the dependence on the repre-
sentation of H. Actually, in order to obtain the global
anomaly for a representation cu of H, we must find a rep-
resentation co of G such that co reduces to ~ plus singlets
under reduction of 6 to H. Thus, the application of our
formula depends upon whether we can find such co and G.
We can always do so in the case of any representations of
H =SU(N), Sp(2N), and G2, and tensor representations
(except self-dual ones) of SO(N). Other groups we so
far have to do case by case.

Consider the case where both II2„+,(6) and
II2„+1(G/H) contain only one Z. Then Eq. (19) takes the
integral multiple of the form

. 1 GI O=2vri Q„+1(—co), (19)

co —A.2+ 4k]

where a is an integer of the map a~aP with a [P] the
generator of Z for II2„+,(6) [112„+,(6/H)] (Ref. 8).
The quantity Q„+1(co) denotes the Dynkin index (closely
related to the Casimir invariant) of 6 for the representa-
tion a."

It may be very difficult to obtain the constraint on the
Dynkin index, since we do not have TrX'+' =0 for H in
general, although the Green-Schwarz mechanism certain-
ly picks up particular representations of a group. Thus,
the analysis of the global gauge anomalies will become
case by case, contrary to the case of the complete cancel-
lation of the local anomalies where we have obtained
representation-independent results. Only for self-
contragredient representations in D =0 (mod 4), which
automatically satisfy TrX"+' =0, can we prove the fol-
lowing general results: No global anomalies exist for
real reps in D:—4 (mod 8), while for pseudoreal represen-
tations no global anomalies exist in D =—0 (mod 8).

As examples of the application of our formula Eq. (19),
we discuss SU(3) theories in D =6 where II6(SU(3)) =Z6.
We choose 6 =SU(4). Then, II6(SU(4))=0, II7(SU(4))
=Z, and II7(SU(4)/SU(3)) =Z and thus the condition for
Eq. (19) is satisfied. In addition we know a =3!=6 and
thus the largest possible global anomaly is of type Z6 (Ref.
4). However, in the case of the complete cancellation of
the local anomaly, Eq. (1), we have shown in Refs. 4, 7,
and 9 that no global anomalies exist for SU(3) in any even
dimensions. Here, we show that with the'use of the
Green-Schwarz mechanism, there may exist a Z6 global
anomaly in some cases.

First of all, we must find solutions with the Green-
Schwarz mechanism of canceling the local anomalies.
Fortunately, we found regular solutions in D =6 with
H =SU(3) in Ref. 18, which have neither the local Yang-
Mills anomalies nor the local gravitational anomalies.
The two solutions we take are (a) co=A,2+5I(, 1 and (b)
co =adjoint+ m A, I (arbitrary m), where A2 (3*) is a two-
index antisymmetric tensor representation and A. I (3) is
the basic vector representation of SU(3).

For the solution (a), we use G =SU(4) with
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where X2 is the 6 and A,
&

is the 4 of SU(4). For this choice
of co, we have

Q ' '(co) = —4+4X 1=0

since Q&
' '(A2)=4 —2 and Q4 '"'(A, &)=1 (Ref. 19).

Thus, although we use the Green-Schwarz mechanism of
canceling the local anomalies,

the global anomaly does not exist for this solution (a).
For the second solution (b), we use again G =SU(4)

with

co=adjoint —
A2

—I2A, , I+(m +1)k, ,

where I2A, , I is the two-index symmetric tensor. For this
choice, we have

Qsw4)(@) (16 3 ) (4—2') —(4+2')+(I +1
=m —18—= m (mod 6) .

Consequently, we have the global anomaly of

Z2 for m —= 3 (mod 6),
Z3 for m—:2, 4 (mod 6),
Z6 for m =—1,5 (mod 6),

while for m —=0 (mod 6) we have no global anomaly.
Thus, we can have the global anomaly of the largest kind,
Z6, for the Green-Schwarz mechanism

Tr ~ F"=— (Tr'~ F ) ~0
2 (m+6)

As can be seen from these two examples, the global
YM gauge anomalies with the Green-Schwarz mecha-
nism may yield global anomalies of the possible worst
kind, i.e., Z„where a is completely Axed by the topology
of the choice of the group G. Thus, we have to make sure
that no global anomalies exist for theories with the
Green-Schwarz mech anisrn of canceling the local
anomalies.
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