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Further study of global gauge anomalies of simple groups
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We generalize results of our previous studies for global gauge anomalies of simple Lie groups in
even-dimensional space D =2n. Assuming the absence of local anomalies, we first show that any
real (or orthogonal) representation has no global anomaly in D =—2, 4, 6 (mod 8), and that the pseudo-
real (or symplectic) one is free of global anomalies in D —=0,2, 6 (mod 8). Second, we prove that the
SU(3) group has no global anomalies in any even dimension and neither does SU(4) in D =4 (mod 8).

I. INTRODUCTION AND SUMMARY
OF MAIN RESULTS

It was noted by Witten' in 1982 that any self-consistent
gauge theory coritaining Weyl fermions must be free of
global (or nonperturbative) as well as local (or perturba-
tive) anomalies. In four-dimensional space-time, the con-
ditions for the absence of these anomalies are now well
known. Let co designate the representation content of
Weyl fermions for a compact gauge group K, and let
Q (co) be the pth Dynkin index of to. Any theory is free
of local anomaly, provided that we have Q3(to) =0.
Moreover, it then possesses no global anomaly with the
exceptions of Sp(2N) and SU(2) groups. For these
groups, the absence of the global anomaly is to have
Qz(co)=0 (mod 2) as will be shortly explained. These
facts would be useful for any phenomenological grand-
unified-theory (CrUT) model construction.

It may be of some interest to study these anomalies in
higher dimensions in view of the emergence of super-
string theories as the ultimate unified theory. It is quite
remarkable that recent superstring theories in ten dimen-
sions possess neither local nor global Yang-Mills
anomalies at all. (However, the absence of global Yang-
Mills anomalies is the result of a rather trivial fact: the
vanishing of the relevant homotopy groups. ) Because of
the topological origin of anomalies, the presence of
anomalies is more serious than the lack of renormalizabil-
ity. The breakdown of gauge invariance almost certainly
cannot be cured by a short-distance cutoK Thus,
anomalies can serve a severe constraint for any theories
dealing with long- or short-distance behavior as pointed
out by 't Hooft. After seeing that the uniqueness of
string theories has gone and many possibilities have
opened up even in string theories, one may speculate that
there may exist alternative viable theories. In order to
look for clues for such theories, many authors including
us have searched local anomaly-free configurations
(anomaly-free in both gravitation and Yang-Mills sector)
with more relaxed conditions and found many possibili-
ties. Because the absence of local anomalies does not

IIk(Spin(N)}=II&(SO(N)) (k ~2, N~ 3),

we hereafter use the notation SO(N) for both Spin(N)
and SO(N). The U(1) symmetry does not contribute to
the global anomaly, since IIk {U(1)}=0 for k ~ 2. We use
the convention of Sp(2N) with N being the rank, while
the notation of Sp(N) with N being the rank is used in
mathematics literature.

Let X be the generic element of the Lie algebra & of 0
in a generic representation ~. Hereafter, we assume the
absence of the local (or perturbative) anomaly, "

T (co)~n+1 P (1.2)

unless it is stated otherwise. Although this condition is
stronger than the Green-Schwarz ansatz, ' it may be not-
ed that Eq. (1.2) is automatically satisfied for cases of n
being even, i.e., for D =0 (mod 4) when co is self-
contragredient (either real or pseudoreal) representation.
(See Appendix A for the meaning of the adjectives self-
contragredient, real, and pseudoreal. ) Especially, if H is
any one of the following groups:

guarantee the absence of global anomalies, separate stud-
ies on global anomalies are needed.

In a series of papers, we have analyzed the global
(nonperturbative) anomaly of compact connected simple
Lie gauge group K in euen-dimensional space with

D =2n,
where the list of compact connected simple Lie groups is
as follows SO(N) (N ~ 3, N%4), Spin(N) (N ~ 3,
N&4), Sp(2N) (N~ 1), SU(N) (N~2), G2, F~, E6, E7,
and E8. There exist isomorphisms among lower-rank
groups: Spin(3) =SU(2) =Sp(2) =S, Spin(5) =Sp(4),
Spin(6) =SU(4). All the groups are simply connected ex-
cept SO(N) (N~3). The group Spin(N) doubly covers
SO(N) for N ~ 2. The groups, SO(2), Spin(2), SO(4), and
Spin(4) are not simple, i.e., Spin(2)=SO(2)=U(1)=S'
and Spin(4) =SU(2) X SU(2). Because of the isomor-
phisms for homotopy groups,
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then the local anomaly-free condition, Eq. (1.2), is au-
tomatically satisfied for any D—:0 (mod 4) dimension,
since all representations of groups listed above are known
to be self-contragredient. ' Let A (co) be the fundamental
global anomaly coefficient of the representation co of the
group H, so that any global anomaly is some integer
power of A(co). Then, utilizing the general formula of
Bismut and Freed, ' we have proved the following propo-
sition in Ref. 5.

Proposition J. (i) The global anomaly coefficient A(co)
is of the type Z2, i.e., it can assume only two values, +1
or —1, provided that the local anomaly-free condition,
Eq. (1.2), is valid. (ii) Any self-contragredient representa-
tion co of any group H has no global anomaly in D =—2
(mod 4) under the same condition, Eq. (1.2).

In the next section, we will first prove a further gen-
eralization of the statement (ii) to self-contragredient rep-
resentations in dimensions D =0 (mod 4) without assum-
ing Eq. (1.2}.

Proposition 2. (i) Let co be a real representation of H.
Then, co has neither local nor global anomaly iri D =—4
(mod 8). (ii) Let co be a pseudoreal representation of H.
Then, co has no global and local anomalies in D =0 (mod
8).

Note the representations can only be either complex or
self-contragredient. Thus, propositions 1 and 2 cover
many representations in not only the groups in Eq. (1.3),
but also SU(N), SO(4N+2), and E6. Now, possible glo-
bal anomalies for self-contragredient representations may
occur only in either D —=0 (mod 8) for real representations
D—:4 (mod 8) for pseudoreal representations. For some
groups in Eq. (1.3), we can have stronger results. A com-
plete result exists for the case of H=Sp(2N) (N is the
rank of H). In Ref. 8, we have proved the following.

(a) Any representation co of Sp(2N) has neither global
nor local anomaly in D:—0 (mod 8). Any locally
anomaly-free representation co of Sp(2N) has also no glo-
bal anomaly in D =—2 or 6 {mod 8).

(b) The fundamental global anomaly coefficient A(co)
of Sp(2N) in D—:4 (mod 8) is given by

W(~) =exp[t~gz(~)], (1.4)

where Qz(co) is the second Dynkin index of Sp(2N), nor-
malized to Qz( )=1 for 2N-dimensional basic represen-
tation

Note that Sp(2N) has both real and pseudoreal repre-
sentations. (See Appendix A. ) Thus, for real representa-
tions, the result (a) is nontrivial. The result (b) implies
that for a pseudoreal representation of Sp(2N), there may
be a global anomaly, depending upon the value of the
second-order index Qz. When we note the isomorphism,
SU(2) =Sp(2}, then the case of H=SU(2) is also covered
as a special case of this statement. In particular, the dou-
blet representation of SU(2) is pseudoreal with Qz = 1 and
thus has the global anomaly of type Zz in D =4 (mod 8).
This result includes Mitten's first example of global gauge
anomaly. '

SU(2), Sp(2N), SO(2N+1), SO(4N), Gz, F4, E7, Es,
(1.3)

. W(n+1, k+1)
Qn! (1.6)

assuming the absence of local anomalies, Eq. (1.2). Here,
W(n+1, k+1) is the James number' of the complex
Stiefel manifold SU(n+I)/SU(n —k), and Q„+,(co) is
the (n +1)th Dynkin index of SU(n +1) group where
the formal representation 6 must be chosen in such a way
that it reduces to a direct sum of ~ and singlets of
H=SU(n —k) under the restriction of SU(n +1) to H.
We note that the formula, Eq. (1.6), reduces to that given
by Elitzer and Nair' for the special case of k =0, since
then W(n + 1, 1)= 1.

The usefulness of the formula (1.6) is that the
knowledge of the homotopy group of SU(n —k) is not
needed. We have more knowledge on the James numbers
than the homotopy group itself for general n and k. [The
James number denotes a purely topological number
which gives -the information on how the generator of the
infinite order of the homotopy group of SU(n + I)I
SU(n —k) is mapped into the generator of infinite order
of the homotopy group of the sphere S "+'.] Conse-
quently, we can get a general statement on the global
anomaly for general n and A:, not just for particular
values. However, the complication is twofold. First and
foremost, the computation of the group-theoretical Dyn-
kin index Q„+,(co) is complicated. Second, the James
numbers W(n + 1,k+ 1) are not completely known for
arbitrary n and k (Refs. 19—22).

The cases of H =SO(N) (N & 7) are partially complete
with the following results.

(c) Any tensor representation co with the possible ex-
ception of self-dual cases for N=even has no global and
local anomalies in D—:4 (mod 8). The absence of global
anomalies holds in D —=2 or 6 (mod 8), provided that we
have no local anomalies.

(d) The fundamental global anomaly coefficient A(co)
of non-self-dual tensor representations co of H=SO(N)
(N & 6) in D —=0 (mod 8) is given by

3 (co) =exp[iirgz(co)],

where Qz(co) is the second Dynkin index of SO(N) with
normalization Qz(U)=1 for the N-dimensional basic (or
vector) representation CI. [See Appendix A for the notion
of self-dual tensor representation of SO(N). ]

Note that the bound on N in {d) has been lowered by
the use of the recent result. ' The cases of spinor and
self-dual tensor representations of H =SO(N) are not
covered in the statement above. However, if we use pro-
position 2, we can say something more for these cases as
we will see in Sec. II.

Next, let us consider the more difficult case of
H=SU(N), where its representation co need not be self-
contragredient. First of all, we note that SU(N) with
X n+1 has no global anomaly in D=2n, since the
homotopy group llz„(SU(N)) vanishes for this case in
view of the Bott periodicity theorem. ' Hence, we need
consider only cases of X + n, and we have shown else-
where ' that the fundamental global anomaly coefficient
A (co) for H =SU(n —k) with 0 ~ k ~ n —2 is given by

T
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Nevertheless, we could prove in our earlier paper that
H=SU(n) in D=2n has no global anomaly in D:—2
(mod 4), while H=SU(n —1) in D=2n has no global
anomaly in any even dimension, provided the absence of
local anomaly. The case of SU(2) has been solved from
Eq. (1.6) in agreement with the case of H =Sp(2N) with
N=1 discussed earlier. We have also shown elsewhere
that H=SU(3) has no global anomaly in D —=2 (mod 4).
Using the recent calculation of W(n, n —3) by Walker, '

we will show in Sec. III that SU(3) has no global anomaly
in D =—0 (mod 4). Therefore, we conclude that SU(3) has
no global anomaly at all for all even D, provided that it
has no local anomaly. Moreover, we will prove that
SU(4) has no global anomaly in D —=4 (mod 8).

For other cases of SU(N), we have failed to obtain gen-
eral results similar to the ones given above. However, by
explicitly calculating the Dynkin indices as we have done
in Ref. 5, we can conclude (but we will not discuss in this
paper) that SU(n —2) (n ~ 4) in D =2n up to D =26 does
not have global anomalies, provided the absence of local
anomaly. Then, by the use of the James number
congruence relation given in Ref. 7, we can say that
SU(n —3) (n ~ 5) in D =2n up to D =26 does not possess
global anomaly, provided the absence of local anomaly.
These results are very indicative of the general results,
but we have not been able to obtain the clues for proving
them.

In Appendix A we discuss self-contragredient, real,
and pseudoreal representations. In Appendix B we will
present some congruence relations among Dynkin in-
dices, which are needed in Sec. III.

II. SELF-CONTRAGRKDIKNT REPRESENTATIONS

First, we briefIy recapitulate here the method of com-
puting the fundamental global anomaly coefficient A(co)
of H. Unless it is stated otherwise, we always assume the
validity of the locally anomaly-free condition Eq. (1.2).
Our method is based upon a generalization of methods
originally due to Witten as well as Elitzer and Nair. '

For a given co and H, we suppose that we can find a sim-
ple and simply connected compact group G and its for-
mal representation co, satisfying the following two condi-
tions: (i) G has H as the subgroup and its homotopy
group, IIz„(G), vanishes; (ii) when we restrict G to H then
6 reduces to a direct sum of co and singlet representations
of H. We call these two conditions the representation con-
dition. As we often emphasized earlier, the formal repre-
sentation 6 of G as well as co of H for some cases may
contain negative multiplicity coefficients corresponding
to negative helicity when we decompose it in terms of ir-
reducible components. Then utilizing the exact homoto-
pic sequence

II~„+,(G)~112„+,(G/H)~I12„(H) —+II~„(G)=0, (2.1)

we have obtained the generalization of the formula
Eq. (1.6) as well as some theorems. Here, we only need
the following particular proposition.

Proposition 3. For the case when both representation
conditions and the locally anomaly-free condition Eq.

(1.2) are satisfied, the representation co of H is free of glo-
bal anomaly under one of the following two conditions:
(i) 112„+i(G) or I12„+i(G/H) is a finite group (including
the trivial case); (ii) the Lie algebra 0 of G does not pos-
sess the fundamental (n + 1)th-order Casimir invariant.

We assume in this section that co is a self-
contragredient representation of H. Then, it is either a
real (i.e., orthogonal) or pseudoreal (i.e., symplectic) rep-
resentation. The question of deciding whether a given ir-
reducible cu of H is orthogonal or symplectic has been
answered by many authors. (See Appendix A for
more information on self-contragredient representations. )
In order to apply our proposition 3, we have to find a pair
(co, G), satisfying the representation conditions. To be
definite, we assume that cu is a nontrivial representation
of H with its dimension

d=d(co) . (2.2)

A. Global anomaly for pseudoreal representation

Consider first the case of co being pseudoreal (i.e. , sym-
plectic). Since any nontrivial representation of H is faith-
ful under our assumption of H, we may identify H with
its representation under the present consideration. Then,
the group H can be regarded as a subgroup of a d-
dimensional symplectic group GO=Sp(d) in view of Eqs.
(2.2) and (A5). Note that d must be of necessity an even
integer. Moreover, let Cl be the d-dimensional basic (i.e.,
vector) representation of Sp(d). Then the choice coo=CI
clearly reduces to co itself, when we restrict Go to H.
However, in order to satisfy Ilz„(G)=0, we require in
general the following slightly generalized choice for G.
Let Xbe an arbitrary positive integer satisfying

2N M~x(ad, n) . (2.3)

Z if j=3,7 (mod 8),
(Sp(2N) ) = Z2 if j=4, 5 (mod 8)

0 if j=0, 1,2, 6 (mod 8)

(2.4)

for the stable region 4X ~j—1. Therefore, if X satisfies
Eq. (2.3), then the remaining condition IIz„(G)=0 for
the representation is automatically satisfied for D =0,2, 6
(mod 8). Moreover, if D=0 (mod 8), then we see also
11~„+,(G)=0 so that the first part of our proposition 3
implies the absence of the global anomaly for this case.
Here, we need not assume Eq. (1.2), since it is also au-
tomatically satisfied for D:—0 (mod 8). Also, the same re-
sult follows from the second part of proposition 3. When
we have D=—2 or 6 (mod 8), Eq. (2.4) tells us that
112„(G)=Z is infinite so that the same reasoning is not

Now, we identify G =Sp(2N), and choose co=CI to be
the 2N-dimensional basic (i.e. , vector) representation of
Sp(2N). If we restrict 6=Sp(2N) to GO=Sp(d) in the
canonical way, then co= reduces to a direct sum of
roo= and singlet representations of GO=Sp(d). There-
fore, reducing Go further to H, we see that S= of G
reduces to a direct sum of cu and singlets of H. Next, in
order to satisfy II2„(G)=0, we note the Bott periodicity
theorem'
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applicable. However, the cases for D =2 or 6 (mod 8) can
be derived from the second part of proposition 1.

B. Global anomaly for real representations

Next we consider the case of o~ being a real (i.e., or-
thogonal) representation of H. Then, we may regard H as
a subgroup of the orthogonal group SO(d) [or of Spin(d)
if we wish] in view of Eqs. (2.2) and (A3). In order to
satisfy the condition II&„(6)=0, let N be any integer
satisfying

N ~ Max(d, 2n+2) (2.5)

and note the Bott periodicity theorem'

Z if j=3,7 (mod 8),
II (SO(N))= Zp if j=0 1 (mod 8)

0 if j=2,4, 5, 6 (mod 8)

for the stable region X ~ j+2. Now, we choose
6 =SO(N ) with co = being the N-dimensional basic
(i.e., vector) representation of SO(N). Then, reducing
6 =SO(N ) first to Go =SO(d ) and then to its subgroup
H, we see that co reduces to a direct sum of cu and singlet
representations of H under the reduction of 6 to H. Fur-
ther for dimensions D:—2, 4, 6 (mod 8), Eq. (2.6) gives
II2„(6)=0, so that the pair (o~, G) satisfies the desired
representation conditions. Moreover, for D—=4 (mod 8),
we have II2„+,(G) =0 so that the first part of proposition
3 implies the absence of global anomaly for co. Also, this
follows from the second part of proposition 3, if we
choose N to be odd. For D=2, 6 (mod 8), we appeal to
the second half of proposition I.

(2.6)

C. Property of the Qi(co)

Using the results given in Appendix A, we first remark
the following. For the case of H=Sp(2k) in D=—4 (mod
8), Eq. (1.4) implies

A (co) =exp[in. Q2(co)]
for the global anomaly, while proposition 2 together with
the result (v) of (I) in Appendix A requires that A (co) =1
for m &+m3+m5+ . . =even. Therefore, consistency
demands that we must have Qz(co) =even when
m, +m3+m5+ =even for H=Sp(2k). In terms of
the Young tableau, the condition is equivalent to even
numbers of boxes contained in the Young tableau of the
representation under consideration. Actually, we can
prove the following more general statement.

Proposition 4. Any irreducible representation m of
SU(2N) and Sp(2N) as well as any non-self-dual tensor
representation of SO(2N) satisfies Q2(co) =even, provided
that the Young tableau corresponding to the irreducible
representation ~ contains an even number of boxes. Here
co need not be self-contragredient. We can prove this
proposition by an induction which is analogous to that
used elsewhere for a proof of congruence relation, but
we will not go into detail in this paper.

III. SU(N) CASES

co is self-contragredient, then we can utilize results of the
previous section to obtain some information on the global
anomaly coefficient A (co). However, for general non-
self-contragredient representation, we must base our cal-
culation on the formula (1.6), assuming the locally
anomaly-free condition (1.2). As we have already stated,
the complications are due to our inability of computing
the Dynkin index Q„+,(co) of the SU(n+1) group as
well as our insufficient knowledge of the James number
W(n+ 1,0+ 1) of the Stiefel manifold SU(n+ I )/
SU(n —k). The known James numbers (and other homo-
topy group results) have been tabulated in a useful form
by Lundell. Using the result for k =0 and 1 as well as
k =n —2, we have analyzed global anomaly coefficients
A(co) of groups, H=SU(n), SU(n —1), and SU(2) in
D =2n in some detail elsewhere.

A. SU(3) in D = 2 (mod 4)

Recently, Walker ' has completed his computation
of W(n + 1, n —2) for an arbitrary n. His results are

8'(n + 1,n —2)= '

denomB„
if n =odd,

(3.1)

denomB„2(denomB„2, n —2)

if n =even .

27Tl
A (o)) =exp Q„+,(co) (n =odd) .

denomB„
(3.2)

We show A(co)=1, provided that we use the local-
anomaly-free condition (1.2),

T (co)Xn+1 0 (3.3)

for any generic element X in the representation co of the
Lie algebra A2 of the Lie group H=SU(3). In order to
avoid possible confusion, we write, for example, the 1th
Dynkin index of a representation co of H explicitly as
Q, (~,H).

Now, let 6 =SU(N) for arbitrary N. Then, we can first
show the validity of

Q„+i(co, G ) —Qz(co, G ) =kdenomB„ (3.4)

for any representation Q of 6 and any integer n satisfying
1 &n &N —1 (see Appendix B). Here k is an integer.
Next, let X be a suitably chosen Cartan subalgebra ele-
ment of & such that it can assume only integer weights in
a representation co of &. Then, if n is odd, we will prove
in Appendix B that

Here, (x,y) stands for the largest common divisor of two
integers x and y, while denomB„ implies the denominator
of the nth Bernouli number B„. Since the calculation of
A(co) for n =even is rather complicated, we first sketch
brieAy our earlier calculation for the simpler case of
n =odd in Eq. (3.1). Formula (1.6) together with Eq. (3.1)
gives

We discuss the case of H=SU(N) (N~ 3), since the
SU(2) group is isomorphic to Sp(2). If the representation

Tr'"'X" +' —Tr'"'X =2k'denomB
n —1

for another integer k', as well as

(3.5)
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Tr'"'X =2Q (co,H) . (3.6) Q„+,(co, 6 ) =k "denomB„ (3.8)

Moreover, the branching index sum rule implies

Q2(co, 6 ) = Q2(co, H ), (3.7)

for some integer k". Then, Eq. (3.2) gives the desired
result A (co)= 1 for D =2 (mod 4) (odd n) with
G=SU(n+1) and H=SU(3).

if the representation 6 of G reduces to a di, ,rect sum of u
and singlet representations of H under restriction of 6 to
H. Now, assuming the validity of the locally anomaly-
free condition Eq. (3.3), all equations, Eqs. (3.4)—(3.7)
lead to

B. SU(3) in D—:0 (mod 4}

%'e will turn our attention to the more diScult case for
n being even. Then the anomaly coeflicient A(co) of
H =SU(3) is given by

A(co) =exp 2mi
1

Q„+)(co,G)
denom8„2( n —2,denom8„2 )

(3.9)

. 1
A (co) =exp mi Q„+,(co, G )

2b

However, as we have already noted in proposition 1,
A(co) can assume only two possible values, +1 or —1.
Therefore, Q„+,(co, G) must be necessarily an integer
multiple of 2b. Especially, we can set b=1, since b is
odd. Hence, we can rewrite our formula as

A (co) =exp[in —,
' Q„+i(co, G)] . (3.10)

for G =SU(n+ 1) in D =2n —=0 (mod 4). First, we recall
the fact that denom8„ is a product of all prime numbers

p such that p —1 divides n. Therefore, if n =even, then

denom8„2(n —2,denom8„2) =4b

for some odd integer b as we will see in Appendix B.
Hence, Eq. (3.9) gives

free condition Eq. (3.14) effectively. However, as we will
show in Appendix 8, Eq. (3.14) implies that

Q3(co,H)= 0(mod —4) for n =even

Thus, we conclude that A (co)= 1 for D:—0 (mod 4). Con-
sequently, we have found that any locally anomaly free-
representation of H = SU(3) has no global anomaly in
any euen dimension D.

For H =SU(4), the James number for n =even has
been also computed by Walker ' and the result is

2nt
W(n+ i, n —3)=

denom8„2(n, 4)(n —2, denom8„2)

(3.15)

If D:—4 (mod 8), then we can show similarly to the previ-
ous case that the global anomaly coefficient is given by

In Appendix 8, we will prove the congruence relation
A (co )=exp [i~ ,' Q3 (co,H—)] (3.16)

Q„+,(co, 6)—Q3(co, G) =4k (3.11)

for some integer k for any even integer n ~ 3. Moreover,
the branching index sum rule implies

Q3(co, G ) =Q3(co, H ) (3.12)

since 6 reduces to a direct sum of co and singlet represen-
tations of H under restriction of 6=SU(n+1) to
H =SU(3). Therefore, Eqs. (3.10)—(3.12) provide the for-
mula

Q3 (co, SU(4) )= Q p (coo, SU(3 ) ) . (3.17}

Therefore, the comparison of Eqs. (3.14) and (3.17) gives

~ (co}IH=sU(q)
—~ (coo)IH=sU(3) ~ (3.18)

which has the same form as Eq. (3.13). However, since
H =SU(3 ) has been shown to have no global anomaly in
D —=4 (mod 8), this fact implies the same result also for
SU(4) by the fallowing reasaning. We write the reduction
of the representation co of SU(4) into SU(3) as coo. Then,
the branching index sum rule implies that

2 (co) =exp[in ,'Q3(co, H )]— (3.13)
for D =4 (mod 8). Moreover, we have

(co)~n +1
O (3.14)

If co is self-contragredient, then Eq. (3.14) is automatical-
ly satisfied and Q3(co, H)=0. Thus, we conclude that
A(co)=1 for a self-contragredient representation. For
general cases, it is difficult to utilize the locally anomaly-

for n =even, directly in terms of the third-order Dynkin
index Q3(co, H) of H=SU(3). Note that any reference to
co of SU(n + 1) has disappeared completely in our formula
(3.13). Now, we evaluate Q3(co, H) under the assumption
of the locally anomaly-free condition

T (~o)~n+i~ (} (3.19)

However, since we just proved that SU(3) does not have
global anomaly, we conclude that SU(4) does not have
any global anomaly. We remark that the relation (3.18)
for D =—4 (mod 8) has been also derived in a di6'erent way
elsewhere, using a result obtained by Crabb and
Knapp.

The analysis for H=SU(4) in other even dimensions
has not been successful. We may need a better
congruence relation than what we have done so far.
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T+ T'=0,
while for a skew-symmetric bilinear form we have

TJ +JT'=0 .

(A7)

(A8)

APPENDIX A: SELF-CONTRAGREDIENT, REAL
OR PSEUDOREAL REPRESENTATIONS

In this appendix, we explain the adjectives self-

contragredient, real, and pseudoreal which attach to rep-
resentations of Lie groups or Lie algebras.

We call a representation co self contra-gredient if there
exists an invariant real bi1inear form on the vector space
V for this representation. That is, for x and y in V and
the bilinear form (x,y), we have

The condition for a representation being self-
contragredient is that there exists an element of the Weyl
group of & which transforms the highest weight A into
—A. This gives the method of deciding which groups
can have only self-contragredient representations. The
result is Eq. (1.3).

Now, we explain the adjectives real and pseudoreal.
For a unitary representation of H (which we physicists
use) which acts on CL'", consider a representation which
satisfies

(gx, gy) =(x,y) for g HH, (A 1)
g*=S ' g.S for g EH (A9)

where we do not distinguish the representation of g EH
and the element g itself in H. If the representation space
V is irreducible over the complex number field, then we

can prove that this bilinear form is nondegenerate and
unique up to a constant factor, and it is either symmetric,
(x,y)=(y, x), or skew symmetric, (x,y)= —(y, x), but
not both. Hereafter, we consider the irreducible repre-
sentation space. If it is symmetric, we can find basis vec-
tors I e~ I such that

(e, , e, )=5„
Then Eq. (Al) can be written as

(ge' gej ) g kgj1(ek'el )

for some nonsingular matrix S where an asterisk denotes
complex conjugation. (This shows the reason for the ad-
jectives real or pseudoreal. ) In terms of its Lie algebra,
the condition becomes

Tr Todd 0 (A 1 1)

The matrix S is either symmetric or skew symmetric for
an irreducible representation since

T= —S ' T'S= —S '
(
—S') r(S ')'S

(A 10)

for a Hermitian matrix T, since g
*=exp( —i T* )

=exp( iT' ). Th—erefore, we have

(A3) which leads to

(e, , ej ) =(J).. .
where J=diag(J&, J&, . . . , J& ) and

(A4)

where (G);J =g;, . That is, 6 is an orthogonal matrix. We
constructed an orthogonal matrix from a representation
of H, which has a symmetric bilinear form. Note that
this orthogonal matrix corresponds to a fundamental rep-
resentation of an orthogonal group with its dimension
equal to the dimension of the representation of H. If it is
skew symmetric, we can find basis vectors I ej I such that

[T,(S ' S')]=0 .

Thus, S =A,S'=A, S. That is, k=+1. We call the repre-
sentation real if S is symmetric, i.e., S'=S, while we ca11
the representation pseudoreal if S is skew symmetric,
S'= —S. Furthermore, the matrix S is unique up to a
constant if the representation is irreducible.

We show the equivalence of the definition of "orthogo-
nal" and "real" and the equivalence of "symplectic" and
"pseudoreal. " We can define a bilinear form using the
matrix S as follows:

0 —1Ji=
(x,y )z

—=gxJS kyk (A12)

Then, Eq. (A 1) can be written as

(ge; ge, ) =gkg, i Jki =(G J G');, =(J );, . (A5)

for x=(x„x2, . . . , x„) and y=(y„y2, . . . ,y„). Then,
we have, first of all,

(x, Ty)s —x SkTk ym

(Tx,y)+(x, Ty)=0 for TH& . (A6)

For a symmetric bilinear form, we have in matrix form

That is, G is a symplectic matrix, satisfying GJG'= J.
Thus, irreducible self-contragredient representations

divide into classes: orthogonal representations if the bilin-
ear form is symmetric and symplectic ones if the bilinear
form is skew symmetric.

In Lie algebra & of H, the condition for being self-
contragredient, Eq. (A 1), becomes

=x,S,„( S'.T' S)„y = —(r—x,y )&,

which is Eq. (A6). Furthermore, it is easy to see that for
a symmetric S, we have (x,y)z=(y, x )z, while for a skew
symmetric S, we have (x,y )z = —(y, x )z.

We can also show the following properties. (i) The
tensor product of two orthogona1 or symplectic represen-
tations is orthogonal; (ii) the tensor product of an orthog-
onal and a symplectic representations is symplectic.

The question of deciding whether a given irreducible
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A=m1A&+m2A2+ +m„A„ (A13)

in terms of non-negative integers m&, m2, . . . , m„. We
adopt also their lexicographical ordering of the simple
root system. Then their results are as follows.

representation co of H is orthogonal or symplectic has
been answered by many authors. Here, we state the
results by Bose and Patera. Let & be a simple Lie alge-
bra of rank r and let A be the highest weight of the
irreducible representation m under consideration. If
A„A2, . . . , A„are the fundamental weight system of %,
then we can express A as

the relation 1«m «n «X —1, we have

Q„+&(co)—Q~+ &(co)=k denom8„ (B1)

with an integer k.
Here, denomB, is the denominator of the nth Bernoulli

number. More precisely, it is a product of all prime num-
bers p such that p —1 divides n: denomBO = 1,
denomB, =2, denomB2 =6, denomB4 =30, denomB6
=42, etc. Here, we define denomB, dd=2, although B
with m =odd () 1) vanish. (For practical use in this pa-
per, we use only 8 with m =even. ) In particular, the
Bernoulli number satisfies the relation

(I) Orthogonal (i e , r.ea. l) representations denom8„=—2 (mod 4) . (B2)

(i) Any representation of SO(8k), SO(8k+1),
SO(8k —1), G2, F4, and Es, where k is a positive integer.

(ii) Any representation of SO(8k+3) and SO(8k+5)
such that m„=even. This excludes spinor representa-
tions.

(iii) Any self-contr agredient representation of
SO(8k+2) and SO(8k+6). This condition is equivalent
to the condition m„ 1 =m„. Again this excludes spinor
representations.

(iv) Any representation of SO(8k+4) such that
m„1+m„=even.

(v) Any representation of Sp(2k) such that m,
+m3+ m5+ =even.

(vi) Any representation of E7 satisfying m4+rn6
+m7 =even.

(vii) Any self-contragredient representation of
SU(2k + I), SU(4k +4), and E6.

(viii) Any self-contragredient representation of
SU(4k +2) such that m2k+, =even.

(II) Symplectic (i e , pseudore. al.) representations

(i) Any spinor representation of SO(8k+3) and
SO(8k +5). The condition is equivalent to m„=odd.

(ii) Any spinor representation of SO( 8k +4), i.e. ,
mr 1+m r

—odcl.
(iii) Any representation of E7 satisfying m4+m6

+m7 =odd.
(iv) Any representation of Sp(2k) satisfying m,

+m 3+m 5+ ' ' ' =odcI.
(v) Any self-contr agredient representation of

SU(4k + 2) such that m 2k +, =odd.
Note that for SO(2r+1) the condition m„=odd im-

plies the representation is a spinor. For SO(2r), the case
of m„+m„ i=odd gives spinor representations, while
the case of m„+m„, =even%0 defines self-dual tensor
representations.

APPENDIX 8: CONGRUENCE RELATIONS
FOR DYNKIN INDICES

We prove congruence relations for Dynkin indices,
which are used in this paper. Let m be a representation of
the SU(N) group and let Q„(co) be the nth Dynkin index
of SU(X) (2 ~ n ~ K).

Re1ation 1. For any two integers n and m which satisfy

x n x m k X 2M~n™,I +2 1denomB n —m (B4)

Let p be a prime number such that (p —1) divides
(n —m). If x is not divisible by p, then, for n )m ) 1,

x"—x =—0 (mod p),
using the Fermat theorem x" —1—:0 (mod p). This re-
lation is trivially valid also, if x is an integral multiple of
p. Then, because of the definition of denomB„, Eq.
(B5) will prove Eq. (Bl) as we have done in Ref. 8. If x is

even, then we have, for m & 1,

x"—x =0 (mod2 ). (B6)

For the case where x is odd, we will show shortly that

0 (mod 2l+2) (B7)

for n —m =2'X(odd integer) with l ) 1. Combining both
facts and noting Eq. (B2), we establish the desired result
Eq. (B4). Therefore, we need only prove Eq. (B7).

The equivalent statement to Eq. (B7) is

y —1—=0 (mod 2' ) (B8)

for any odd integer y, where y =x"=odd for odd x with
n —m =2'Xb for an odd integer 6 with I ~ 1. We prove
Eq. (B8) by induction. By writing an odd y as 4m+1, we
have

y =1+8m+16m —= 1 (mod 2 ),
which corresponds to the case of l=1. Now, let us as-

Equation (B1) has been already proved in Ref. 8 and used
in Eq. (3.4) for m = 1.

For the result of Sec, III we require some improvement
over Eq. (Bl) as we stated. We have the following.

Relation 2. For n —m =2'X(odd integer) for some
positive integer I ~ 1, we have

Q„+~(to)—Q +&(co)=k'X2 '"' ' + ' 'denom8„

(B3)

for another integer k', where Min(m, l+2) stands for the
minimum of two positive integers m and I+2.

Now, we proceed to the proof of Eq. (B3). Let x be any
integer. If n and m are two positive integers which satis-
fy the assumption, then we first show the validity of
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sume Eq. (88) is valid for l =p. Then, we have, for some
integer q,

2(P+)) (1+2(P+2) )2

=1+2' + )q+2 'P+ ' =1 (mod 2'P+ ')

which corresponds to Eq. (88) with l =p+1. Note that
Eq. (88) may fail for l =0.

The next task is to show that Eq. (83) follows from Eq.
(84). For this, we must restrict the values of n and m
such that 1 &m (n ~N —1, since Q„+)(co) for SU(N) is
not well defined for n ~N as we have emphasized else-
where. Let Ai, Aq, . . . , A~ 1 be the N —1 fundamental
weight system-of the Lie algebra Az ) of the SU(N)
group. Then, we know that

and (m +1), respectively. Equation (3.5) is a special case
of Eq. (812) for m =1 and odd n. Actually, if we can
choose X in such a way that both M and —M (M&0) are
simultaneously weights for all M, then ko in Eq. (811) is
an even integer.

Now, we shall give examples that we can find X satisfy-
ing these conditions. Let I+, I, and I3 be the su(2)
sub-Lie algebra of our Lie algebra A)v ) (N & 2). Then,
the choice X=2I3 is one example where Eq. (3.6) holds,
since Tr' 'X =Q2(co, SU(N)}Tr' 'X . However, for our
present problem, we require a slightly more complicated
choice. The reason is that TrX =0 for any XH su(2)
algebra. Write the Lie algebra A)v ) of the SU(N)
(N & 3) group in the standard Cartesian form of

(89)

[8",8$]=5)t'iB 58lt')—, g 8"„=0,
p=1

for p, v, a, /3=1, 2, . . . , N. Then, choosing

X=(8', 82)—(—82 —83 ),

(813)

(814)

Q3(cg, SU(N))—:0 (mod 4) . (810)

Let X be an element of a Cartan subalgebra of the Lie
algebra A)v ) of the SU(N) group such that its weight M
in any representation co is always an integer. As we will
show shortly, we can always find such X. We calculate

(811)

Therefore, if n and m are positive integers satisfying Eq.
(83} with n )m & 1 and l & 1, then, Eq. (84) for x = ~M

~

gives

Tr(co}Xn+1 Tr(co}Xm +1 k X 2Min(m +1,l+2}—1
0

XdenomB„ (812)

for some integer ko, when we replace n and m by (n + 1)

for 1 ~f ~N —1. Identifying x=f —l, then Eqs. (84)
and (89) imply the validity of Eq. (83) when co is one of
the N —1 fundamental representations of the SU(N).
The general case can be then obtained by induction as in
Ref. 3 by using index sum rules of the direct product of
two representations, or more directly from the general
formula for Q„(co) found in Ref. 2.

Now, Eq. (3.11) is a special case of Eq. (83) for m =2
with l & 1 when we note Eq. (82), while Eq. (3.4) results
from Eq. (83) with m =1. As we see from our proof, we
did not fully utilize special form Eq. (89) for
Q„+)(A&)—Q +((A&). Thus, it is plausible that there
may be room for improvement. Also, we remark at this
point that somewhat analogous congruence relations
have been studied by Braden from a different point of
view. Moreover, proposition 4 of Sec. II can be proven
by induction in a similar way.

The next relation is used in Sec. III B.
Relation 3. For any representation co of SU(N) (N & 3)

which satisfies Tr'"'X"+'=0 with even n 4, we have

we can readily verify that X assumes only integer eigen-
values, since X belongs to the Cartan subalgebra of
SU(N) [actually of SU(3)]. Note that for H =8 —8 —

++,
'

(a= 1,2, . . . ,N —1), we have [H,H13] =0 and thus the set
t H I is the Cartan subalgebra of SU(N).

After these preparations, we now choose m =2 and n
even in Eq. (812) and utilize TrX"+'=0 (n &4) for
SU(N) (N & 3). Then, we find

Tr' 'X = —4k0denomBn (815)

for any given integer n ~ 4, since then we have I ~ 1. On
the other hand, we know

Tr'"'X =Q3(a), SU(N))Tr' 'X (816)

where is the basic representation of SU(N). With our
choice of X as in Eq. (814), we calculate easily

(817)

since the diagonal elements of X( ) are (1,—2, 1,0, . . . , 0).
Then, Eqs. (815)—(817) give

4k0
Q3(ro, SU(N) }= denomB„

6

Moreover, since n —2 is an even integer by assumption,
denomB„2 is an integer multiple of six. Therefore, we
proved Eq. (810). Especially, with the choice of SU(3),
Eqs. (3.13) and (810) establish the fact that SU(3) has no
global anomaly in D—:0 (mod 4). Combining with the
previous result for D—:2 (mod 4), we see that the SU(3)
group has always no global anomaly in any even dimen-
sion as long as the local anomaly vanishes.

We can similarly calculate the case of H=SU{4) inD:—4 (mod 8) to find the statement given in Sec. III. We
emphasize the fact that our congruence relations are
most likely not the optimal ones and we may be able to
improve them.
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