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Matter-parity constraints on particle spectrum in three-generation Calabi-Yau manifolds
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An analysis of the particle spectrum after intermediate scale breaking in the three-generation
Calabi-Yau manifold CP XCP /Z3 is given. The spectrum is investigated within the framework of
intermediate scale breaking which preserves matter parity and breaks the rank-six gauge group
SU(3)~XSU(3)L XSU(3)& to the standard-model gauge group SU(3)&XSU(2)L XU(1)&. It is
shown that a large number of particles and mirror particles associated with the extra families and
mirror families on CP XCP / Z3 can all be made superheavy through mass generation induced by
nonrenormalizable interactions that are present in the superpotential below the compactification
scale. The final spectrum of the compactified superstring below the intermediate-mass scale break-
ing is shown to be the spectrum of the standard X=1 supersymmetry theory and a few additional
exotic leptons. Some of these exotic leptons are hybrid structures containing equal mixture of lep-
tons and mirror leptons.

I. INTRODUCTION

Since the advent of the E8XE~ heterotic string, ' its
compactification on the manifold M4 XE, where K is the
compact six-dimensional Calabi-Yau manifold, has pro-
vided an attractive scheme for a unified four-dimensional
theory. The Calabi- Yau compactification preserves
N = 1 supersymmetry and simultaneously one of the E8
groups reduces to E6 which may be viewed as the grand
unification group of particle interactions at the
compacti6cation scale. However, the physically relevant
manifold with three generations is nonsimply connected:
it is the manifold CP XCP /Z3 (Ref. 3). On this mani-
fold the group E6 breaks to the group SU(3)c XSU(3)L
X SU(3 )ti due to Wilson flux lines. ' The rank-six
[SU(3)] symmetry must be broken further to the rank-
four standard-model gauge group SU(3)c X SU(2)L
XU(1)r. A standard scenario to achieve this is the so-
called intermediate-mass scale breaking at MI = 10'
GeV. Above this mass scale but below the
compacti6cation scale, the massless spectrum of the
CP XCP /Z3 compactification consists of nine families
of leptons which belong to the ( 1,3, 3 ) representation of
SU(3)c XSU(3)L X SU(3)ti, seven families of (3,3, 1)
quarks, seven families of (3, 1,3) antiquarks, six families
of (1,3, 3) mirror leptons, four families of (3,3, 1) mirror
quarks, and four families of (3, 1,3) mirror antiquarks.

The phenomenology on three-generation Calabi-Yau
manifolds has been investigated extensively recently
and a number of difhculties with the model have been
pointed out. ' Surprisingly, however, a detailed analysis
of the intermediate-mass scale breaking as well as an
analysis of the particle spectrum below the intermediate-
mass scale has not been carried out. This analysis is rath-

er crucial since the pattern of intermediate scale breaking
determines the number of low-lying exotic particles. Too
many of these low-lying exotic particles would be phe-
nomenologically disastrous since they could generate
Landau singularities as well as produce an unacceptably
large value of sin 8~.

Recently the authors" presented an analysis of inter-
mediate scale breaking within the framework of matter-
parity invariance ' imposed above the intermediate
scale. This is needed to forbid rapid proton decay. ' The
analysis used two di8'erent lepton multiplets and their
mirror counterparts to generate vacuum expectation
values (VEV's) for the SU(5)- and SO(10)-singlet fields v'
and N. Remarkably the lowest-lying extrema maintain
matter parity after symmetry breaking and prevent
SU(2) XU(1) breaking at Mt.

In this paper we discuss the Goldstone and Higgs 6elds
associated with intermediate-mass scale breaking. We
discuss the absorption phenomenon which grows masses
for the vector bosons in the reduction SU(3)c
XSU(3)L XSU(3)tt ~SU(3)c XSU(2)L XU(1)r. It is
shown that the absorption involves linear combinations
of the lepton multiplets and their mirror counterparts.
The unabsorbed components are thus also linear com-
binations of the lepton multiplets and their mirrors.
These hybrid structures are shown to possess electroweak
masses and thus may be accessible at accelerator energies.

In addition to the lepton multiplets and their mirrors
which enter in intermediate scale breaking and the three
standard-model generations of quarks and leptons, there
exist extra generations of lepton, quark, and antiquark
multiplets and their mirrors which must be removed from
the low-energy spectrum to avoid phenomenological
disasters such as Landau singularities in coupling con-
stants and an unacceptably large value of sin 0~. We ad-

191 1989 The American Physical Society



192 R. ARN0%'ITT AND PRAN NATH

II. SYMMETRY BREAKING QN CAI.ABI-YAU
MANIFOI. DS AND GENERATION QF N and v' VKV's

The three-generation Calabi- Yau manifold is described
by CP X CP /Z3, where this manifold is defined through
the intersection of the following polynomials involving
eight complex coordinates XO, X&,Xz, X3 andyo, y&,yz, y3..

0=P1 =gx; +a(X0X(X2+a2X0X, X3
3

O=I z =Xoyo+C)X iy) +CzXzyz+C3X3y3

+C4Xzy3 +C5X3yz

P3 Xy ' +b 1y oy ly 2 +b 2yoy ly 3

(2.la)

(2.1b)

(2.1c)

The above manifolds depend on nine complex parame-
ters corresponding to the nine deformations on this mani-
fold. This nine-parameter CP XCP /Z3 manifold must
be further constrained to obtain a phenomenologically vi-
able manifold. One of the most important phenomeno-
logical constraints in superstring model building is the
ehmination of rapid proton decay. ' A remarkable in-
variance which is needed to forbid the existence of
dangerously rapid proton decay is that of matter parity.
Matter parity is defined by ' '

Mz =CUz, (2.2)

where C acts on the Calabi- Yau coordinates
(X(1jX1jX2jX3 )S (y(1jy1 jy2&y3 )j

0 1
C =(1,l, o )(1, 1,o ), (r=

1 () (2.3)

and Uz is an element of SU(3)c X SU(3)1 X SU(3)z
which is the group symmetry allowed on the manifold
CP XCP /Z3.

r

1 —1 —1

(2.4)

dress this question in this paper and show that it is possi-
ble to find models where the unwanted spectrum of parti-
cles become superheavy. This is brought about by mass
generation from the nonrenormalizable interactions in
the superpotential that enter the theory below the
compactification scale.

In Sec. II a brief review of symmetry-breaking analysis
of Ref. 11 is given. In Sec. III Cioldstone and Higgs
analysis after intermediate scale symmetry breaking is
carried out. Absorption of the lepton multiplets and
their mirrors is analyzed. The mass growth of the vector
bosons associated with the breaking of SU(3)c
XSU(3)L XSU(3)a to the standard-model gauge group
SU(3)c XSU(2)L XU(1)r is exhibited. The components
of the lepton multiplets and their mirrors which are
unabsorbed in the symmetry breaking are also discussed.
In Sec. IV we show how mass generation from the non-
renormalizable interactions in the superpotential can
make the unwanted modes superheavy.

The C-invariant Calabi-Yau manifold is still a fairly large
manifold depending on five complex parameters: i.e.,

.0=P, =+X; +a, (x0x1x2+x0x, x3 ),
P2 c0y0+clx ly1+c2( 2y2+X3y3 )

+C3(X2y3+X3y2) j

0=P3 =+3'; +b1(y0y1y2+yOy 1y3 )

(2.5a)

(2.5b)

(2.5c)

Above the intermediate-mass scale breaking where
[SU(3)] symmetry is exact, the particle interactions are
separately C and Mz invariant. However, below the
intermediate-mass scale C invariance is broken through
the VEV of the C-odd but M2-even SU(S)-singlet field v'.
Consequently, below the intermediate mass C invariance
no longer holds, though, as was seen in Ref. 11, Mz in-
variance holds.

Below the compactification scale but above the inter-
mediate scale breaking where the interaction structure of
the theory is [SU(3)] invariant one may decompose the
27-piet into its SU(3)c XSU(3)r XSU(3)11 parts:

27=Lt(1, 3,3)e Q('(3, 3, 1)()3g,'"(3, 1,3) . (2.6)

ga & ~ay. ga Da

QcP —(gc dc) Qc3 —Dc

(2.7b)

(2.7c)

In Eq. (2.7) q' =(u'",d' ) and l =(v, l) are the quark
and lepton SU(2)1 doublets while D' and D; are the
color Higgs triplets where the superscript c stands for the
conjugate fields. A similar analysis holds for the 27
decomposition. Under Uz the components of the 27-piet
have even or odd transformations:

Uz even: H, H&, D, D', X;
U odd: q, l, u' O' I' v'

(2.8a)

(2.8b)

The C parity of the different families and mirror fami-
lies are exhibited in Table I (Ref. 6). Matter parities of
the families and mirror families can then be easily ob-
tained using Eqs. (2.8) and Table I. These are listed in
Table II. For convenience we introduce the notation

(r, s, t, . . . ;n, m, p, . . . )=(C odd;C even) . (2.9)

It is easily seen from Table I that r, s, t take on values
1 —,3 —,6, 8 —for leptons, 3,4,5,6 for mirror leptons,
4—,6—for quarks and 1 —,3—for mirror quarks, etc.
Similarly m, n,p, . . . take on values 1+,3+,5, 7, 8+ for
leptons and 1,2 for antileptons, etc.

In Eq. (2.6), I. are the leptons, Q the quarks, and Q' the
antiquarks. The indices a, I, r = 1,2, 3 are the SU(3)c,
SU(3)1, and SU(3)2( indices. The SU(3)21 indices may be
further decomposed into SU(2)L X SU(2)21 indices so that
I = ( k, 3 ), r =(p, 3 ) where A, ,p = 1,2. The lepton, quark,
and antiquark multiplets may now be explicitly written in
familiar particle notation:

L il(H1I, 2,pH j
)

. L 3 —(e a ve)

(2.7a)
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TABLE I. List of linear combinations of lepton, quark, and antiquark families and mirror families
which are eigenstates of C. We use the notation of Ref. 6 with L, + =(L&+L2)/&2, etc.

C property

C even

C odd

Families

L i+ ~L3+ ~Ls ~L7*Ls+
Qi Qz Q3 Q4+ Q4+
Qt Q2 Q3 Q4+ Q4+
L),L3,L6,Ls
Q4-, Q6-
Q4- Q4-

Mirror families

L„L
1+~ 3+

Qi+ Q3+
L3,L4,L„L6
Qi-, Q3-
Q|- Q3-

As may be seen from Eqs. (2.2) and (2.8), the N and v'
fields within a given multiplet which is an eigenstate of C
have opposite matter parities. Thus one needs two
different multiplets, one C even and the other C odd, if
only the matter-parity even N and v' fields are to grow
VEV's so that rapid proton decay be forbidden. In the
following we thus utilize two lepton multiplets I.;
(i =1,2) and their mirrors L;, where i =1 is a C-even
multiplet and ~ =2 is a C-odd multiplet. If only the X,
and S„vz, and V2 fields grow VEV's, matter-parity in-
variance would be preserved. The efFective potential
which governs symmetry breaking below the
compactification scale has the form

V = V + VF + VL, , (2.10)

where V is a mass term arising from X =1 supersym-
metry breaking, VF is the I term arising from the
superpotential, and VD is the D term generated by
SU(3)L X SU(3)z gauge transformations. We discuss now
each of these terms briefiy. It is conventionally assumed
that in this class of superstring models supersymmetry is
broken so that soft supersymmetry-breaking mass terms
are generated in the scalar-boson section. These soft
(mass) terms can turn negative through renormal-
ization-group (RG) effects which signals spontaneous
breaking which generates the intermediate-mass scale.
An analysis of the renormalization-group equations
below the compactification scale shows' that such a
phenomenon does indeed occur in simple models, in fact,
quite rapidly due to the large number of massless fields
that enter below the compactification scale. Further, the
evolution of the soft symmetry-breaking (mass) need not
necessarily be the same for the multiplets and their mir-
rors. Thus assuming that at a scale not far below the
compactification scale, the squared masses of the scalar
fields turn negative we may write for V the form

V = —gm; (x;+y,. +z;+ w; )

—gm; (x;+y;+z;+P; ), (2.11)

where

x —XX y —vv z,. —H H m —H H
(2.12)

where

W, =W, (L, Q, Q')+W, (L, Q, Q') . (2.14)

We exhibit here explicitly for later use the form of
W, (L,Q, Q'):

x =XX y =v'v' z;=H H m;=H2 H2,- .

In Eq. (2.11) we have exhibited only the neutral fields
which may grow VEV's in the analysis of symmetry
breaking at the intermediate scale. The term VF in Eq.
(2.10) which is the I' part of the potential arises from a
superpotential which in general consists of two parts: the
first is a cubic interaction of type (27) +(27) while the
second is a nonrenormalizable interaction which is an
infinite-order expansion in the inverse of the
compactification mass. This second part of the interac-
tion is a refIection of the fact that the infinite number of
heavy modes that arise in the superstring have been in-
tegrated out below the compactification scale. The non-
renormalizable terms in the superpotential are just the
remnants of the coupling of these heavy fields to the light
sector. Thus we write the superpotential as the sum of a
renormalizable and a nonrenormalizable part:

(2.13)

I tt I tt
(L~Q~Q') =k'»c aaa„dw &a Dc +k»ce" ' ua„da ~Da"c+~»c( HtiHiaXc Hg&ply, +Hi „lslc)

»c( ~ & ac DAi&"ac+D~vadac+'VA ixBDac Ci Alii, c 9q Hisd, c) . (2.15)

The indices A, B,C in Eq. (2.15) run over the various
generations. For the Calabi-Yau manifold of Eq. (2.5),
many of the couplings in Eq. (2.15) are automatically
zero by C invariance. Thus one has"

g1,2, 3,4 p g1,2, 3,4
rst rnnr (2.16a)

=0=k (2.16b)

An expression similar to Eq. (2.15) with restrictions simi-
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TABLE II. List of the matter parities of particles and mirror
particles in the full set of families and mirror families. r runs
over C-odd values while n runs over C-even values. Matter par-
ity of families and mirror families are the same.

Matter parity

M2 even

Particles

I„e„',v',

r Qr ~dr

D„,D„',N„
H„,H„'

In~en~&n

Vn~+n~dn
D„D;,X„
H„H„'

lar to Eq. (2.16) hold for the superpotential
W, [L,Q, Q ']. As already stated the nonrenormalizable
part of the superpotential is in general an infinite-order
expansion in the inverse of the compactification mass M, .
We exhibit here only the part relevant for symmetry
breaking. We assume for this purpose a dimension
2n (n ~ 2) term in the superpotential of the form

A,
2

8'„,=g (L,',L i„)" .
(M, )" (2.17)

n
V yg4(f f t)ll 1

C

X(x;+x;+y, +y;+z;+z;+w;+w;),
(2.18a)

where

(2.18b)

Finally the D term of the potential in Eq. (2.10) arising
from the SU(3)L XSU(3)z gauge transformations is

In Eq. (2.17) A,; are the couplings of the heavy fields to
the light fields. It is the superpotential of Eq. (2.17) rath-
er than the cubic interactions of S; which are IAat, that
play the dominant role in symmetry breaking at the inter-
mediate scale. The potential VF arising from Eq. (2.17) is

g 2

Vi) = gx; —x, +y, —
y, —

—,'(z, —z, +w; —w; )] 2+
l

g 2

g( —z;+z;+w, —w;)

2

+2
2

g(H, " v' v' H2, ) .—+
1

g[x; —x; ——,'(y; —y;+z; —z;+ w, —w, )]

+ g(y; —y, —z, +z, +w, w, ) 2+ g—(&~v',. —v',. tg,. ) 2.
l

(2.19)

&2~4n —6
' i~4~ —4

(x, ) =&X, &=
2n (2n —l)k,

1 j(,4n —4)

&v', ) =(v;& =
2n (2n —1)k2

&H,', )=O=(H,'), &X, &=0=&v', ),

(2.20a)

(2.20b)

(2.20c)

where

X; =(m; +m;) . (2.20d)

In the nonleading order there arise in Eqs. (2.20a) and
(2.20b) terms proportional to b;, where

(m —m )— (2.21)

The solutions to the extrema equations arising from
Eq. (2.10) were analyzed in Ref. 11. It was shown there
that the lowest-lying minima corresponded to the ones
where matter parity was conserved at the intermediate
scale when the SU(2)I XU(1) subgroup was left unbro-
ken. To the leading order it was found that

)

I

The terms proportional to 6; are in general quite impor-
tant in that they often break the vacuum degeneracy and
help locate the lowest minimum. It was also seen that the
lowest minimum which automatically preserves matter
parity also preserves SU(2)L X U(1)r invariance.

III. GOLDSTONE AND HIGGS PHENOMENA
AND VECTOR-BOSON MASS GROWTH

We consider next the effect of the VEV growth of X
and v' on the spontaneous breaking of SU(3)c
X SU(3)l X SU(3)z. The Ni VEV growth yields

SU(3)c XSU(3)L XSU(3)„
c....)

: SU(3)CXSU(2)L XSU(2)„XU(1)~

(3.1)

while the vz VEV growth breaks the group further to the
standard-model gauge group: i.e.,

These terms reQect the deviation of the extrema solution
from their D-Hat values and are thus dependent on the
SU(3)L XSU(3)z gauge coupling constants gL and gz.

SU(3)c XSU(2)L XSU(2)~ XU(l)~
&&c ~d&

= SU(3)cXSU(2)L XU(1)r . (3.2)
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%e can calculate the vector-boson masses and identify
the Goldstone bosons that are absorbed. The vector-
boson masses arise from an analysis of the kinetic energy
of the lepton multiplet I.„and the mirror lepton multi-
plet I. ,

".
I with i = 1,2 corresponding to C-even and C-odd

multiplets. The gauge couplings of these multiplets are

LL = g(—DpL „) (D„L„) g—(DpL,"() (D„L,"(), (3.3)

where

—(e2+e 2 )
2

and those absorbed by A „z, u =4, 5, 6, 7 are

1—(ei+e', ), (v', +vi ) .
2

'
2

(3.8c)

(3.8d)

Finally, the components absorbed in making A „' and A „'

heavy are

and (H2', H2 ') is the Higgs SU(2)L doublet. Note that
the fields of Eq. (3.8a) form a SU(2)L doublet. The com-
ponents absorbed by A „z,n = 1,2 are

(3.4) —(ImX, —ImX(), —(Imv2 —Imv 2) .1 — 1
(3.8e)

and a similar equation holds for the L; multiplet. In Eq.
(3.4) A„L R, a= 1 —8 are the SU(3)L R gauge fields. As a
consequence of the VEV growth of Eq. (2.20) we find that
12 vector bosons grow masses. These are

where A „' ' are two linear combinations of A „L,A „z,
A „R orthogonal to the hypercharge boson [ A „
=«R ~„'L+gL ~,'R+ 3gR ~,'R )/(4gR+gL }'"].
vector-boson masses are

M& — gl v + +v, M& — g&v

These are all SU(2)L singlets [though Eq. (3.8d) is an
SU(2)R doublet].

There are 72 Hermitian components of the lepton mul-
tiplets L;,L; (i =1,2) of which the 12 of Eqs. (3.8) are the
massless absorbed Goldstone bosons. As seen from Eqs.
(3.8), it is linear combinations of C-even and C-odd lep-
tons and their mirrors that get absorbed. Associated
with these are 12 superheavy bosons of mass O(Mt).
The general mass matrix is M, 6

= &8 V/BQ, Bpb ), where
V is defined in Eq. (2.10) with V and VF given in Eqs.
(2.11) and (2.18). The full D term is

—N M = V&2+v2R v'2 i R

V —(g(DaDat+DaDat)

where

(3.9)

(MI II)2 ) (g2+g2 )(+2+ 2}
3

+1[(g2+g2 )2(~2+ 2)2

(3.6)

where

—3N v (g +4g gL)]

+N X v —v v +v v1 1 1 1& 2 2 2 2 (3.7)

For the purpose of knowing what the low-energy spec-
trum of the theory is, it is important to determine what
components of the lepton multiplets L; and the mirror
multiplets L,; are absorbed by the vector bosons in the
process of spontaneous breaking. In general, for an
effective potential V(P), where (}}'=I P, I is a column sym-
bol of all the scalar fields, the absorbed Goldstone bosons
are given by the nonzero vectors (t ),b &$6), where t
are the group generators for the representation of P. For
our case I(t), I

= IL,'„,L,'„,L,(,L 7 I and t are SU(3) Gell-
Mann matrices of SU(3)L X SU(3)R. The following calcu-
lations neglect small corrections of O(b, /M„X/M, ).
For the bosons absorbed by A „I,a =4, 5, 6,7 we find

cosH —(v, +vt) —sinO —(H2'+H z't),
2 2

(3.8a)
cos8 (e, +e, }—sin8 —(H2 +H2 ),1 t . 1

2 2

Da —lg g(L~tLV L kL A. '1')(ta)iL

Da — 1 g g(L AIL k I A, L At)(ta)p'
IP I'P' p p &p' p

(3.10)

The leading piece of the two nonvanishing VEV's is given
in Eqs. (2.20a) and (2.20b). This implies that the contri-
bution of V~ and V~ to M,b is of electroweak size, i.e.,
O(X;b, ). Only VD can produce large mass contribu-
tions and only for those fields having &N, ) or & v2) as
coeScients in M,b . It is straightforward to pick these
heavy fields out. The pieces in Eq. (3.9) containing
DL, a =4, 5, 6, 7 yield

ML(45) ML(67) gL(&+1& +&v2& (3.11b)

QL(45) and QL(67) form an SU(2)L doublet. Terms arising
froxn Dz, a = 1.2 give

1
O' R(12) ( 2 2 } MR(12) gR&v2&v'2 (3.12)

QL(45) =cos8 —(v, —v 1)—sin8 —(H2' H2' ), —o. —ot
2 2

(3.11a)
1 t . 1

pL(67)= cos8 (e, —e, ) —sin8 —(H2 ' H2 ' ), —
2 2

where

where
cos8= gL&N &(g'&x )'+—g'&v'&')' '
i e=g„&;)/(g && )+g'& ') )' ' (3.8b)

while the heavy fields from D&, a =4, 5, 6, 7 are

1
4R(45) (e 1 e I } NR(67) (v1 v1~2 2
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where

~R (45) gR & Ni

Mg(67)=gg&[N +(v ) ]

(3.13b)

(3.13c)

with masses

~+ ——Ig +b+[(g —b)2+4c ] ~2} (3.14b)

The heavy fields arising from the Dz L parts of V~ are
more complicated to treat as the mass matrix links four
fields: Re%I, Re%i, Revz, Rev z. A detailed discussion of
this sector is given in the Appendix. There it is shown
that the heavy fields are

P+=N+(ReN, —ReN„)+N+ (Rev2 —Rev&) (3.14a)

(H„li &v2&+H li„&v2&) . (3.17)

metric Calabi-Yau manifold where the cubic Yukawa
couplings are known. ' ' The simplest assumption is that
there is only a single zero in A, „i (and no zero in A,„,i).
There are 32 real components associated with
H, ,H&, ,H;, H &;, i =I,2. Thus the above assumption
implies that (aside from the usual fields associated with
the three generations of the standard model) the fields in
L;,L;, i = 1,2 that will remain light are
72 —(12+12+32)=16 in number.

Equation (2.15) also shows renormalizable coupings of
vz to H /i and the matter-parity constraint (2.16) limits
mass growth from these couplings to

~here

1 b —a
2V~ =—1+

+(b —a) +4c

1/2

+=g(gL+gR)&N1& ~ ~=p(gL gR)& 2&

c—:—,'(2gL —ga ) & N, v; &

(3.14c)

Thus if the coupling constant A,z2, is nonzero, both I „I 2
will become superheavy, while if A,22, vanishes, they will
remain light. Again which of these two possibilities
occur depends on the details of the Calabi-Yau manifold.
%e list in Table III the fields that remain light in L;,L;,
i =1,2 (over and above the three generations of the stan-
dard model) for the two possibilities.

—(ImN, +ImN, ), —(Imvz+ Imvz) .
1 — 1

(3.15)

They are expected to grow electroweak size masses at the
Mii, scale from RCr corrections and SU(2) XU(1) break-
ing. The above discussion has been model independent.
To proceed further one must make additional detailed as-
sumptions concerning the structure of the Calabi-Yau
manifold. Thus Ni and vz couple to the lepton multiplets
in the renormalizable cubic interactions producing a
mass term of the type

Note that M+ )0.
There are 72 real components in the multiplets of

L, ,L; (i = 1,2) of which we have seen above 12 real com-
ponents are the absorbed Goldstone modes and 12 corn-
ponents become superheavy. These 24 components are
combinations of C-even and C-odd lepton states and their
mirrors. Thus the remaining 48 components must also be
linear combinations of leptons and their mirrors. If these
fields have low mass, one might be able to sample rem-
nants of the mirror world in accelerator experiments.
These exotic leptons would thus carry the imprint of the
Calabi- Yau manifold on which the superstring has
compactified.

Of the 48 remaining components, two combinations
are shown in the Appendix to be massless at MI ..

IV. SPECTRUM QF EXTRA GKNERATIQNS

As discussed in the Introduction, the massless spec-
trum of the theory at the intermediate scale is rather
large. It consists of nine. families of (1,3,3) leptons and
six fainilies of mirror (1,3, 3) leptons; seven families of
(3,3, 1) quarks and four families of (3,3, 1) mirror quarks;
and seven families of (3, 1,3) antiquarks and four families
of (3, 1,3) mirror antiquarks. Below intermediate-mass
scale breaking, one would like to have as few of the extra
generations or mirror generations as possible. This is be-
cause in X = I supersymmetric theory there is little room
beyond three generations if one wants to achieve con-
sistency with the current experimental limit on sin 0~.

In Sec. III we have seen that the breaking of
SU(3)c XSU(3)I XSU(3)a symmetry at the intermediate
scale requires at least two lepton multiplets L; (i =1,2),
one C even and the other C odd, and their mirrors L;.
Certain linear combinations of these are absorbed while
of the remainilig, many become superheavy 1eaving only
8 real fields with electroweak masses in the low-energy

TABLE III. Additional {exotic) light particles of electroweak
mass when only a single zero remains in A, The two columns

mn

refer to possibilities discussed in text. l2 and I 2 are SU(2)L dou-
blets. All other particles are SU(2)L XU(1) z invariant.

—X'„,H„'H',.&N, &
—X'„„H„'H,', &N, & . (3.16) ~221& ~ 221 X'„,Wo

Thus any Higgs doublet for which A,„, or I,„,I are
nonzero will become superheavy. Phenomenological1y,
one requires at least one pair of Higgs doublets not to
couple to Ni and hence remain massless. This would be
the doublet pair that at the M~ scale accomplishes the
SU(2)XU(1) breaking. Presumably this pair lies in the
C-even sector so that rnatter parity be maintained. To
have a Higgs doublet not coupling to N, requires a zero
in the coupling constant matrix A, „I. One may check
that such an "accident" does indeed occur for the sym-

~-(I--:+I-=:)v'2

—(EmN, +ImNI )
1

v'2
ReN2, ImN2
ReN„ImN,

—(ReN1 +ReN
1

v'2

—(Rev&+ Rev 2)

(rm~, +rmV, )v'2

( ImN 1 + ImN
1

v'2
ReN2, ImN2
ReNz ImNz

—(ReN I +ReNl )
1

v'2

(Re~,'+ Re&,')v'2
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domain. As discussed in Ref. 11, one also has that below
the intermediate-mass scale breaking the mass matrix has
the general form

2n~ 3
C

g2 g2
1 + 2

X4, X~4

W „,=(M{, l„l, +M"„/ I„)+(M„,q„q, +M{'i)q q„) .

(4.1)

4n,.—6

X
2n, (2.n; —1)

(n& —I ) Z(2n, . —2)

(4.5)

An examination of the C-odd and C-even lepton and
quark states of Table I shows that three generations of
lepton s and quarks remain massless below the
intermediate-mass scale. Also barring accidental zeros in
the mass matrix, the remaining families and mirror fami-
lies would become massive. However, unless these extra
families and mirror families have superheavy masses, the
theory is not phenomenologically viable since it would
lead to Landau singularity in the color coupling constant
below the intermediate-mass scale and yield unacceptably
large values of sin 0~. This is precisely the situation that
occurs if one straightforwardly extends the superpoten-
tial of Eq. (2.17) to run over all the families and mirror
families. Such an extension yields electroweak masses for
all the extra families and mirror families which would
lead to the phenomenological problem discussed above.

At present, theoretical evaluations from first principles
of the nonrenormalizable interactions of the superpoten-
tial on Calabi-Yau manifolds are not available. Here we
proceed phenomenologically to determine the desired
constraints on the nonrenormalizable part of the superpo-
tential which can avoid the problem discussed above.
These represent the constraints that the Calabi-Yau man-
ifold of Eq. (2.5) must satisfy if it is to be phenomenologi-
cally viable. The desired form for the leading part of the
nonrenormalizable interactions of the superpotential for
extra generations A Ai is

~AB
hW„, = g (L;L;) " (LqLs) . (4.2)

AB

—
A, „i~D„'D,' (Ni ) (4.6)

and thus gives superheavy masses to all the D', D,'
quarks. A recent analysis' shows that the proton-
decay mediated by the D-quark exchange can be
made consistent with the existing proton lifetime lower
limits from Irvine-Michigan-Brookhaven (IMB) and
KAMIOKANDE' experiments with a D-quark mass as
low as 10' —10' GeV. This is the mass range for the D
quarks expected from the mass growth of Eq. (4.6).

In Table IV we present an estimate of mz setting M,
equal to the Planck mass Mp& =2.4X 10' GeV. One sees
that values of n, &3 are phenomenologically acceptable.
Thus with the superpotential of Eqs. (2.17) and (4.2) we
can break the [SU(3)] symmetry spontaneously at the in-
termediate scale and make all the extra families and mir-
ror families superheavy with masses ~ 10' GeV with
n; ~3.

The three massless generations that arise from the di-
agonalization of the mass matrix of Eq. (4.1) contain ex-
tra particles not found in the standard model. First they
contain six Higgs doublets which are probably too many
to give a satisfactory value for sin20~. Ho~ever, as dis-
cussed in Sec. III, the cubic interactions in Eq. (2.15) of
type HH'N would be expected to give superheavy masses
to the extra Higgs doublets. In addition there are color
triplets D', D,' which can mediate proton decay through
dimension five operators. From Eq. (2.15), however, one
finds that the VEV growth for the X& field generates a
mass term for D', D,' of the form

The condition needed to avoid the phenomenological
diSculties is

ngs (n(, A, BWE (4.3)

where i =1,2 refers to the C-even and C-odd multiplets
that enter in the intermediate scale breaking of Eq. (2.17)

A&j run over all other lepton and quark genera-
tions. Since the VEV's of L„and L„are zero, Eq. (4.2)
does not contribute to the extrema equations. Thus re-
sults of Eq. (2.20) hold with Eq. {4.2) included. The
growth of X, and v2 VEV's then generate mass terms in
Eq. (4.2). For simplicity, we will assume from now on
that Eq. (4.2) is diagonal in A and 8 and write
k~z =A, z5zz, n~ =nzz. One has then

V. CONCLUSION

In this paper we have investigated the particle spec-
trum of the three-generation Calabi-Yau compactification
of the ESXE~ superstring below the intermediate-mass
scale. The analysis was done under the assumption that
the symmetry breaking at the intermediate-mass scale
preserves matter parity which is needed to forbid the
dangerous proton-decay arising from dimension-four
operators. An analysis of the Goldstone and Higgs fields

X=1
(N, ) (GeV) m„{GeV)

k= 10
(N, ) {GeV) m „(GeV)

TABLE IV. The mass m& of unw@nted generations as a
function of n; with n. & =2, A, & =10, X&=X2=10 GeV for two
di8'erent values of k, =k, =A, .

where

(4.4) 2.2 X 10'
2.0x 10'"
4.2x 10"
2.0 X 10'

2.9x10'
1.9 X 10'
8.2x 10"

7X 1018

2.2 X 10"
2.0 X 10'
] 9X 1016

6.2 X 10'

2.9 X 10'
1.9 X 10"
1.8x 10"
1.7X 10
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and the mass growth of vector boson associated with the
breakdown of the [SU(3)] symmetry to the standard-
model symmetry SU(3)c XSU(2)I XU(1)i, was carried
out. The unabsorbed components of two lepton families
and two mirror lepton families which provide the Higgs
fields in intermediate scale breaking were classified. It
was shown that a number of unabsorbed components be-
come superheavy through the cubic superpotential after
the N and v' VEV growth leaving a few fields with elec-
troweak size masses. Further, it is was shown that all the
remaining unwanted families and mirror families of
quarks and leptons can be removed from the low-energy
spectrum by generating superheavy masses for these par-
ticles through nonrenormalizable interactions that appear
in the superpotential. The final low-energy spectrum of
the theory was shown to be just the spectrum of the
minimal N =1 supersymmetry theory except for the few
exotic leptons listed in Table III. The phenomenology
expected from these extra particles will be discussed else-
where.

given by Eqs. (2.10)—(2.12), (2.18), (2.20d), and (2.21) with
VD given by

VD gL +gR ) x1 x I +y2 y2

(A 1)

We see that VD produces coupling between the N, and v2
fields. It is convenient to decompose N&, N&, vz, vz into
real and imaginary parts:

N& =n &+in &, N& =n, +in &,

V2 —V2+l V2, V2 Vp+l V2
(A2)

BV, 2 BV BV
(A3)

where the VEV's of n', , n ', , v2, v2 all vanish. One may
easily verify that the mass matrix elements of the imagi-
nary parts all vanish, e.g. ,

APPENDIX

We discuss here in detail the mass spectrum of the C-
even field N& and the C-odd field v2 which grow VEV's at
the intermediate scale MI to break [SU(3)] to the stan-

dard model. The effective potential for these fields are

since (BV/Bx, ) vanishes at the extrema. Thus in this
approximation all four imaginary parts are massless.
Two combinations are the Goldstone bosons of Eq. (3.8e),
and the two remaining combinations are entries in Table
III. The four real parts, couple in the mass matrix M .
Labeling rows and columns by n &, n &, vz, v2 we find

A+a
8 —(aa )'~

8 —(aa )'

A+a
C +b D —(bb )'i

D —(bb)'" D+d

(A4)

where

i(gL+gR)xi b= —,'(gL+gR)y2,

( y )2M4n —6

)2n —2
(
— )2n —2

2n (2n —1)A,
&

(A7a)

(A5)

c = 6(2gL —
gR )Qx)y2, d =—'(2gL —g )(x y )&~2

(y )2M4n —6
)2n —2

(
— )2n —2

2n (2n —1)A,z
(A7b)

and

A, ,(x,x, )" [nx, x, +(n —2)x, ],4n (n —1)

C

(A6)

w»ie x~ —xi =O(&; ), y&
—y, =O(b; ) are electroweak in

size. "
It is convenient to introduce the combinations

x, =
—,
' (x, +X, ), y, =

—,
' (y, +y, )

8=
4 6

-A, ,(x,x))" Qx(X(x, +x, ) .
4n (n —1) 2 „2

M"
C

and rewrite (A4) as

M=M +M (A9)

In Eq. (A4), the overbar notation means replace x&,y2 by
x„y2 [e.g., a =(1/3q)(gL+gR )x„etc.] and C, D can be
obtained from A, B by the replacement x i, x &, k i by
y2, y2, A2. [x &,y2, etc., are defined in Eq. (2.12).] It is un-
derstood in the mass matrix that all fields are VEV's.
The leading terms for these VEV's are"

where Mo is the matrix M with A, B,C, D set to zero and
a and a set to a, b and b set to b, and c and d set to c,
where the tilde quantities are the original ones with
xi y2, etc. , «placed by xi y2 [eg a=3(gL+gR)x1
etc.]. M& is then the remainder, i.e., M& =M —Mo.
From Eqs. (A7) and (A8) it is clear that MD is the leading
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part of M for large M„while M& is of (small) elec-
troweak size. We may thus diagonalize M perturbative-
ly, by first solving for the eigenvalues and eigenvectors of
Mo. One finds easily two superheavy eigenvalues and two
massless values:

X"'=u+E+[(a —b)'+4c ']'",

(N+X, +N+ X2),(o) 8(n 1 )

2n —1
(A12)

where N+ is given in Eq. (3.14c). A convenient pro-
cedure to calculate the nonzero correction to A, 3 and A.~ is
to take the determinant and trace of Eq. (A4). To leading
order we have

1
ttp3 (n ~ +n~ ), P4= (v&+v&)

2 2
(Al 1)

One may find the corrections to A,~+' by perturbation
theory where M

&
is the perturbation. One easily sees that

(Alo)
A,",'=0

3,4

with corresponding eigenfunctions given in Eq. (3.14a)
and

detM=X3A4A+A. =16(n —1)X,X&A'+'k' '

trM =k3+A4+A, ++A,

8 —1=X"'+X'"+ " (X'+X')+ —
2 l 1 2

showing that A, 3 4) 0 and hence nontachyonic.

(A13)

(A14)
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