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As a laboratory for studying dimensional reduction in inhomogeneous spacetimes, we consider
several five-dimensional models in which a bubble of a spacetime with a small compact dimension is
sewn to a spacetime with all five dimensions macroscopic. Obliging the five-dimensional metric to
be well behaved at the domain boundary constrains the parameters of the composite spacetimes un-

der study. Given a suitable potential, it is possible that the domain wall is created by the rapid vari-
ation of the size of the compact dimension. Then it is appropriate to reduce the five-dimensional

theory to an effective four-dimensional theory in which the size of the compact dimension plays the
role of a scalar field. It is the effective four-dimensional metric which must be well defined at the
domain boundary. We discuss several models of this latter type including some in which there is no
singular contribution to the effective energy-momentum tensor even at the domain boundary.

I. INTRODUCTION

The idea that spacetime may have more than four di-
mensions has attracted a great deal of attention, begin-
ning with the work of Kaluza' and Klein. Modern
string theory compels one to take this idea seriously. Of
course, only four macroscopic dimensions are observed
and one would like to understand the mechanism by
which the others become small.

One possibility is that compactification occurs in the
course of cosmological evolution. That is to say, the ear-
ly Universe may have had a large number of macroscopic
dimensions, with all but four driven to very small size by
the Einstein equations. Several authors have con-
structed homogeneous anisotropic cosmologies of this
sort.

One can imagine, however, that the early Universe was
not at all homogeneous. Rather, there may have been a
domain structure so that the Universe was comprised of
many regions of qualitatively different character. The
mathematics of such an inhomogeneous spacetime can be
very complex but we hope to get a feel for the effects of
inhomogeneities by studying some simple examples: we
shall study the dynamics of a bubble of an anisotropic
spacetime separated by a thin wall from a simple ambient
spacetime. We shall try to find models in which the bub-
ble evolves to have four macroscopic dimensions.

There are two attitudes one can take when matching
two higher-dimensional spacetimes across a thin wall.
One can imagine that the thin wall represents a region in
which some external matter field is varying rapidly. In
the mathematical limit where the wall is infinitesimally
thin, observers on either side of the wall must agree on all
components of the metric which are tangent to the wall.
We shall adopt this attitude in Secs. II and III, when we
match the five-dimensional Schwarzschild —de Sitter
cosmology to five-dimensional de Sitter space. This sim-
ple model may be a laboratory for understanding aspects
of the more complicated scenario recently proposed -by
Linde and Zelnikov in the context of chaotic inflation.

In their scenario the Universe consists of domains of six-
dimensional de Sitter space separated by walls from re-
gions with the topology M XS . In chaotic inflation the
walls may not be thin, but we feel that the thin-wall limit
is instructive nonetheless. The reason is that any patho-
logies in the thin-wall limit will hint that something in-
teresting is happening in the vicinity of the physical
(thick) wall. In the sample model we study, we find that
matching the tangential components of the five-
dimensional metric along the (four-dimensional) wall
suSces to determine the equation of motion for the wall.
This in turn determines the energy-momentum tensor of
the wall. We cannot solve the equation of the wall except
for in the asymptotic past, but we find that if the mass of
the Schwarzschild —de Sitter cosmology is above a certain
value, then the wall is necessarily tachyonic in the far
past. One might expect the Linde and Zelnikov model to
be even more complex and surprising.

The second attitude one may adopt is to suppose that
the thin wall is a region where the sizes of the extra di-
mensions are varying rapidly. In this approach, one
reduces the higher-dimensional gravity theory to an
effective four-dimensional theory in which the extra di-
mensions appear as "matter" fields. The extra dimen-
sions may vary rapidly in a small region of spacetime if,
say, the effective "matter" fields are governed by a poten-
tial where two local minima are separated by a steep bar-
rier. It is not difficult to create such a potential by, for
example, introducing additional matter fields, ' exploit-
ing the Casimir energy of the extra dimensions " (for
an interesting discussion of how Casimir effects and addi-
tional matter fields can be used to achieve a stable
compactification of ten-dimensional supergravity see Ref.
12), or by introducing bosonic strings which wind around
the extra dimensions. ' In Sec. IV we apply this ap-
proach to a model consisting of a bubble of four-
dimensional de Sitter space (plus one small spectator di-
mension) in an ambient five-dimensional de Sitter space.
Such a cosmological compactification model is suggested
by the work of Moss. '" Our discussion consists mainly of
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combining the standard techniques for the reduction to
an effective four-dimensional theory with a review of
Maeda's' formalism for connecting four-dimensional
Robertson-Walker cosmologies. It is difficult to solve the-
resulting equations, but it is easy to see that the wall
separating the four- and five-dimensional de Sitter spaces
comprises a state of matter for which the pressure is the
negative of the energy density, with both varying in time.
Finally, we consider the reduction of the five-dimensional
radiation-dominated Robertson-Walker cosmology. The
reduction suggests some interesting spacetimes contain-
ing two regions sewn across a boundary which does not
have a singular energy-momentum density. The first
spacetime we discuss comprises a four-dimensional
radiation-dominated universe (plus one small spectator
dimension) sitting inside a five-dimensional radiation-
dominated universe. The second contains an effective
four-dimensional radiation-filled universe matched to an
effective four-dimensional dust-filled spacetime.

II. EMPTY FIVE-DIMENSIONAL SPACETIMK
WITH COSMOLOGICAL CONSTANT

The Schwarzschild —de Sitter spacetime is the most gen-
eral solution to the matter-free Einstein equations with
cosmological constant which possesses the annealing
property of spherical symmetry. In five dimensions its
line element is

ds = —A dY +3 'dR +R dQ (2.1)

where

g2R 2

R

dQ(3)=d+ +sin ~II(d6 +sin d@ ) .

This line element looks very much like its four-
dimensional counterpart. The differences are that the an-

gular piece dA~3) is the line element of the unit three-

sphere, and R, not R, appears in the mass term of the
metric function A. (Berezin and Kuzmin' discuss
Schwarzschild —de Sitter space in arbitrary dimensions
but they use a different normalization for the mass pa-
rameter. ) In any dimension there is a transitional value
of the product MX which determines a radical change in
the character of Schwarzschild —de Sitter space. Below
the transitional value the spacetime has two horizons lo-
cated at the two positive values of R for which the metric
function 3 vanishes. The two horizons coincide at the
transitional value, which in five dimensions is 8MX =1.
Above the transitional value there are no horizons; R and
Y are globally well-defined timelike and spacelike coordi-
nates, respectively, which along with the angular coordi-
nates cover the entire Schwarzschild —de Sitter spacetime.
Because the metric functions do not depend on Y, one
may "compactify the Y direction, " that is, restrict Y to
the range 0 ~ Y ~ 2m R 5 and identify the end points.
Above transition, where Y is spacelike, this
compactification does not lead to closed timelike curves

—1+ +X~R 2( T)
R (T)

dT +R—(T)dQ (2.2)

with

R ~(T)= [ +8MX —1[sinh(2XT)]+ 1 I .
1

2X

Note that we have chosen conventions such that the
Universe begins at a (negative) time given by
/8MX —1[sinh(2XT) ]= —1.

At fixed time, the Schwarzschild —de Sitter cosmology
is not isotropic at any point. As a manifestation of this it
does exhibit cosmological compactification. A time
profile of the metric function 3 is displayed in Fig. 1

from which it is seen that the compact dimension shrinks
rapidly during the Universe's infancy. Ultimately the
compact dimension will grow again so if one wishes to
consider the possibility that the early Universe was
Schwarzschild —de Sitter space, one will have to invoke
some sort of phase transition at the time the compact di-
mension is small.

We are interested in the viability of the cosmological
compactification mechanism in a universe with a compli-
cated domain structure. In particular, we are interested
in the constraints (if any) imposed by the requirement
that spacetime be well behaved at the domain boundaries.
As a toy model, we shall work out in the next section the
matching of a bubble of Schwarzschild —de Sitter space to
an exterior region of de Sitter space.

The de Sitter space is the special case of
Schwarzshild —de Sitter space with M=O. It may be de-
scribed as the surface

Q( RO3)

FIG. 1. Plot of the metric function A (R ( T) )=[—1 2M+/R (T)+X R (T)] versus the time T.

in the Schwarzschild —de Sitter space.
Henceforth, when we work with the Schwarzschild —de

Sitter spacetime, we shall always be working with
MX & 1, that is, above transition. The spacetime begins
with a bang —a spacelike singularity at the origin of
"time" R =0. For this reason we think of the
Schwarzschild —de Sitter spacetime as a big-bang cosmol-
ogy. Indeed, it is not dificult to find a cosmic time T for
which the line element (2.1) assumes the form of a four-
dimensional k = 1 Robertson-Walker cosmology along
with a dynamical extra dimension (such cosmologies have
been studied by Davidson et al. in Ref. 17). Define
dT =( —A) '~ dR and find
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gM~u u = (M, %=0, . . . , 5)M N

x'
with

(2.3)

go=diag( —1, 1, 1, 1, 1, 1)

G$
1

cosh (yt)dy dt —+r (t)den(3), (2.4)

where

r2(t)= sinh (yt)1

x'

dco~3~=df +sinh g(d8 +sin Odg ) .

In these coordinates the surface swept out by the (y, t)
coordinates at fixed angles is a subspace of the surface de-
scribed by Eq. (2.3). This subspace is given by—(u ) +(u') +(u ) =I/g . So y is automatically an
angular coordinate and lies in the range 0 ~y ~ 2m.
There are coordinate systems for de Sitter space, for
which a dimension may be compactified by declaring an
appropriate coordinate to lie in a fixed range (as we did
for the Schwarzschild —de Sitter space). We choose,
though, to work with the full de Sitter space with line ele-
ment given by Eq. (2.4).

In the interest of simplicity, we shall try to match the
Schwarzschild —de Sitter and de Sitter spacetimes across a
boundary with the highest possible degree of symmetry.
At first, it seems this may be achieved by specifying
Y = Y (T) to d. escribe the dynamics of the boundary from
the Schwarzschild —de Sitter point of view and by deter-
mining y =y (t) to describe the de Sitter space dynamics.
However, Schwarzschild —de Sitter and de Sitter observers
will not agree on the topology of such a boundary, so
such a case must be excluded. Even if the de Sitter space
is expressed in coordinates so that it looks like a k =+1
Robertson-Walker cosmology with dynamical extra di-
mension, a boundary specified by Y= Y(T) is still unac-
ceptable. The reason is that the surface swept out by the
( Y; T) coordinates has the topology of a cylinder. When
projected onto this surface, the domain boundary appears
as a line. A snapshot of the spacetime consisting of the
Schwarzschild —de Sitter space sewn to an external de Sit-
ter space is illustrated in Fig. 2. This composite space-
time ceases to be a manifold at the domain boundary. In
particular, a particle entering the Schwarzschild —de Sitter
space from the (shaded) de Sitter space would seem to
have the option of turning left or right at the boundary.
What will it do7 Spacetimes such as are illustrated in

d$ =gM&du du

The line element of de Sitter space is not the M=O limit
of Eq. (2.2) because in deriving this equation we used
8MX ) 1. However, it is possible to write the de Sitter
line element in the form of a four-dimensional k = —1

Robertson-Walker cosmology with a dynamical extra di-
mension

FIG. 2. Snapshot of Schwarzschild —de Sitter space sewn to
de Sitter space (shaded) across a domain boundary with dynam-
ics given by Y = Y( T). This spacetime ceases to be manifold at
the domain boundary.

III. THK DETAILED MATCHING

We would like to match the Schwarzschild —de Sitter
line element

ds = —1+ +X R (T) dY
R (T)

dT +R (T)d—Q (3.1)

where

FIG. 3. Snapshot of Schwarzschild —de Sitter space sewn to
de Sitter space (shaded) across a domain boundary with dynam-
ics given by +=4( T), l( = tp(t). The polar angles 6 and 8 along
with the compact coordinates F and y have been suppressed.

Fig. 2 are inadmissable. Therefore, we shall specify the
domain boundary dynamics by giving the equations
%=%(T) and g=f(t). A snapshot of the resulting
spacetime is illustrated in Fig. 3. The boundary has the
topology R XS XS' and symmetry group O(3) XU(1).
We shall find that, because of this relatively low degree of
symmetry, obliging the metric to be well defined at the
boundary suffices to determine the boundary dynamics.
In the next section we shall work out the metric match-
ing in detail. Along the way we shall find two surprising
results: the scale of the Schwarzschild —de Sitter compact
dimension is not a free parameter but rather is given by a
relation R5=R5(X,M, y) and that, in order that the
domain boundary be timelike in the asymptotic past,
8MX cannot be too large.
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R~(T)= I't/SMX —1[sin(2XT)]+1[1

2X

to the de Sitter line element

ds = cosh (Xt)dy dt —+r (t)dco(~),2= 1

x'
where

r (t)= sinh (Xt)
1

x'

(3.2)

1 +R' —8mX2R4 =0 .x' 5 (3.5)

The solution for this quadratic equation in R5 assumes
the convenient form

ate in the distant past while the positive branch is proper
in the asymptotic future. The only way R can be a con-
tinuous function of t is if the "branch switch" occurs at
t=O and if the square root in Eq. (3.4) vanishes at this
time. Thus, R5 cannot be chosen freely, but must satisfy

2

—1+ +X R (T) R~ = cosh (Xt),2M 2 2 2 1

R (T)
(3.3)

across a boundary with topology R XS XS' and with
dynamics specified by 4='Il(T), f=g(t). Our strategy
involves four steps.

(1) Demanding that the circumference of the
compactified dimension is well defined at the boundary
for all time gives the relation T=T(t) and (perhaps
surprisingly) R~ =Rs(X,M, X).

(2) Requiring that the radius of the two-sphere is well
defined gives a relation 0'=4(g, t).

(3) Equating the domain boundary line element
ds = dT +R—d% = dt +r dg—gives the domain-
wall dynamics. We can solve the resulting equations ex-
plicitly in the asymptotic past.

(4) Obliging that ds (0 in the asymptotic past leads to
I &+SMX'&2.

(1) Matching the compact dimension. The condition
that the size of the compact dimension be well defined at
the domain boundary is

(XR5) = 1

&SMX' —1
(3.6)

In order to match the domain-wall line element in step (3)
we shall need to know how T varies with t. After a bit of
algebra we find

dT=
dt

1 1
2 ~ &2

sinh2gt
2XXR5 [[2X R (t) —1] +(8MX —1)I'

1
cosh2yt +R 52

X 1+ x'
[(I/X cosh Xt+R ) —SMX R, ]'

(3.7)

where R (t) is given by Eq. (3.4). The minus sign is ap-
propriate for t &0, the plus sign for t & 0. Note that while
T is a continuous function of t, dT/dt has a jump discon-
tinuity at t=O. Equation (3.7) simplifies greatly in the
asymptotic past:

which has the solution
~2—(XR5) +SMX e ~'.

dt X (3.8)

R i(t) = cosh (Xt)+R 5

1 1

2X R

1
cosh (Xt)+R s

. . x'
1/2—8X MR5

2

(3.4)

That dT/dt tends to zero reAects the fact that R =0 cor-
responds to a finite value of T but a (negative) infinite
value for t.

(2) Matching the two sphere radius. -Because of the O(3)
symmetry of the domain boundary we may identify the
angles 8 with 0 and 4 with P. Then the condition that
the coeScient of the two-sphere metric d 6 +sin 6 dN
be well defined at the domain boundary is

R sin %=r sinh g . (3.9)
For either choice of the sign in (3.4) the size of the com-
pact dimension will be well defined at the domain bound-
ary. Once we have determined which is the correct sign,
Eqs. (3.4) and (3.1) give an implicit relation for T = T(t).
In the case of the negative branch of Eq. (3.4), R (t) in-
creases monotonically from zero at t = —~ to some
maximum at t=O, then decreases monotonically back to
zero at t = + ~. For the positive branch, R is infinite at
t =+~ and achieves a minimum at t=0. Now, R is a
timelike coordinate and must increase monotonically
with t. This means that the negative branch is appropri-

+ dg cos~pd%'+sin%(di F(t))/dt
+I+sin 'PF(t)

(3.10)

where

We know R (t) [Eq. (3.4)] and r (t) [Eq. (2.4)] so Eq. (3.9)
determines the relation %=ip(f, t), up to sign. In order
to match the domain-wall line element in step (3) we shall
need to know how ~ll varies with P and t. The most con-
venient form for this variation is

cosh Xt + (XR, ) + [ [cosh Xt + (XR, ) ] —SMX (XR, ) I
'~

F(&)—=
2(XR s ) sinh Xt
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The choice of sign in Eq. (3.10) has no impact on the ar-
gument we shall give in step (3) because only (df) ap-
pears in the domain-boundary line element. In the
asymptotic past the complicated time functions in Eq.
(3.10) have the form

F(t)i—h32My (yRs) e ~' (3.11)

and

d
dt

&F(t)i—h2V32M y (yR )e ~' .5 (3.12)

(3) Matching the domain boun-dary line element Th. e
domain boundary trajectory is described by the line ele-
ment

s = —dT+Rd@= dt+—r (3.13)

By substituting Eqs. (3.10) and (3.7) into this line element
one obtains a quadratic equation

2

A (kP, t) +8(kll, t) + C(klg, t) =0 (3.14)
dt dt

A ('P, t)i—h e ~'cos klg,
4X'

8 ('Ig, t)i—h&8M sin2klg(yR s ),
C(+, t)~ 1. —

(3.15)

It is easy to see that costi e ' in the asymptotic past is
not consistent with Eq. (3.14). Therefore,

d kll 8(0, t)++B'(0, t—) 4A (kI, t)C(—q, t)
dt 2A (%,t)

1 2+e~+ =+
A '~~(kII, t) cosklg

in the distant past. The asymptotic solution is

sinklgi —h2(+e+'+const) .

(3.16)

(3.17)

(4) A timelike domain boundary in the asymptotic past.
Inserting Eqs. (3.4), (3.8), and (3.16) into

2 '2 2
dT 2( )

d%
dt dt

ds
dt

(3.18)

yields, in the distant past,

ds
dt

2

—32M' (yR s ) e ~' (yR s )—cos 4'0

which in principle gives the dynamics of the domain
boundary. In practice the equation is difFicult to analyze
except in the asymptotic past where the coefficient func-
tions are

+8MX —1 &cos %0 . (3.20)

So the critical product 8MX, which was defined to be
greater than unity, must surely be less than 2. Its range is
squeezed even more tightly if cos Wo does not assume its
maximal value of unity.

A few caveats are in order regarding the constraints,
(3.6) and (3.20), we have derived. We have been consider-
ing the classical evolution of a Schwarzschild —de Sitter
space sewn to de Sitter space. In order that this space-
time be well defined for all time, we discovered Eq. (3.6)
as a necessary condition. This, in turn, was used in deriv-
ing Eq. (3.20). If, however, one imagines that the
Schwarzschild —de Sitter or de Sitter spaces undergo some
quantum phase transition before t=O, then these con-
straints may be evaded. Some restrictions will obtain, for
example, for as long as the Universe may be treated clas-
sically the square root in Eq. (3.4) must be real, but a de-
tailed treatment is inherently quantum mechanical.
Equation (3.20) was derived as a necessary condition in
order that the domain boundary be timelike. But we can-
not solve the equations of motion, (3.14), for all time, so
we do not know if Eq. (3.20) is a sufficient condition. We
also note that even if the constraints (3.6) and (3.20) are
satisfied it seems likely that the function
s(t)= l (ds/dt, idt, though continuous, has a kink at
t=0.

Finally we observe that the Einstein equations imply
that the energy-momentum tensor has a contribution
concentrated at the domain boundary. To see this, one
splits the five-dimensional spacetime near the boundary
into a one-parameter (g) family of four-dimensional slices
such that g=O is the domain-boundary. It is convenient
(and always possible) to choose ri so that the vector P,
which points in the direction of increasing q, is of unit
length and normal to the slices it pierces. The five-
dimensional Einstein equations at the point x"=(g,x')
may be expressed in terms of four-dimensional quantities
intrinsic to the slice coordinated by the x, along with the
extrinsic curvature tensor

(3.21)

which describes how these slices are embedded in five-
dimensional spacetime. The extrinsic curvature is ill
defined as the domain boundary; Schwarzschild —de Sitter
and de Sitter observers do not agree on its value there.
And the Einstein tensor 6; contains a normal derivative
of the extrinsic curvature. Therefore, the energy-
momentum tensor must have a 6-function contribution
located at the domain boundary. This contribution is
.determined by integrating the five-dimensional Einstein
equation across the domain boundary' (in four dimen-
sions' ):

(3.19) [K, ]——', g; [TrKj= —8mGS, (3.22)

where %0, an integration constant, is the asymptotic
value for +. In order that the domain boundary be time-
like in the asymptotic past we require (yR 5 )—I/cos~kigo) 0. Using Eq. (3.6) we find

where

S;—:lim I T; dpi~0 E

and square brackets around a quantity denote the
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difference between the quantity viewed by de Sitter and
Schwarzschild —de Sitter observers. Note that, because of
the O(3) XU(1) symmetry of the boundary, S, can only
depend on the boundary's proper time ~. Since the tra-
jectory of the domain boundary determines its energy
content via Eq. (3.22) one might wonder if there are any
(or all) trajectories for which S„is positive. The answer
is, for some, but not all trajectories S, must be positive
in the asymptotic past. The reason is that if ('p(r), g(r))
is an admissible domain-boundary trajectory, so is
(vr —%'(r), —P(r)): after all, the metric functions involve
only sin 4 and sinh g. Under the transformation
('P, g)~(n —'P, f) a—ll the components of the extrinsic
curvature (from both Schwarzschild —de Sitter and de Sit-
ter points of view) change sign. Therefore, one and only
one of the allowable trajectories (4,g) and (rr —4, —g)
has a positive S in the asymptotic past. Pictorially, if
Fig. 3 represents a snapshot of a trajectory with negative
rest energy, then Fig. 4 shows a snapshot of a trajectory
with positive rest energy. We have limited our remarks
to the asymptotic past because we cannot rule out the
possibility that S passes through zero during the
domain-boundary history. In the Appendix we display
the extrinsic curvature components explicitly and
confirm that they change sign under (%,P)~(m —4', —g).

IV. THE FIFTH DIMENSION
AS A MATTER FIELD

Up until now, we have been considering the sewing of
two higher-dimensional spacetimes across a domain
boundary representing the rapid variation of some
(unspecified) external matter field. However, it is possible
that the extra dimensions themselves vary rapidly in a
small region of spacetime, leading to a domain boundary.
According to the (Einstein) equations of motion, this can
occur if, for example, the extra dimensions are associated
to a potential which is sharply peaked in a small region of
spacetirne. Such a potential can be generated by adding

matter fields to the higher-dimensional spacetime ' intro-
ducing one-loop Casimir effects "or by considering bo-
sonic strings which wind around the extra dimensions. '

If any of these options is exploited, and if the domain
boundary is idealized as infinitesimally thin, then the
sizes of the compact dimensions jump at the boundary.
So it is not the case that all the tangential components of
the higher-dimensional metric are continuous at the
domain boundary; matching spacetimes in the presence
of a potential for the extra dimensions is qualitatively
different from the matching previously discussed for
which there was no such potential. In order to match
spacetimes with a potential for the extra dimensions, one
reduces the higher-dimensional theory to an effective
four-dimensional theory in which the extra dimensions
play the role of scalar matter fields. Then the situation is
as we have previously discussed, only one matches the
tangential components of an effective four-dimensional
metric at a domain boundary which is effective a three-
dimensional surface. In general, none of the components
of the original five-dimensional metric are continuous at
this surface.

The details of the reduction to an effective four-
dimensional theory depend on the structure of the extra
dimensions. The spacetimes we shall study will be five di-
mensional so we shall present the reduction of a five di-
mensional to an effective four-dimensional theory (for the
reduction of higher-dimensional theories in which the ex-
tra dimensions have spherical symmetry see Ref. 9). We
shall apply the reduction first to the case of five-
dimensional de Sitter space enclosing a bubble of four-
dimensional de Sitter space with constant fifth dimension.
This example is suggested by the work of Moss. ' We
shall determine the equation of motion for the effective
domain boundary in terms of the surface energy density
and pressure of the boundary.

The reduction procedure suggests some interesting
composite spacetimes which do not require a singular
contribution to the energy-momentum tensor localized at
the boundary separating two domains. One such space-
time consists of a five-dimensional Robertson-Walker
radiation-dominated universe sewn to a four-dimensional
Robertson-Walker radiation-dominated universe (plus
constant extra dimension). As a second and final exam-
ple, we sketch how effective four-dimensional radiation-
filled and dust-filled spacetimes can be matched without a
singular energy-momentum density at their boundary.

Now we turn to the reduction of five-dimensional grav-
ity to an effective four-dimensional theory. The five-
dimensional line element is

ds'=gl„dx ~dx ~ (4. 1)

FIG. 4. The effect on Fig. 3 of the transformation
(%,P)~(m. —4, —g). The surface stress S;, corresponding to
the trajectories frozen in Figs. 3 and 4 are equal in magnitude
and opposite in sign. ds =C 'y dx"dx +C dy (4.2)

written in coordinates x =(x",y). We shall be con-
cerned with spacetimes which satisfy the Kaluza-Klein
ansatz, that is to say, for which the coordinate y describes
a compact dimension, and for which g~~ is independent
of y. We shall also assume that the Kaluza-Klein gauge
fields vanish: g„=O. Then the five-dimensional line ele-
ment may be written in the form
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We shall compactify the fifth dimension so that y lies in
the range O~y 2~F5. After choosing units such that
the five-dimensional Newton's constant 65 —=R~/4 and
defining the effective scalar field P—:&3/21nC, the five-
dimensional Einstein equations become

, ~„.'4'Z = —
I a„ya,y —,')—„.[(a.yl. "a,y)

+Ae ~] I (4 3)

(4.4)

where A is the five-dimensional cosmological constant
and where the Ricci tensor ' 'R„and covariant deriva-
tives are calculated with the effective four-dimensional
metric y„. With the parametrization defined by Eq. (4.2)
the five-dimensional theory appears as a four-dimensional
theory with a massless scalar field sitting in an exponen-
tially falling potential.

Once additional matter fields or Casimir effects are in-
troduced, potentials with interesting structure can be ob-
tained. The potential illustrated in Fig. 5, for example,
includes the one-loop Casimir energy of the graviton and
additional fermionic matter fields.

Given a potential such as is illustrated in Fig. 5 there is
a metastable (i.e. , classically stable) solution of the Ein-
stein equations with P frozen at the extremal value P;„
and y„ the metric of an effective de Sitter space with
cosmological constant V(P;„). The five-dimensional
spacetime, then, is a product of a four-dimensional de Sit-
ter space with a circle of constant circumference. Even-
tually P tunnels through the potential barrier and begins
rolling down the tail of the potential. Once P))P;„this
potential is dominated by the cosmological-constant can-
tribution Ae ~—the Casimir contributions can be
ignored. During this rolling, the spacetime is a five-
dimensional de Sitter space with cosmological constant
A.

In an early universe with a complicated domain struc-
ture, it is plausible that some regions have P frozen at its
extremal value. Such regions may be enveloped in a five-
dimensional de Sitter space. Moreover, it is possible to
nucleate a region of four-dimensional de Sitter space
(with an extra circle) within a larger domain of five-
dimensional de Sitter space. ' Therefore, it seems fair to
enquire as to how these spacetimes may be matched
across a domain wall across which the size of the extra

dimension varies rapidly.
The line element of the four-dimensional de Sitter

space with an extra circle is

ohXT
ds = dT—+ (dV +sin VdQ )+dY

X
(4.S)

with dQ =d6 +sin 6 d+ and 0~ F &2+85. For the
five-dimensional de Sitter space the line element has the
form

h t
(dq i+ stnh qidai2)+ ~ dy2

with dpi =d9 +sin Odg .
dimensional line elements are

(4.6)

The effective four-

cosh XTdo = dT + — (d% +sin VdQ )
X

(4.7)

for the four-dimensional de Sitter space with circle, and

d = dt +— (dl(j+ i h1(d )
x x'

(4.8)

dcr2+= dt's++a+(t—+)[dg++f+(P+)dA ] . (4.9)

The plus subscripts refer to the four-dimensional de Sitter
space with circle, which reduces to a k= 1 four-
dimensional Robertson-Walker cosmology. The minus
subscripts refer to the five-dimensional de Sitter space
which mimics a k = —1 cosmology.

The joining of two Robertson-Walker cosmologies
across a domain-boundary has been examined by Mae-
da. ' The composite spacetime may be described in
terms of six functions —the energy densities and pressures
of the two regions being joined:

2

p+=3 + (4.10)
Q + g+

L

2

a a 1p+= 2 +
Q + Q + g+

(4. 1 1)

for the five-dimensional de Sitter space. We shall match
these effective four-dimensional line elements across a
domain boundary with spherical symmetry. Thus we
shall set 6=0 and 4 =P. The line element (4.7) is that of
a four-dimensional Robertson-Walker cosmology. By
redefining the time t the line element (4.8) can also be put
in such a form. Both Eqs. (4.7) and (4.8) can be summa-
rized by

FICx. 5. The potential for the eff'ective matter field P obtained
by considering the one-loop Casimir energy of graviton and Fer-
mi fields, along with a modest cosmological-constant term.

(an overdot denotes differentiation with respect to the
proper time ~) along with the energy density (q) and pres-
sure (m) of the domain boundary. All six parameters are
related by the eff'ective four-dimensional (covariant) con-
servation of energy, and the parameters (- and m are fur-
ther related by the equation of state for a thin domain
boundary, which we now discuss.

In general, when two spacetimes are matched across a
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T„=S„(x')6(il )+regular terms . (4.12)

It is not di%cult to check that four-dimensional conserva-
tion of energy ensures that S„„=S„;=0. The most gen-
eral form for S„which respects these orthogonality con-
ditions, and which is rotationally invariant is

S„„=q(~) U„U +m(r )(h„„+U„U ), (4.13)

where U" is the four-velocity of the domain-boundary
and h„=y„—g„g„. In the effective four-dimensional
picture the source of the energy-momentum reAected in

S„ is the rapid variation of an effective scalar field P
with energy-momentum tensor

T~. =a„yaA y„„[,'a—A) a—p+v(4)] . (4.14)

In the thiri-wall limit, derivatives normal to the wall
dominate all others so that B„P~ g„. It follows that S„
can have only contributions proportional to g„g, and y„„
which forces m= —(- and

S„„=—q(~)h„(i) =O, x') . (4.15)

The domain boundary can exchange energy with the
spacetimes it separates, so it need not be the case that (,- is
a constant. Indeed, the proper-time variation of (,- is
determined by the conservation of energy

thin wall, there is a contribution to the energy-
momentum tensor concentrated at this wall. In order to
describe this contribution it is convenient to choose coor-
dinates in a neighborhood of the wall x"=(rt,x') such
that rt =0 defines the wall (now idealized as
infinitesimally thin) and P, the unit vector which points
toward increasing g, is normal to the wall. The effective
four-dimensional energy-momentum tensor may then be
written

ds =C 'y dx"dx +C dy (4.19)

with 0 ~y (2m. The effective four-dimensional line ele-
ment is

der =y„dx"dx = dt +t(dr—+r dQ ) . (4.20)

The relationship between the effective cosmic time t and
the metric function C of Eq. (4.19) is C =kt' (k can be
any positive number and the five-dimensional energy den-
sity p is independent of k). The effective four-
dimensional scalar field is defined by /=&3/21nC. The
effective four-dimensional Einstein equations have the
form

Given the initial data R (r=O) and R(~=0), Eq. (4.18)
determines the initial value q(&=0). Equations (4.17) and
(4.18) together then determine the trajectory of the
domain boundary along with q(r).

Finally, we shall apply the technique of reducing a
five-dimensional spacetime to a four-dimensional one to
the case of a five-dimensional radiation-dominated
Robertson-Walker cosmology with compact dimension.
This will suggest a scenario where an inhomogeneous an-
isotropic spacetime can be sewn to a radiation-dominated
spacetime without a concentration of energy at the
domain-boundary. We shall also discuss a spacetime in
which two five-dimensional radiation-dominated cosmo-
logies with rather different scales for the compactified di-
mension can be attached without a concentration of ener-
gy density. From an effective four-dimensional
viewpoint, these spacetimes would be described quite
differently.

The five-dimensional radiation-dominated cosmology is
a solution to the Einstein equations with energy-
momentum tensor TM =diag( p, p/4, p—/4, p/4, p/4).
The line element may be written

6 p G
(qR )+m (R )= (p+p)R ay2 d

8T 0'T dr
(4.16)

(4) & (4)R„——,y„"R

= —(a„yaA ,'y„.[a.yy"—aA—+v(y)]]+ T„".

q= —(p +p )ay 87
(4.17)

with all quantities evaluated at the domain boundary.
The equation of motion for the domain boundary is'

a d g+ a dltj
a d1

(4.18)

where square brackets about a quantity denotes the quan-
tity measured by a five-dimensional de Sitter observer at
the boundary subtracted from the quantity measured by a
four-dimensional (with extra circle) de Sitter observer
there; R =af is the radius of the boundary's two-sphere,
on which both observers agree and y+ —= (dt /dr)+
=[1+a (dg/dr) ]+ is the usual relativistic expansion
factor. Equation (4.16) can be simplified by substituting
m = —(- and the four-dimensional de Sitter relation
p+ = —p+ (the extra circle does not alter this relation):

(4.21)

p=p, +v(4» (4.23)

and the equation of motion for the scalar field is

&3/2y"" T'—dV
dP

(4.22)

where T„' is an effective four-dimensional source term.
In obtaining Eq. (4.22) we used the fact that the five-
dimensional energy-momentum tensor describing radia-
tion is traceless. The four-dimensional effective source
T„'~ is not, in general, traceless. Equations (4.21) and
(4.22) do not uniquely determine the potential and
effective source terms. (In the cases we have previously
studied, with T~=A6~, it is always possible to set the
effective source equal to zero. ) One consistent choice is
V(p)=le ~ and T„' '=diag( p„,p„,p„,p„) with —the
effective radiation energy density and pressure defined via

As before, a bracketed quantity is a difference measured
between four- and five-dimensional de Sitter observers. p =4[p.—v(4) l . (4.24)
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From the four-dimensional viewpoint, the energy density

p is interpreted as a sum of an effective four-dimensional
radiation energy density and a Casimir energy, V(P).
Likewise the pressure p =p/4 is seen as a four-
dimensional efFective radiation pressure along with a
"Casimir pressure" —V(P). For more details, in particu-
lar the justification for interpreting p„and p„as
eftectively arising from radiation, see Ref. 20.

In Fig. 6 we have reproduced Fig. 5, only we have
fine-tuned the five-dimensional cosmological constant so
that the potential vanishes at its minimum. The potential
is dominated by the Casimir term when P is sufficiently
small. Therefore, if the spacetime is such that P is
su%ciently small, then its line element is well described
by Eq. (4.19) and there is an effective radiation source.
By choosing the parameters of the potential properly, it is
possible to arrange for the size of the compact dimension
to be macroscopic even when P is "sufficiently small"
that the Casimir term dominates the potential. In time,
the scalar field rolls down the potential and settles at the
value P;„. At this point the line element (4.19) becomes,
after a rescaling of coordinates,

ds = dT +T—(dR +R dn )+dY (4.25)

with 0 ~ F ~ 2mR z, in the present case R 5

=exp(&2/3P;„) but we want to be able to discuss the
line element (4.25) for general R5. The line element (4.25)
describes a solution of Einstein s equations with energy-
momentum tensor TM =diag( —p, p/3, p/3, p/3, 0) with p
independent of R5. The spacetime is a four-dimensional
radiation-dominated cosmology with an extra constant
circle.

For any R ~, the effective four-dimensional metrics aris-
ing from Eqs. (4.19) and (4.25) are identical, and give Eq.
(4.20). This means that the five-dimensional radiation-
dominated cosmology can be attached to the four-
dimensional radiation-dominated cosmology (with circle)
across a small region of spacetime across which the fifth
dimension varies rapidly, with no singular concentration
of energy density in this region. The trick is to find a po-
tential which enforces the rapid variation of the fifth di-
mension.

As a final example we consider the potential illustrated
in Fig. 7. It was obtained by Rubin and Roth" who con-
sidered both repulsive (from fermions) and attractive

FIG. 7. The potential for the efFective matter field P obtained

by considering the one-loop Casimir energy of graviton and Fer-
mi fields but with no cosmological-constant term.

(from gravitons) Casimir effects, but who did not include
a five-dimensional cosmological constant. The asymptot-
ic behavior of the potential function is
V(P)~A, e ~= V (P) for large negative P and
V(P)~ —

A, +e ~= V+(P) for large positive P. This
behavior at large P is noteworthy because a second con-
sistent choice for the potential and source term of Eqs.
(4.21) and (4.22) is V(P )~V+ (P ) = —

A, +e ~ and
T„' '= diag(p&, 0,0,0) with the effective dust energy
defined by

p=p~+ V+((ti) . (4.26)

From the four-dimensional viewpoint, the energy density

p is interpreted as a sum of an effective four-dimensional
dust energy and a Casimir energy V+(P). The pressure
arises exclusively from Casimir effects. For more details
see Ref. 21. If a region of spacetime is such that P &)0
then its line element is well described by Eq. (4.19) and
there is an effective dust source. Indeed the spacetime
with P ((0 (and efFective radiation source) and the space-
time with $)&0 (and effective dust source) have the same
effective four-dimensional metric. From the effective
four-dimensional point of view, spacetimes of two very
different characters may be connected across a region
across which P varies from very small to very large. The
size of this region depends on the details of the potential
V(P). No matter how small it is though, there will not
be a singular contribution to the energy-momentum ten-
sor localized in this region, All our remarks about
effective four-dimens&onal spacetimes apply equally well
to genuine four-dimensional spacetimes with appropriate
external matter fields.

FICx. 6. The potential for the effective matter field P obtained
by considering the one-loop Casimir energy of graviton and Fer-
mi fields and by choosing the cosmological constant A so that
the potential vanishes at its minimum.

As a laboratory for studying the dimensional reduction
in inhomogeneous spacetimes, we have considered several
five-dimensional models in which a bubble of a spacetime
with a small compact dimension is matched to a space-
time with aH five dimensions macroscopic. The matching
is across a domain boundary which is a small region of
spacetime across which some field is varying rapidly.
This field could represent external matter (Secs. II and
III) or the size of the compact dimension (Sec. IV). In
the former case, all the tangential components of the
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five-dimensional metric must be well defined on the
domain boundary. For the model we analyzed, this con-
dition was enough to determine the dynamics of the
domain boundary, and also the energy-momentum con-
tent of the boundary. We also found that obliging the
metric to be well defined for all time constrained the pa-
rameters describing the composite spacetime. In our
opinion, these features are generic to models involving
the sewing together of spacetimes, at least one of which is
inhomogeneous.

The compact dimension could vary rapidly across a
small region of spacetime if a suitable potential is intro-
duced for the size of this dimension. Such a potential can
arise if one includes additional matter fields or Casimir
effects. When a compact dimension varies rapidly it is
appropriate to reduce the five-dimensional theory to an
effective four-dimensional theory in which the size of the
compact dimension plays the role of a scalar matter field.
It is the effective four-dimensional metric which must be
well defined at the (effectively three-dimensional)
domain-boundary. In general, the domain boundary
represents a delta-function concentration of effective
energy-momentum density (in the limit of infinitesimal
boundary), but it is possible to find scenarios for which
this is not the case.
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where P is the unit normal to the domain boundary
pointing (by convention) from Schwarzschild —de Sitter to
de Sitter space. We choose coordinates so that P' points
to increasing values of both 4 and g. In the following an
overdot denotes differentiation with respect to the proper
time ~.

From the Schwarzschild —de Sitter viewpoint,

E = 1R(T)4,+ 8MX' —lq'

T R (T)

R (T)+8MX 1 sin—h2XT sin %4&ee=
2X

+R ( T)sin%' cosgT,

E~@=cos epee

K„i =R (T) [—1+2M/R (T)+X R (T)]%

with

R (T)= (+8MX —1 sinh2XT+1) .
1

2X

All components change sign under 4)
From the de Sitter viewpoint,
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AFFENDIX: THE EXTRINSIC CURVATURE
COMFONENTS

We present the components of the extrinsic curvature
tensor of the domain boundary from the Schwarz-
schild —de Sitter and de Sitter points of view, and observe
that they change sign under the transformation
(+,tP)~(~ —0', —g). The extrinsic curvature is defined
as

~
sinhXt~ sinhXtg +Zcosh Xt
sinhXt

~
sinhXt~ sinhg

W x'
X (sinhXt coshyt sinhpg+X coshgt ),

Ilgwu
=cos HKsg

sinhXtE = sinhXt coshXt p .

All components change sign under f~
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