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We investigate gravitational phenomenology in compactified higher-dimensional theories, with
particular emphasis on the consequences in string theory of tensor-induced spontaneous Lorentz-
symmetry breaking. The role played by this mechanism in causing a gravitational version of the
Higgs e6'ect and in compactification is explored. The experimental viability of compactified theories
with zero modes is considered by examining nonleading but observable gravitational e6'ects. Addi-
tional constraints from the observed cosmological properties of the Universe are uncovered. Our
investigations significantly constrain many theories involving extra dimensions in their perturbative
regime. To resolve the phenomenological difficulties one must generate masses for the higher-
dimensional components of the metric while leaving massless the physical spacetime components.
Some possibilities for overcoming this metric-mass problem are suggested. An open issue is wheth-
er the metric-mass problem is resolved in string theory.

I. INTRODUCTION

One intriguing notion in theoretical physics is the pos-
sibility that the Universe has more than four dimensions.
From its origins' early this century, this idea has grown
to play an essential part in modern approaches to
unification of gravity and the fundamental forces, such as
Kaluza-Klein, supergravity, or string theories.

To establish the physical content of a typical D-
dimensional theory, one usually assumes the higher-
dimensional spacetime manifold factors into two pieces,
one of which is four-dimensional: M =M XM", where
n =D —4 is the number of compactified dimensions. The
four-dimensional interpretation of higher-dimensional
fields is then found by Fourier expansion in the additional
dimensions. This procedure requires the breaking of the
invariance group of transformations of M, which nor-
mally is the D-dimensional Poincare group. The break-
ing is implicitly assumed to occur via some unspecified
mechanism.

Recently, a natural mechanism for spontaneous
Lorentz-symmetry breaking has been found for the
open-bosonic-string theory. It is intrinsic to strings in
that it cannot occur in renormalizable particle theories.

The basic idea is as follows. Open-string field theory
contains cubic interaction terms of the form ST T~,
where S is a generic Lorentz-scalar field and T is a gen-
eric Lorentz-tensor field with M representing one or more
Lorentz-vector indices. If one or more scalars S have
finite vacuum expectation values of the appropriate sign
and magnitude, some Lorentz tensors T acquire mass-
squared terms of the wrong sign. These tensor fields then
also acquire expectation values, resulting in spontaneous
breaking of the Lorentz group. In the bosonic string, a
candidate scalar is the tachyon because it has a negative
square mass in the naive perturbative vacuum. This sig-
nals a vacuum instability and therefore may even be
desirable, given the phenomenological need to break the
D-dimensional Poincare symmetry and the large gauge
groups often present in strings.

This breaking is called tensor-induced spontaneous
Lorentz-symmetry breaking or tensor-induced breaking.
It should be a possibility in many string theories. For ex-
ample, in the closed bosonic string a tachyon is present
and any field-theory formulation must contain trilinear
couplings of the form ST TM because these couplings
exist on shell. In string theory, such couplings can coex-
ist with gauge symmetries because strings contain an
infinite number of particle fields. In contrast, the mecha-
nism cannot be implemented in renormalizable particle
field theories with gauge symmetry. This is because
gauge theories have scalar-tensor cubic couplings of the
form 2 "Pd„P or A~A„PP that either involve derivatives
or generate positive masses for the vector A„.

Thus, strings contain an attractive mechanism for
breaking the higher-dimensional Poincare symmetry. It
is then natural to ask whether the mechanism is associat-
ed with the compactification of the extra dimensions.
One goal of this paper is to address this question.

Intuition suggests that gravity should play a key role.
However, gravity is a feature of closed-string theories for
which an explicit field theory with calculable couplings
has yet to be formulated. This means that the direct
analysis of the role of tensor-induced breaking in
compactification is impractical at present.

Instead, we confront the problem via another route. In
the absence of an explicit realization of the breaking
mechanism in a closed-string field theory, insight can be
gained by constructing and analyzing via standard
methods a D-dimensional e6'ective field theory containing
the essential features of the string case. The model action
considered in this paper is the Einstein-Maxwell system
with a potential for the vector field that induces spon-
taneous Lorentz-symmetry breaking. For this model we
investigate the consequences of tensor-induced breaking
on various features of the theory, including the resulting
four-dimensional gravity. We explore the stability of
uncompactified higher dimensions, the existence of a
Higgs efFect for gravity, and constraints on the structure
of the internal manifold.

In addition to the need to reproduce precisely four
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macroscopic dimensions, higher-dimensional theories
must satisfy other more subtle constraints. In particular,
measurable gravitational effects can be induced by the
presence of extra dimensions, even when the latter can-
not directly be detected. The nonobservation of these
effects places restrictions on the viability of many
higher-dimensional theories, including strings. Another
goal of this paper is the detailed exploration of these is-
sues. We obtain solutions to the higher-dimensional
equations of motion in the presence of a localized matter
distribution, we examine their compatibility with experi-
mental observation, and we seek possible phenomenologi-
cal implications of tensor-induced spontaneous Lorentz-
symmetry breaking.

Further constraints on compactified higher-di-
mensional theories arise from the experimental observa-
tion of the large-scale structure of the Universe. Here,
we use the perfect-Quid approximation to determine the
time evolution of cosmological models. The predictions
of these are then compared with current experimental
data. Since such models typically involve symmetric
spaces, which are excluded when Lorentz symmetry is
broken, we treat this topic in a pure Einstein theory.

The upshot of our analysis is that model builders
should address two problems. The first is the problem of
damping the propagation of massless higher-dimensional
components of the metric: these are scalars with respect
to the four-dimensional Lorentz group and induce un-
desirable phenomenological gravitational effects. The
second is the asymmetry problem: one must ensure that
the mechanism resolving the first problem is inoperative
in the four physical dimensions. In the last part of this
paper we mention several possible solutions to the first
problem. The structure of string theories may be
sufficiently complex to allow for one of these possibilities.

The organization of this paper is as follows. Section II
establishes the string-motivated model Lagrangian with
tensor-induced spontaneous Lorentz-symmetry breaking.
Also, the equations determining the physics of the system
are derived. Discussions of the possibility of a Higgs
mechanism for gravity, the stability of un-
compactified D-dimensional spacetime, and topological
constraints on the internal manifold are presented in Sec.
III. In Sec. IV the solution of the equations of motion in
the presence of a localized matter distribution is ob-
tained. The phenomenological consequences are dis-
cussed. Section V treats the cosmology of higher-
dimensional models and the associated phenomenology.
We discuss the results and conclude in Sec. VI. Appen-
dix A contains a proof of a topological result used in Sec.
III, while some details concerning the form used in Sec.
V for the stress-energy tensor for the internal space are
relegated to Appendix B. We follow the conventions of
Misner, Thorne, and %'heeler with the exception that in
Sec. V the speed of light c is sometimes explicitly
displayed.

tion. We find a background solution and obtain the equa-
tions determining small Auctuations about it. Properties
of the model are explored in Sec. III.

As outlined in the Introduction, the idea is to find a
model containing the essential features of the effective ac-
tion that would arise in a string theory with tensor-
induced breaking. This breaking is signaled in the La-
grangian by a mass-squared term of the wrong sign for
some Lorentz tensor fields. Let us consider the simplest
model, for which the only tensor field is a vector 3„.
This situation most closely resembles the open bosonic
string, with A„ identified as the massless vector field.
An effective action for A„and the metric g„can be con-
structed by integrating over all other fields in the string
theory.

Neglecting higher-derivative effects, this action is de-
scribed' by the Einstein-Maxwell action in D dimensions
with a potential V = V ( 3„3"—a ) for 2„causing the
spontaneous breaking of Lorentz symmetry:

I= d x&—g
D 1 R ——F F" ——V

1 1

16'GD 4 " 2
(2.1)

av(x)
ax x= A A~ —a 2

P

(2.3)

Using the Einstein tensor G„=R„——,'g„,P and varying
the action yields the equations of motion

G„=smGDT„, F ".„=—2A V' . (2.4)

For the potential V„one gets in addition to (2.4) the
equation

=a (2.5)

from varying X.
A solution of Eq. (2.4) is

In this equation, GD is the D-dimensional Newton cou-
pling constant, F„=B„A —8 A„, and indices are raised
using g" . The parameter a in Vis a constant and V(x) is
positive except at x =0, where it vanishes.

Explicit forms for V help to gain insight. One possibil-
ity is V, =(A, /2)(A„A" —a ), where A, is a Lagrange-
multiplier field. This useful choice effectively freezes
motion about the potential minimum and hence permits
an efficient extraction of the essential physics. It corre-
sponds to a nonlinear o. model. Another choice of V
pertinent to the analyses of small Auctuations and
hence of the mass structure of the theory is
V2=(A, /2)(A„A" —a ), where now A, is a coupling con-
stant.

The stress-energy tensor T„ is

T„= ,'g„F F~ +—F—„rF~—g„V+2V'A„A, (2.2)

where

II. A STRING-INSPIRED MODEL A„=a„, A, =O if V = VI, (2.6)

A string-inspired model for tensor-induced spontane-
ous Lorentz-symmetry breaking is established in this sec-

where a is a constant vector satisfying a a"=a . Per-p p
turbing Eqs. (2.4) and (2.5) about this vacuum solution,
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g„=g„,+h„„~h„~«1,
A„=a„+e„, /e„) «fa„),

0+k' if V = V),

yields the linearized equations for small fluctuations.
For the case V = V„ these equations are

(2.7)

a (a,x, )=o. (2.9)

Without loss of generality we can assume the background
l

a,a~a„„—q„.a,a~a+q„.a a%.,—a„a I,
—a,a h „+a„a+ = —16m.GD A, ,a„a, ,

(2.8)
a"f„„=k.,a, 2e„al"=h" a„a
where f„,=a&e„a„—E& Th. e Bianchi identities imply

ap =a7fpd

Eliminating I,
&

from Eq. (2.8) then yields

a,a~h„.—~„.a,a~h+&„.a a&~., a„a—.g,.
—a.a e„.+a„a,w =—

2Ed= Q'hdd

where

k =8mGDa

(2.10)

2k, rl„daf.
(2.1 1)

(2.12)

For potentials V other than V&, the equations govern-
ing the small fluctuations are

field a„ is aligned in the dth direction, where d is one of
the D possibilities. Thus,

a a~h„—il„,a a~h+g„,a a~h
13
—a„a h, —a,a h„+a„a,h = —32nGD V"a a, (2e a ah ~a—p),

a"f„„=2V"a,(2e a —a h ~~a&),
(2.13)

where V" is defined in a manner similar to V' in Eq. (2.3).
The linearized equations (2.8) or (2.13) are invariant

under the infinitesimal local transformations

5h„,=a~„+a„y„, 5e'„=a„(y,a"), (2.14)

where B„a =0. For the nonlinear o. model, these are
supplemented by 5A. , =0. Equation (2.14) is the original
invariance of the theory under general coordinate trans-
formations. It should not be confused with a U(1) gauge
transformation, precluded here by the potential V for A„.

An acceptable gauge choice for h„ is given by the
functional constraint f [h„]=0,if there is a solution for

y„ to the equation f [h„+5h„]=f[h, ]+f [5h„]=0
with 5h„given in terms of y by Eq. (2.14). A useful

gauge choice is the restriction to harmonic coordinates,
8"h„=0,where h„=h„——,'g„h.

If the potential V is other than V& and satisfies
V"(0)=LAO, there is a massive mode M corresponding
to fluctuations about the potential minimum and given by
the linear combination 2e a —a h Pa&. Its mass is

III. PROPERTIES OF THE MODEL

This section discusses some general properties of the
string-inspired model presented in Sec. III. We consider
the question of the stability of the model, the possibility
of a gravitational Higgs-type mechanism, and topological
restrictions on the compactification.

A. Stability of uncompacti6ed higher dimensions

One natural question to address is whether tensor-
induced spontaneous Lorentz-symmetry breaking desta-
bilizes a given background metric. An instability might
be an indication that compactification of the extra dimen-
sions is favored. To investigate this question let us exam-
ine the second-order fluctuations of the action. Denoting
by g„and A„ the background fields and h„and e„ the
associated fluctuations, the general second-order varia-
tion of the action (2.1) is

ml =4k,a 1+ pal+1
k

tl +2 (2.15) 5 I~,q ot= Jd xV g(XhI +&h—,+&„), (3.1)

where n =D —4. where

h"
7T

+ —,'h"
I Ii„(,'F pF ~+V—)+hi's—[ FF„s+,'g F Fs—+A A—s(g„V'—2A A V")]I

Xh, =h" [ —,'g„ f 13F ~+2f„~F ~+2—@~A ~(2V" A„A —g„,V')+4e„A„V'],

,'f„ f" 2e„e"V' —4—e„A"e A—V" . —
(3.2)

In these equations R, F„, V, V', and V" are functions of the background fields, while f„=a„e„a,F.„ is the field—
strength for the Quctuation e„. Upper indices are raised with the inverse background metric g" . We have freely used
the equations of motion (2.4) to simplify the expressions in (3.2).

%"ith our conventions, the background solution is destabilized by the vacuum expectation value of A„when the
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quadratic form in (3.1) has a positive eigenvalue. Whether this is the case for a generic background solution is a difficult
question because of the intricate nature of (3.2). Let us analyze the case for a fiat background. We set g„=il„and=a =a 5 d. The second-order variation (3.1) becomesP P P

n'I = f d x (h~ a,a&h„.—ha, a&h +2ha&a h„„+2a,h'&a h„.) ——,'I& f„„—(a"h„a —2e„a") V"(0)1

(3.3)

The first line in (3.3) contains the fiat-space background
fluctuations for ordinary gravity. They are stable after a
gravitational gauge is fixed. The remaining two terms in
(3.3) are negatives of perfect squares and hence are nega-
tive definite. This means that D-dimensional spacetime is
stable to perturbations.

B. Absence of a gravitational Higgs mechanism

In particle theories, an explicit mass term in the La-
grangian for any gauge field is forbidden by gauge invari-
ance. Spontaneous symmetry breaking bypasses this
problem, allowing mass generation via the Higgs effect.
Non-Abelian gauge bosons A~ couple to a Higgs field P,
via a covariant derivative D„P, =B„P,—A~L~t, g&,
where L,b is the jth generator for the gauge group and a
and b are matrix indices. The kinetic term for P involves
D"P,D„P, and hence the term 3„'L,'&P~ 2 "'L J,P, .
When P, acquires a vacuum expectation value, this term
generates a mass matrix for A ~. This mechanism is fun-
damental in generating masses for the 8'and Z bosons in
the electroweak model, for example.

Gravity may be viewed as analogous to a non-Abelian
gauge theory with the connection and the Lorentz group
playing the roles of the gauge field and the gauge group,
respectively. " As the Higgs mechanism plays such a
basic role in particle theory, it is natural to investigate
whether a gravitational version occurs for which certain
components of h„become massive. '

For our model, A„plays the role of the Higgs field P, .
The potential V is minimized when A„acquires a con-
stant expectation value a 5„D &. In analogy to non-
Abelian gauge theory we seek a longitudinal component
of the metric arising from the nonzero expectation value
of the vector field in the kinetic term. However, a
nonzero expectation value for A„gives no new contribu-
tion to h„, in F" F„because the a%ne connection cou-
pling gravity to tensor fields cancels in the antisymmetric
combination F„=B„A —8 A„. The field A„does not
become a Higgs field but remains a Goldstone boson.

Although the above argument appears specific to the
use of F" F„as a kinetic-energy term, the absence of a
Higgs effect holds quite generally for spontaneous
Lorentz-symmetry breaking induced by any tensor fields,
for the following reason. The generators of general coor-
dinate transformations involve spacetime derivatives.
The gravitational analogue of L~b is an operator involv-
ing 8„. When a tensor field acquires an expectation value,
instead of generating a quadratic form involving the
square of L,b, a quadratic form bilinear in 8 h„results.

This may distort the propagation of gravitons but does
not dampen their effects at large distances. Thus, no
mass terms arise.

The argument given above is sufficiently general to ap-
ply when more than one tensor field acquires a nonzero
expectation value. This means that metric-mass genera-
tion arising from tensor-induced breaking is unlikely even
in a full string theory.

An alternative mechanism for metric-mass generation
might proceed through the potential V = V( A „g" A
—a ). Since this depends on g„as well as on A„, a
quadratic derivative-free term for the metric might arise.
The analogous situation does not occur in a non-Abelian
gauge theory because the scalar potential does not con-
tain the gauge field. If it occurs, this alternative mecha-
nism would necessarily be qualitatively different from the
usual Higgs mechanism in particle theory.

However, an analysis of the Lagrangian (3.2) for fiuc-
tuations reveals that the combination 2e„g" A—A„h" A, is massive, rather than a component of h„.
The orthogonal combination e„g" A +2A„h" A
remains massless.

C. Topological constraints on compactification

Suppose that a solution for the gravitational sector can
be found that has the form M XM", where M is a four-
dimensional Hat space and M" is a compact n-
dimensional manifold. One solution for A„minimizing
the terms

(3.4)

in Eq. (2.1) is A„=a5„d, where d points in one of the
three physical dimensions. This implies Lorentz-
symmetry breaking in the physical dimensions, which is
undesirable. It is therefore necessary to have a competi-
tive solution A„=a„ lying in M" and rendering zero
each term in (3.4).

From these requirements, general topological features
of the compactified manifold may be obtained. Viewing
a„as the components of a one-form 8 =a„dx", the van-
ishing of the first term in Eq. (3.4) implies that & is closed;
i.e., da =0. Viewing a" as the components of a vector
field a, the vanishing of the second term in Eq. (3.4) im-
plies that M" possesses a nowhere-vanishing vector field
of constant magnitude. This vector may be normalized
to 1 by dividing a~ by a—:~a~. The condition a a= 1 can
also be written a (a) = ( d, a ) = l.

Summarizing, on M" there must exist (i) a vector field
a with a a = 1 and (ii) a closed nowhere-vanishing one-
form a. '
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N" 'X[0, 1]
(s, O)-(h (s), 1) (3.5)

First, consider the consequences of condition (i) alone.
A compact manifold M" has a nowhere-vanishing vector
field if and only if its Euler characteristic y(M") is zero. '

Examples of such spaces are the Lie-group manifolds and
the odd-dimensional spheres S "+'.

Next, consider condition (ii) alone. Recall that the first
de Rham cohomology group H'(M", E) comprises closed
one-forms co modulo exact forms dA, , where k is a func-
tion on M". The dimension of this group is the first Betti
number b&. However, on a compact manifold M" it is
impossible to have a nowhere-vanishing a =dA, : since A,

is a continuous function from M" to R, it attains a max-
imum at some point in M" at which dA, vanishes. Condi-
tion (ii) therefore implies that b, &0, i.e., H (M, IR) must
be nontrivial.

One class of manifolds satisfying both conditions (i)
and (ii) consists of the product manifolds N" 'XS' for
arbitrary compact N" '. The components of the
nowhere-vanishing vector a can be chosen as
(0,0, 0, . . . , O, u) where there are n —1 zeros and where u
is the unit vector on the circle; i.e., the vector a lies in the
tangent space of the S' factor. The corresponding closed
one-form a is d 0, where 0 is the standard variable
parametrizing the circle, 0 ~ 0 (2m, and 0=0 is identified
wit11 0=27T.

In the search for other manifolds satisfying conditions
(i) and (ii), it is natural to examine n-dimensional Lie-
group manifolds. These satisfy condition (i) because they
are parallelizable; i.e., they possess n linearly independent
nonvanishing vector fields. If 8 is a right-invariant one-
form, a basis mj, j =1, . . . , n for all right-invariant one-
forms can be chosen such that co'=a. The Cartan struc-
ture equations deil= f1"eo"co together with dc@'=0 then
imply f '" =0. The Lie algebra therefore has a u(1) fac-
tor.

One manifold that is not a product but that satisfies
both (i) and (ii) is the Klein bottle. Take S X[0,1] where
[0,1] is the unit interval. Identifying (s, O) with (s, 1) for
each s ES', 0 ~ s ~ 2m generates the torus. Identifying in-
stead (s, O) with (h(s), 1), where h (s)=2~—s, generates
the Klein bottle. It may be viewed as a fiber bundle over
S ' with fiber S'. It is the product of a circle with the unit
interval modulo an equivalence relation: S ' X [0,1]/
[(s,O) —(h (s), 1)].

These examples provide insight as to the type of mani-
fold compatible with conditions (i) and (ii). The circle in
the above examples can be obtained by constructing the
integral curve for the vector field a. In general, this in-
tegral curve may not close. For example, if the manifold
is the flat torus S'XS' and the vector field is aligned at
an irrational angle then the integral curve wraps densely
around the torus without closing. However, in this case
the vector field could be taken instead in the tangent
space of either S'. It turns out that this feature is gener-
ic: appropriate perturbations always isolate a circle.

In fact, there exists a theorem' stating that any
smooth arcwise-connected compact manifold M" satisfy-
ing conditions (i) and (ii) is a fiber bundle over S'. This
means that

where the fiber is an (n —1)-dimensional manifold N"
and h, called the monodromy, is a differentiable automor-
phism of X" '. Conversely, if f:M"~S' is a fiber bun-
dle, then f*d0 is a nowhere-vanishing closed one-form
and one can give M" a Riemannian metric such that
there is a vector field v satisfying f*dO(v)=l and
v.v=1. In Appendix A, a proof of this theorem due to
Davis is presented. Many of the key ideas behind the
proof are illustrated by the examples above.

The bundle may be trivialized, i.e., M"—=N" 'XS', if
h is isotropic to the identity 1. This means there exists a
homotopy family h, for 0~ t 1 depending smoothly on t
such that ho = 1 and h

&

=h with each h, a diffeo-
morphism. The map

[0, 1] X" 'X[0, 1]
0-1 (s, O)-(h (s), 1)

(3.6)

given by (n, t)~(h, (n), t) establishes the diff'eomorphism
between the two spaces.

This trivialization can be illustrated for the group man-
ifold U( n ). The elements Ie ' ~" for m = 1, . . . , n,
where I is the n Xn unit matrix, are in both SU(n) and
U(l). Elements u HU(n) may be projected from U(n) to
SU(n) by the mapping u~u/(detu)' ". Therefore, any
u HU(n) is specified by the pair (s, t) via u =se
where s ESU(n) and t E [0, 1]. With this representation
we can write

SU(n) X [0,1]
(s, O) —(h (s), 1)

(3.7)

IV. GENERALIZED SCHWARZSCHILD SOLUTIONS

In this section we consider the modifications to the
gravitational field of a localized matter distribution that
arise in a higher-dimensional theory with spontaneous
Lorentz-symmetry breaking. This is of interest because
there now exist high-precision tests of Einstein gravity, '
for example, from the Viking Lander experiments. We
find that these experiments impose interesting constraints
on the nature of the extra dimensions. The results are

where h (s) =se '~". The u E U(n) are correctly
identified at t =0 and t =1 because the pair (s, O)
represents the element s and the pair (h (s), 1) represents
the element h (s)e '~"=s. The homotopy family h, con-
necting 1 to A is given by the diagonal matrix with
e' " "' for the first n —1 entries and e "" """ for
the last entry. Thus, the group manifold U(n) is a trivial
S' bundle.

Finally, (3.5) may be generalized slightly. If tensor-
induced spontaneous Lorentz-symmetry breaking corre-
sponds to having k linearly independent closed nowhere-
vanishing one-forms then M" is a fiber bundle over a @-
dimensional torus. ' The proof in Appendix A may be
generalized to cover this case.

It is likely that analogous topological constraints on
the internal manifold arise in the general string case if
tensor-induced breaking is present. Note that the con-
straint y(M")=0 is undesirable for Calabi-Yau com-
pactifications since ~y(M")~/2 is the number of genera-
tions in the standard model. '
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applicable not only to the string-inspired model discussed
in the previous sections but more generally to theories in-
volving higher dimensions, such as Kaluza-Klein models
and D )4 supergravity theories. Theories without
tensor-induced spontaneous Lorentz-symmetry breaking
are obtained from the analysis by taking the limit as the
parameter k of (2.12) vanishes.

Suppose material is introduced into our model, so that
we can consider the gravitational field of a localized static
distribution of total mass M. This might represent a
planetary body or the Sun, for example. We are interest-
ed in the behavior of the four-dimensional gravitational
potential at large radial distances r, where perturbative
methods are applicable. In this section we determine the
first few terms of the expansion in MG~r ' of h„.

For the leading large-r behavior, the detailed nature of
the localized mass distribution is unimportant and thus
can be approximated by a 5 function at the origin. We
check this idea by considering two types of 5-function

I

distribution for the stress-energy tensor, which we take to
have the form T„=pg„op~. The first is pointlike in the
physical dimensions and uniformly distributed in the
higher dimensions:

pi= 5 (x),M
n

(4.1)

where V„ is the volume of the compactified manifold.
The second is pointlike in all D —1 dimensions:

p2=M5 '(x) . (4.2)

Consider Eq. (2.1) in the limit of the nonlinear cr mod-
el, for which A„satisfies A„A"=a . This limit is ap-
propriate for investigating the leading large-r behavior,
and thus the results presented below are independent of
the choice of potential V.

Equations (2.7) generate the fluctuations about the
background metric:

a,a~h„.+~„.a a%., a„a h—.„a.a t—.„+k5„„5,„a,a~h,„—a', a„„— (a,a~ —a', )h ——y a, a~~„

16~GDP 9@0 (4.3)

Here, we define h =g" h„, we take the background vec-
tor a„ to point in the dth direction, and k is defined in

Eq. (2.12).
We are interested in a static solution with e„=O. For

definitiveness we take d =D —1 so that A„=a5„D
Furthermore, we choose the harmonic gauge 8 h &=0.
Then, Eq. (4.3) becomes

V A„=O.

16@MOD

CD m. = —oo
J

r+gmLJ Jj=1

—(n +1)/2

Next, consider the distribution p2 of Eq. (4.2). The
periodicity of the tori T' in T" means that the method of
images can be used to obtain the solution for boo from the
solution of the Einstein equations in D dimensions. We
find

V boo= —16m.GDp,

(1+k)v't„„ka',I,„+— (a', —v')h =0 .

(4 4)
where cd is defined by

VD i D 3
= —cD5 (x) .2 1 D —1

D —3

(4.6)

(4.7)

4MGD
hOO

=
nr

where r =x +y +z .

(4.5)

In the first of these equations, p =v=O and p =v= 0 are
excluded.

The first equation in (4.4) implies h &=0 except for
a=p=0 and a=p=d. The second equation yields boo.
With these results the third equation determines hdd.

Before discussing the general solution let us present an
argument that the leading large-r behavior of boo is r
independent of the mass distribution. We assume for
simplicity that the internal space is an n-dimensional
torus T" with T' circumferences denoted by
L,j =1, . . . , n The volume o.f this space is V„= ii LJ.

Consider first the distribution p, of Eq. (4.1). For this
case, boo(x) is independent of the coordinates of the
internal space and the solution becomes the D =4
Schwarzschi1d one for an effective density M/V„:

It is given explicitly as

2(D 3 )
(D —1)/2

«(D —1)n) (4.8)

1

4mr V„

' —(n + 1)/2n

dxi dx„r + g L x~.
CD

(4.9)

By changing variables via x =zj r IL~, Eq. (4.9) is
satisfied if

oo

d 1+ CD

00
1 n J 4mJ

(4.10)

where S~ is the p-volume of the p-dimensional sphere.
As r ~~, the sum over m in (4.6) may be replaced by

an integral. The result coincides with (4.5) if
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where

4MG~

V ~r

4MG~

V„l(k+1)r '

(4.1 1)

/ =(1+k) '[(n +2)+(n +1)k] . (4.12)

To compare with experiment, introduce the expansion

ds = —[1—2MG&r '+2p(MG&r ') + ]dr

+(1+2yMG&r '+ . )(dr +r dQ ) (4.13)

of the metric generated by a static, spherically symmetric
body of mass M. In this expression, the Eddington-
Robertson parameters' ' P and y have experimental
values currently determined as' '

This formula can be proven by induction or by going to
spherical coordinates in the z.. Although we have only
explicitly treated the toroidal case, physical considera-
tions imply Eq. (4.5) holds for large r independent of the
detailed structure of the compact internal manifold.

We next present a general solution to Eq. (4.4):

4M'�( I —1)
00 y

higher dimensions is to have only short-range forces asso-
ciated with the metric components h~I„j,k 4. This can
be achieved if these components obtain a mass. Their
propagation would then be damped at large distances, so
that, for example, the observed value of y would be 1.
This possibility has been considered in Ref. 8 and is fur-
ther discussed in Sec. VI.

So far, we have assumed that the background vector a„
is aligned in one of the internal dimensions. It is interest-
ing to contemplate the possibility that it is instead
aligned in one of the physical spacetime dimensions,
a„=a g„&, say. Tensor-induced spontaneous Lorentz-
symmetry breaking in the physical space is not what is
sought and probably causes phenomenological
difficulties. However, in leading order there are solutions
that are quite different from the one given above but that
incorporate standard Newton gravity.

Consider the theory in the limit of the nonlinear o.

model. We are interested in a ground state, i.e., a solu-
tion to the equations of motion that satisfies the Bianchi
identities and that minimizes the potential. One simple
choice is A, , =0. This decouples the equations for h„and
a„, leaving only the constraint relation between e& and
h&&. The gravitational solution is therefore the usual
Schwarzschild one,

(4.17)

P= 1.003+0.005 y = 1.000+0.002 . (4.14)

2( l —1)Gn
Pl (y

(4.15)

The first r ' term in h fixes the definition of MG& as

with the other components of h„being zero.
It remains to obtain a solution to the Maxwell equa-

tions d"f„„=0 subject to the constraint e&
=

—,
' ah i i

=aMG&/r. The simplest choice, which minimizes the
action, is f„=0. The solution is

With this definition, the Newton gravitational potential
in D dimensions coincides with the standard four-
dimensional case. The result is independent of the de-
tailed nature of the internal manifold.

Einstein gravity involves measurable corrections to
Newton gravity. These are represented in lowest order
by the P and y terms in (4.13). Using Eqs. (4.11), (4.12),
(4.13), and (4.15), the value for y is found to be

aMG& +a A(y, z),
r x+r

aux z +a,A(y, z),
r x+r

(4.18)

1+k
1+n +nk ' (4.16)

where n + 1. We have verified that the result (4.16) is in-
dependent of the choice of gravitational gauge, i.e., of
harmonic coordinates. Equation (4.16) is incompatible
with the experimental result (4.14) unless either D =4
and k =0 or D =5 and k~~. The latter possibility is
unnatural in the context of string theory since the scale of
a is set by the Planck scale and hence a value of k of or-
der 1 is expected.

Thus, the assumptions made lead to the conclusion
that higher dimensions are excluded by established exper-
imental data. The analysis holds at the classical level. As
such, it is independent of other difficulties with higher di-
mensions such as natural chirality generation ' and re-
normalizability or finiteness.

One way to avoid the phenomenological difficulty with

where A(y, z) is an arbitrary function. Here, the equation
for G~ in (4.15) is replaced by G&=Gn/V„.

The components e2 and e3 of the vector potential in
(4.18) each have a singularity along x (0, when y~O
and z —+0. The singularity can be moved elsewhere by
a suitable choice of A. For example, the choice
A= —aMG&ln(y +z ) results in expressions for e2 and
E3 similar to those of Eq. (4.1 8) but with x + r replaced
with x —r. The singularity is then along x )0. It is un-
physical since it satisfies g, e d1=0 for any contour c
taken about the x axis.

There appears to be no significance to the bad behavior
of the potential e„near y =0 and z =0, unlike the singu-
larity of a Dirac monopole, for example, for which there
is a physical basis. Note that the tensor-induced spon-
taneous Lorentz-symmetry breaking manifests itself here
only through nonleading terms, in contrast to the usual
situation when a symmetry is spontaneously broken, for
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which the effects of the breaking are quite apparent in the
ground state.

V. COSMOLOGY IN HIGHER DIMENSIONS

In Sec. IV we found phenomenological constraints on
higher-dimensional theories due to measurable nonlead-
ing gravitational effects of a mass distribution. It is natu-
ral to ask whether additional constraints arise from
cosmological considerations. In general, we find that cer-
tain models are excluded but that the restrictions on
higher-dimensional theories are less severe than those of
Sec. IV. This is largely due to a lack of precise observa-
tional data.

It is natural and standard to investigate higher-
dimensional cosmologies by letting both the physical spa-
tial dimensions and the compactified dimensions evolve
separately as homogeneous maximally symmetric
spaces. This assumption is incompatible with the
mechanism for tensor-induced spontaneous Lorentz-
symmetry breaking discussed in the previous sections.
Consequently, we disregard here the effects of nonzero
expectation values of tensor fields.

Throughout this section a subscript 0 on a quantity in-
dicates its present-day value. For certain equations
where comparison with experimental values is useful, the
dependence on the speed of light c is explicitly shown.

A. The cosmological equations for arbitrary dimensions

We consider cosmologies in a pure D-dimensional Ein-
stein theory that involve two homogeneous spaces: a
four-dimensional one and an n-dimensional one, governed
by scale parameters a(t) and b(t), respectively. The
metric is

ds = dt —+a (t)g,&dx'dx +b (t)g kdx~dxk,

(5.1)

where a =0, . . . , 3 labels the physical spacetime dimen-
sions and j =1, . . . , n labels the internal dimensions.

We approximate the cosmological matter distribution
as a perfect Quid with D-dimensional density p, pressure p
in the physical dimensions, and pressure ~ in the internal
dimensions. The stress-energy tensor T„ is then given
by the diagonal D XD matrix with entries
(p,p,p,p, ~, . . . , r). Note that the four-dimensional den-
sity and pressure are given by p=pV„and p =@V„. For
the physical situation, where b &&a, a good approxima-
tion is ~=0, as is shown in Appendix B.

The Einstein equations R p.—2gp. +Ag p. =S~GDTp
for the case n & 0 reduce to three coupled second-order
differential equations for a and b, with coefticients depen-
dent on D:

'2
a a b n(n —1)
a a b 6

2

b k
a'

n (n —1)k„~ 8~GD

6b2 3 3
+ + p

2 +a
2

a
'2

a b b n(n —1)+2n ——+n —+
a b b 2

n (n —1)k„ +A —Sm'GDP,
2b

(5.2)

a—+
a

2
a a b (n —I) b (n —1)(n —2)

a b 3 b 6

'2
(n —1)(n —2)k„~ 8nGD.

+—— 7
6b 3 3

(5.3)-

This equation makes one of the three equations in (5.2)
redundant.

The possibility that k„=1 can be excluded for realistic
evolutions, provided no special choice of the density p is
made. We show a contradiction follows from the as-
sumption that the present value bo of b is microscopic.

Evaluate the first equation in (5.2) at the present time.
Since bp is small, the b term dominates the right-hand
side. Special choices of p can invalidate this but appear
ad hoc and unnatural in the present context. Setting
1'p =bp /bp one finds

n(n —1) 2 n(n —1)o+nHoro+
6 6bp

ro+ (5.4)

where k = —1, 0, or + 1 determines whether the
geometry of the four-dimensional space is open, Qat, or
closed. Likewise, k„determines the geometry of the n-
dimensional space. For a compact internal space k„=1
or 0. The latter value occurs for toroidal
compactifications, for example. The Bianchi identities
follow from energy conservation and are

d, (pa b")= pb "d,a ra "c)—(b" . —

where Hp is the Hubble constant Hp=ap/ap. Equation
(5.4) is a quadratic equation for rp, which has real solu-
tions only if the discriminant

2 n(n —1) 2 c n(n —1)
(5.5)n p

6bo

is positive. This occurs when

c n(n —1)bo)
Hp &3n (n +2)

(5.6)

Since 1xap is of the order of the age of the Universe,
c/Ho is of the order of the size of the Universe. This
contradicts the physical assumption that b p be small.

The argument we have given is independent of the de-
tailed nature of the internal manifold. For a nonmaxi-
mally symmetric space with nonzero curvature, the term
n (n —1)k„/6b is replaced by a curvature tensor. By di-
mensional analysis the curvature tensor varies as b
where b characterizes its scale. The line of reasoning
given above still holds and so, disregarding special
choices of p, the internal space must have zero curvature
if it is to be physically consistent. For the rest of this sec-
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tion we set k, =0.
Another notable feature of the D-dimensional theory

for D )4 is that the evolution of the Universe is governed
by equations that are qualitatively different from the usu-
al four-dimensional case. For n =0, the Einstein equa-
tions reduce to the first two equations of (5.2) and de-
scribe Friedmann cosmologies. The evolution of the
spacetime scale parameter a is then governed entirely by
a first-order diff'erential equation driven by the mass den-
sity p and by the cosmological constant A if present. In
contrast, for the higher-dimensional theories the time de-
velopment of a is linked to b via a pair of second-order
equations and is dictated by p, by ~, by A, and by the
manner in which b evolves. For the special case of n =1,
i.e., D =5, a is governed by a second-order equation with

I

the value of p having no effect whatsoever. This special
case is considered in more detail in Secs. V C, V D, and
V E below.

B. The variation of G& with time

For arbitrary n, exact solutions to (5.2) are difficult to
find. Despite this, it is possible to find phenomenological
constraints excluding certain models. %'e discuss here
constraints arising from the time variation of the Newton
constant G&.

From Eq. (4.15) Gz is proportional to b ". Conse-
quently, the dynamical evolution of b means that the
Newton gravitational constant varies with
time. ' ' ' ' ' Via the first equation in (5.2) we
find that in the current epoch'

1 Gw

H G~

3n 3n (n +2) 3n (n +2)&o+ +
n —1 (n —1) (n —1 )(n + 1)

300
1 — + when n =1,

a ~22

6n k
n —1 agy2

1/2

when n )1,
(5.7)

where

Qo= 8m G~po/3H0 . (5.8)

Qo =Q„;,( n )(1.0+0. 12), (5.9)

where

0„;,(n) = 2(n +1) (5.10)

The experimental range for Qo is 0.01—1.2, with
some uncertainty on the upper limit due to the possibility
of unobserved dark matter. If we take an experimental
upper bound of 1.2 then models with k =0 are excluded.
The same is true for models with k = 1 because Q„;, for
k =1 is larger than 0„;,for k =0. The only cosmologies
admitted by this experimental upper bound are the ones
with k = —1, for which ao must be delicately adjusted so
that acceptable experimental values of Qo yield a
sufficiently small value of ~G~/G~~. Thus, all admissible
models have a fine-tuning problem.

In the standard cosmological scenario, the ratio 0 of the
mass-energy density to its critical value determines
whether the Universe is closed (0) 1) or open (0 & 1).
For the higher-dimensional models in Eq. (5.2), Q does
not serve this role; it is simply a useful dimensionless
quantity.

In many of the models, the variation of Gz with time
exceeds the current experimental upper limit, given by

~ G& /G& ~
(6 X 10 ' yr '. This bound implies that the

right-hand side of Eq. (5.7) must be less than 0.12 if a
conservatively low value of Ho=50 kms ' Mpc ' is
used. However, the right-hand side of Eq. (5.7) is of the
order of one, unless Qo and ao are finely adjusted. For
example, if k =0 or c/(aoHO) &(1, Qo must fall within
approximately 12%%uo of a critical value 0„;,(n):

C. The macroscopic scale parameter in five dimensions

a a—+
a a a

(5.11)

It has the solution

a (t) =Q —k (t to) +—2aoao(t to)+ao—(5.12)

Four classes of models may be distinguished. Class (a)
has k =0; class (b) has k =1; class (c) has k = —1 and
ao/c ( 1; and class (d) has k = —1 and ao/c ~ 1. Classes
(c) and (d) coincide when ao =c.

The age tU of the Universe in each model is

1
class (a): tU =

0

ao
class (b): tU =

Ho c

2

1+
ao

2 1/2

1 - 7

(5.13)

= 1
class (c): tU =

0

= 1
class (d): tU=

0

ao

'2
ao

ao

2 1/2 '

Here, the deceleration parameter qo is given by

0 0 kc=1+
ao ao

(5.14)

and Ho =45 —100 km s 'Mpc ' is the measured

More insight may be gained by examining in detail the
simplest model, which has n =1. The third equation in
(5.2) reduces to'

r 2
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value of the Hubble constant. In the standard
Friedmann cosmologies qo=QO/2, whereas in the D =5
model this relation is replaced by (5.14).

Th age of the Universe for models in classes (a), (b),
and (d) is determined from Eq. (5.12) by finding the value
of t that renders a(t) zero. For models in class (c), a (t)

never vanishes. Instead, t U is taken as the value of t
which yields the minimum value for a(t).

Shifting t by tU —to in Eq. (5.12) allows the time evolu-
tion to be expressed in terms of a new variable measuring
time from the beginning of the Universe. The solution
(5.12) becomes

. 2 i+k
ap

' 2 1/2 ca ~

Hpt —k
C p

ap
for classes(a), (b), and (d),

(5.15)
ap ap cHot+

ap
for class (c) .

model {a} model {b}

1.0

w 0
gg Co

0.0
0.0 02 0.4 0.6

H t

model {c}
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08 1.0

1.0-

0
co

05- 05

0.0
0.0 0.2 04 0.6 08 1.0

0.0
0.0 02 0.4 0.6 08 1.0

H t H t
O O

FIG. l. Evolution of the scale parameter as a function of the Hubble time. (a) The k =0 model. (b) The k =+1 model wit
(c) The k = —l model with go« —0.75. (d) The k — l mod~i with ao«



1896 V. ALAN KOSTELECKY AND STUART SAMUEL 40

As can be seen from these equations, the evolution ratio
a(t)/ao is a function of k, Hot, and ao/c. In Fig. 1 we

display typical plots of a(t)/ao versus Hot F. igure 1(a)
shows the case of class (a). Its evolution is independent of
ao/c. Figures l(b), 1(c), and 1(d) represent plots for mod;
els in classes (b), (c), and (d), with values of do/c of 0.5,
0.75, and 1.5, respectively. None of these evolutions is
compatible with astronomical data because all yield too
small a value for the age of the Universe. The purpose of
these plots is to present the solutions qualitatively and
pictorially.

D. Astrophysical phenomenology in five dimensions

Let us next discuss in more detail the astrophysical
phenomenology constraining these five-dimensional mod-
els.

Models of type (c) are probably ruled out because mea-
surements of qp favor a positive value, representing a
decelerating universe. That qo is negative for class (c)
manifests itself in Fig. 1(c): the graph is concave upward.
Furthermore, since a (0)%0 the ratio of the size of the
Universe at present to its size at incipience is, in general,
a number greater than one but of order of unity. To
avoid these problems the q0~0 limit of the model must
be taken. This makes the models in class (c) approach the
ones in class (d) in the qo~O limit. The latter are con-
sidered in detail below.

The physical age of the Universe tU is known from ra-
dioactive dating, the age of globular clusters s5, 64, 68, 69

the age of the chemical elements, and the age of Earth '

to be 1.5 —1.9X10' yr. This value is sufficiently well es-
tablished to exclude the models in Fig. 1, at least for the
values of aolc chosen. For Figs. 1(a), 1(b), 1(c), and 1(d),
tU is 0.5/H0=0. 89x10' yr, 0.31/H0=0. 55x10' yr,
0.56/H0=1. 01X10' yr, and 0.57/H0=1. 02X10' yr,
respectively, where the value Hp =hp = 55 km s 'Mpc
has been used.

The constraints coming from t U can be more systemat-
ically analyzed by noting that Eq. (5.13) implies

1tU= for class (a),
0

0(t (
2H0

for class (b),
(5.16)

0(tU ( for class (c),
Hp

(tU( for class (d) .
0 0

Since (2HO )
' =0.89 X 10' yr when Ho =h 0, classes (a)

and (b) are incompatible with experiment. A higher
value of Hp yields even smaller values of tU for these
models, thereby augmenting the disagreement with ex-
periment.

Explicit solutions for the n ~ 2 models are also likely to
provide constraints from t U.

The only consistent class of five-dimensional models
appears to be (d). Furthermore, for this case ao/c must

be fine-tuned to be slightly greater than 1. For the quot-
ed value of Hp, one needs 1(ap/c (1.019 to have
tU) 1.5X10' yr. The corresponding values of qp range
from 0 to 0.037. For q0=0, the solution of the k = —1
model simplifies to a (t)/ao =Hot; i.e., the scale parame-
ter grows linearly with time.

We find that standard Friedmann cosmologies can be
numerically reproduced in the class (d) of models by suit-
ably adjusting parameters, Typically, the only significant
di6'erence occurs during early times before the first
4X 10 yr.

Let us compare a realistic model of type (d) to a stan-
dard k = —1 Friedmann cosmology. Fixing Hp t U

specifies the dependence of a (t)/ao on Hot in both cases.
For the five-dimensional model, this follows from Eq.
(5.13): tU/Ho fixes ao/c thereby determining Eq. (5.15).
For the standard model, qp is determined by tUH0 via the
equation

tUHO=(1 —2qo) ' —qo(1 —2qo) arccosh —1
qp

(5.17)

and then the dependence of a (t)/ao on Hot is given im-
plicitly by

a(t)
ap

qp
(cosh/ —1),

1 —2qp
(5.18)

E. The internal scale parameter in five dimensions

So far we have largely been concerned with the evolu-
tion and experimental properties of the macroscopic scale
parameter a. Next, we consider the internal scale param-
eter b in the five-dimensional model.

With an energy density comprised of both matter and
radiation, p=p +p„, where p and p„ independently
satisfy Eq. (5.3), it is possible to find an exact solution for
b(t). Thefirst of Eqs. (5.2) becomes

2 3 4
a Ci b k 8~6D Pmpap Prpap+——= — + +

a 3b a a

(5.19)

Its solution is

b

bp

3Q„0 a 3mp&p 3&p+ (r —r, )+-
4qp ap 4a 4qp

(5.20)

qp
Hot = (sinhg —P) .

(1—2qo)

Setting the age of the Universe to be 0.95H0 '

= 1.7 X 10' yr with Hp =hp, we find virtually no
difference between the two models. At r =0. 1 tU, a (t)/ao
is about 10% larger for the five-dimensional case, at
t =0.2tU it is 5% larger, at t =0.4tU there is a l%%uo

difference, and beyond t =0.6tU the two differ by less
than 0.2%. See Fig. 2.
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.0&

FIG. 2. Comparison of a standard cosmology with a five-
dimensional type-C, 'd) mode1. The lower curve is that of the stan-
dard cosmology. Both curves have tU =0.95/Ho.
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(5.21)

An interesting feature of Eq. (5.20) is that b(t) con-
tracts as a (t) expands with t This mec. hanism might ex-
plain why the scale of the internal dimensions is small.
It simplifies the understanding of the behavior of b(t) to
set A„o=0, which is consistent with astrophysical mea-
surements shown that Q„o« 1. One finds

b ao 3 c1+ —
o
—k

bo a 4 a

'2

Ho(t tv)

Since for small t,

(5.22)

ao
-C2 HOt (5.2.3)

where a and ri are to be taken from Eq. (5.12), where qo is
given in Eq. (5.14), and where

Take c, &0; if this is not the case, tU must be deter-
mined by where b vanishes rather than a. Equations
(5.23) and (5.25) show that, while a (t) grows with t, b (t)
decreases with t. If we require that the a and b scales be
comparable at some early time t„ i.e., b (t, ) =a (t, ), then
bo /ao =(c 2 /e, )Hot, . Since tU —1 /Ho, this shows that
bo/ao-t, /tU. The ratio tU/t, is likely to be many or-
ders of magnitude if a(t, ) and b(t, ) are microscopic at
time t, . Consequently, the scale bo of the internal dimen-
sions today is significantly smaller than b (t, ).

Note that the equations and the physics they contain
cannot be trusted at the earliest stages of the Universe.
However, one knows that the equations hold after a cer-
tain early time beyond which b(t) grows smaller with
time in the manner prescribed by Eq. (5.25).

Although the discussion in the previous paragraph
holds for the n =1 model, it should be a feature for real-
istic models when n 2. Since b/b and d /a enter in Eq.
(5.2) in a similar manner, dimensional analysis implies
that typically

~
b /b

~

—
~
a /a ~. From this one concludes

bo/b(t, )-[ao/a(t, )]~ for some power p, where t, is
some early time at which a and b were of comparable
size. If p )0 then bo-ao and bo is of macroscopic size,
which is not experimentally viable. If p (0 then b ( t )

shrinks as a (t) grows. The factor by which a to the pth
power has grown since early times should be the factor by
which b has decreased. This is what we found above for
the n = 1 case for which p = 1 and the constants c1 and
c2 are of order unity.

F. InNation for arbitrary dimensions

In an inflationary scenario for a higher-
dimensional theory with a linear R term, the behavior of
b with time is problematic. The physics of inflation is
mimicked by a time-dependent cosmological constant
which is positive during the early stages of the Universe
and zero later. The positive cosmological constant causes
the Universe to expand rapidly. Later, when it becomes
zero, the evolution proceeds in the conventional manner.

The basic problem with higher-dimensional theories is
that, typically, if a inflates so does b. The internal dimen-
sions would then be of cosmological size, even taking into
account the shrinking mechanism discussed in Sec. VE
(Ref. 77). The e6'ect is seen as follows. When the cosmo-
logical constant A is positive, it dominates the right-hand
sides of Eqs. (5.2). Qne can verify that

where

c2 =2 1+k
ao

it follows that

2 1/2

(5.24)
a (t) =a (0)exp

b (t) =b (0)exp

2A
(n +2)(n +3)

2A
(n +2)(n +3)

1/2

(5.27)

b c1 1

bo ci QHt

3 cc =1—Ht —0 —k1 0 U 4 rnO
ao

'2

(5.25)

(5.26)

is then a solution. The scales a (t) and b (t) grow together
exponentially at the same rate. Although other solutions
can be found, e.g., changing the sign of both exponents in
Eq. (5.27), none of them involve exponential growth in
a (t) and thus none correspond to an inflationary
scenario. In short, inflation in a higher-dimensional
theory with only a linear R term renders bo of cosmologi-
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cal size. Higher powers of R in the action may avert this
difficulty.

VI. DISCUSSION AND CONCLUSIONS

In this paper we investigated consequences of tensor-
induced spontaneous Lorentz-symmetry breaking in
higher-dimensional theories. We also studied possible
phenomenological gravitational effects both with and
without the presence of tensor-induced breaking and
identified particular gravitional phenomena placing con-
straints on such theories. The ideas were developed
through a string-inspired model. The results obtained are
relevant not only to strings but also to Kaluza-Klein and
D )4 supergravity theories.

The strongest constraint comes from the observation
that a localized mass distribution must generate a four-
dimensional metric of the Eddington-Robertson form,
with parameters that are well-established experimentally.
Higher-dimensional theories can yield parameters in
conflict with the observed data. Our analysis is based on
perturbative calculations in higher-dimensional theories
with purely an Einstein R term, with or without tensor-
induced spontaneous Lorentz-symmetry breaking. How-
ever, the conclusions should be independent of terms in
the Lagrangian of higher powers in R, since by dimen-
sional analysis these do not affect the leading large-
distance behavior.

For theories with spontaneous Lorentz-symmetry
breaking induced by the vacuum expectation value of a
tensor field, features of the compactified dimensions were
deduced using methods of algebraic topology. We found
that for our string-inspired model the compactified mani-

, fold must have zero Euler characteristic and nonzero first
Betti number. Indeed, the compactified manifold must be
a fiber bundle over a circle.

Further phenomenological constraints arise from
cosmological considerations. We explored model
universes for pure Einstein theories in higher dimensions.
We found that the compactified dimensions are naturally
flat if they are small. Many theories can be excluded on
the basis of disagreement with experimental knowledge of
quantities such as the age of the Universe and the varia-
tion of the Newton gravitational constant with time.
Higher-dimensional models mimicking the standard
cosmology and satisfying observational constraints can
only be established if various parameters are fine-tuned.
More precise measurements of the Hubble expansion
constant, the deceleration parameter, and the mass densi-
ty of the Universe could therefore eliminate these possi-
bilities also.

Disregarding technical details and potential complica-
tions, the key reason for the phenomenological difFiculties
may be viewed as follows. The modifications to Einstein
gravity are a consequence of the long-range propagation
of massless modes of the Lorentz-scalar components h~I„
j,k ~4, of the higher-dimensional components of the
metric h„. Like the graviton, these modes couple weak-
ly and cannot be directly detected. Nonetheless, they
cause subtle effects: without modifying Newton gravity
they induce measurable deviations from Einstein gravity

and changes in cosmological parameters.
We are thus faced with the following result: the per-

turbative sector of many higher-dimensional theories is
excluded on the basis of current experimental observa-
tions. Since some of the most attractive theoretical pro-
posals for unification and quantum gravity are based on
the presence of extra dimensions and can have massless
models of the type discussed, circumventing this result is
desirable. In the remainder of this section we mention
some possibilities that may be relevant to this issue.

We remark that massless Lorentz-scalar modes might
be avoided altogether in certain compactification
schemes. However, an arbitrary manifold is not admissi-
ble: it must obey the equations of motion and be stable
under small fluctuations. Compactifications often have
zero modes; for example, it is common in Kaluza-Klein,
supergravity, and superstring theories to consider Ricci-
flat manifolds, which typically have zero modes. Zero
modes occur in torodial compactifications, including the
original five-dimensional Kaluza-Klein model, ' and
generically occur in models based on Calabi-Yau mani-
folds. '

Granting the existence of such modes in a model, the
phenomenological difficulties may nonetheless be obviat-
ed if a mechanism can be found preventing or damping
their long-range propagation. The simplest solution is to
give them masses. However, doing so explicitly is not
permitted because it violates general coordinate invari-
ance. This is similar to gauge theories for particle phys-
ics where the vector gauge bosons cannot be given masses
by hand due to gauge invariance. In such theories,
masses can be generated for vector gauge bosons via the
Higgs mechanism. This fact was our primary motivation
for the investigation of the gravitational version of the
Higgs effect. However, as demonstrated in Sec. III, this
effect neither provides masses for components of the
graviton nor destabilizes flat higher-dimensional space-
tirne. ,

Let us consider further the analogy to non-Abelian
gauge theories. What mechanisms exist for mass genera-
tion other than the Higgs effect? The pure SU(3) non-
Abelian gauge theory provides an example. Perturbative-
ly, it contains eight massless gluons, yet the physical
spectrum is believed to consist of massive glueballs states.
A single gluon cannot be microscopically isolated because
of confinement. Effectively, the mass of a gluon increases
as it moves away from a bound state. Thus, the propaga-
tion of the massless modes of the perturbative sector is
inhibited at macroscopic distances.

Perhaps an analogous mechanism occurs in string
theory. String interactions are highly nonlinear and in-
volve an infinite number of particle modes. Furthermore,
there are arguments based on the effective dilaton poten-
tial indicating a need for strong coupling in string
theories. If string interactions become strong at large
distances, massive bound states analogous to glueballs
might form. If these states include the higher-
dimensional components of the metric then the latter
essentially decouple at large distances and the phenome-
nological difficulties are avoided. Current knowledge
suggests a gravitational version of confinement is unlikely



4p GRAVITATIONAL PHENOMENOLOGY IN HIGHER-. . . 1899

to occur in Kaluza-Klein or supergravity theories. Only
the primitive understanding of nonlinear effects among
the infinite number of degrees of freedom prevents us
from excluding this idea in string theory.

Another possibility is that bound states occur directly
as a result of short-distance effects. The gravitational po-
tential in D flat dimensions varies as r and hence at
short distances becomes stronger as D increases. If the
components of the metric associated with the extra di-
mensions form a small but massive bound state, their
propagation at large distances will be inhibited.

Even presupposing a mechanism for the damping of
higher-dimensional components of the metric, a second
issue of importance arises. String theories when treated
perturbatively yield interactions of the type seen in na-
ture: namely, four-dimensional gravitational and non-
Abelian gauge interactions. It is therefore desirable to
keep certain pieces of the perturbative sector intact. The
asymmetry problem then occurs: one must understand
why only one part of the theory involves a damping
mechanism.

Grand unified theories provide an analogue system in
particle physics. They incorporate the strong and elec-
troweak interactions. The former is strongly coupled
while the latter is weak. The former occurs in bound
states while the latter has massless propagating photons.
Hence, grand unified theories display the desired asym-
metry. In general, the grand-unification gauge group 6 is
broken to a non-Abelian subgroup H and one or more
U(1) factors. The U(1) gauge bosons remain massless and
generate long-range forces. The non-Abelian gauge bo-
sons are confined and form bound states. Following this
analogy, the four-dimensional degrees of freedom in
string theory should be like the U(1) gauge bosons while
the higher-dimensional degrees of freedom should be like
the H gauge boson, s. The explicit implementation of this
possibility is an interesting theoretical problem.

The key to the asymmetric requirement must be a
symmetry-breaking mechanism. While tensor-induced
spontaneous Lorentz-symmetry breaking does not direct-
ly solve the mass generation problem, it may nonetheless
provide the needed impetus for the asymmetry. In this
regard, string theory is favored over other higher-
dimensional theories.

Higher-dimensional strings may be naturally unstable
and may spontaneously break to lower-dimensional
spacetimes in one or more stages and by one or more
mechanisms other than tensor-induced breaking. The
reason why D =4 is selected as the critical dimension is
unclear. Special features of D =4 might play a role:
D =4 is an upper critical dimension for many systems of
statistical mechanics; and for D &4 renormalizability in
certain field theories and asymptotic freedom in non-
Abelian gauge theories are both lost.

It is also possible that some exotic and instrinsically
stringy compactification scheme avoids the phenomeno-
logical problems we have discussed. The generation of
masses for the higher-dimensional components of the
metric in a superstring theory might be linked to the pro-
cess that breaks supersymmetry and generates fermion
masses.

In conclusion, there can be observable gravitational
effects due to the extra dimensions even when these form
a manifold of microscopic size. The experimental ab-
sence of these effect poses a challenge to many higher-
dimensional theories.

We have seen that compactification of the extra dimen-
sions can by itself be insum. cient to ensure a phenomeno-
logically viable theory. Some damping mechanism must
be found for any massless modes of the components h k,
j,k ~ 4, of the graviton to prevent their long-range propa-
gation and corresponding effects. This damping problem
is crucial for agreement with precise expenmental tests of
nonleading effects in Einstein gravity. - A mechanism for
mass generation might be related to a bound-state prob-
lem or to a kind of dimension confinement.

Phenomenological viability of string theories thus sug-
gests that certain degrees of freedom are in a nonpertur-
bative regime while others, such as the physical four-
dimensional components of the graviton, are manifested
in the perturbative sector. - This poses a second problem:
find a way to generate the needed asymmetry. In this re-
gard, tensor-induced spontaneous Lorentz-symmetry
breaking may play a role.

ACKNOWLEDGMENTS

%"e enjoyed particularly beneficial conservations with
J. Davis. %'e thank F. Cooper, D. Z. Freedman, M.
Rocek, and B. Sakita for stimulating questions. We also
thank R. Bluhm, A. Edmonds, A. Hendry, D. Lichten-
berg, and C. Livingston for discussions and K. Bardakqi,
M. Burkhead, S. Deser, R. Durisen and, especially, S.
Mufson for suggesting useful references. Some computer
equipment used is owned by the Physics Department of
The City College of New York. This work was supported
in part by the United States Department of Energy under
Contracts Nos. DE-AC02-84ER40125 and DE-AC02-
83ER40107.

APPENDIX A

This appendix proves that a manifold M" satisfying
conditions (i) and (ii) of Sec. III C is a fiber bundle over
S'. The proof is due to Davis.

The first step of the proof is to use the conditions to
define a map f:M"~S' such that f, ( )(am)%0 for all
m EM". The map is relevant because it can be used to
construct a bundle 8 over S'. Here, we treat & as the
one-form obtained from a using the metric.

Condition (ii) provides a closed one-form
& EH'(M", E). The first cohomology group H'(M", E)
over the reals is related to the first cohomology group
H'(M", Z) over the integers via the universal-coefficient
theorem:" H'(M", E)= H( "M, )ZEW—e can replace
9 with a closed one-form co&H'(M", Z), given explicitly
as follows. Let the set jcu'j be a basis for H'(M", Z),
where j =1, . . . , b& with b& the first Betti number of
M". Given a basis [cj.) of the one-cycles for H, (M",Z)
modulo torsion, the coj can be chosen to satisfy

j, co =5Ji, by the first de Rham existence theorem.

Then, &HH'(M", E) may be written as a =a~co'+dA, ,
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where a HIE and repeated indices are summed. Define
~'=r. co +dA, , where the r are rational numbers chosen
sufficiently close to the a so that co'(a)) 1 —e—:«) 0.
This is possible because a(a) = 1. Then, define the desired
closed form co by multiplying co' with an integer
N: &~=n c0~+N dA EH'(M", Z), where n; EZ and
ro(a) )N«) 0.

The map f:M"~S' can now be defined. Fix a point
p EM". Let q be another point in M" and let y be any
curve from p to q. Define f(q)= J romod Z. The mod

pq

Z restriction ensures 0 ~f (q) ( 1. Note that f„(a) is uni-
formly bounded away from zero because co(a) )N«) 0.

Let us check that f does not depend on the specific
path y q

used in the construction. Let y' be another
path from p to q. Then the difFerence y' —y is a
closed path in M". Such a path can be written as

ypq
—ypq=mJcJ+BE+~, where BE is a boundary and

is a torion term, i.e., m~=BI' for some m HZ and for
some boundary BI'. An integral of e over ~ vanishes be-
cause j co=(1/m) f co=(1/m) f sFco, which is zero
because co is closed. Therefore, the difference
f(q) —f(q')=m~n is an integer. However, an integer
ambiguity leaves f unchanged because it is defined mod
Z.

The function f may be used to construct the fiber bun-
dle over S' defined in Eq. (3.5). The bundle space 8 is the
manifold M" and the base is S' viewed as the interval
[0,1] with the end points identified. The fiber space N"
is taken as f '(0). It is a manifold because f,XO and 0
is a regular point.

To complete the definition of the bundle we must speci-
fy the monodromy h. Let I „EM"be the integral curve
for the vector field a starting at some fixed point
n Ef '(0). Consider f (c) for c E I"„as c moves along
the integral curve. Starting at 0, the value of f (c) moves
along the unit interval without backtracking because
f, (a) is bounded away from zero. Therefore, f (c) in-
creases until it attains 1=0 mod Z. Let c'EI „be the
first value attained by c for which f is reset to zero. The
monodromy is then defined by h (n) =c' See Fig.. 3.

The monodromy h is a diffeomorphism of f '(0) into
f '(0). It is continuous and smooth because the con-
struction involves continuous, smooth functions. It is
one to one because two initial points n and n' of f '(0)
cannot be mapped to the same point, as integral curves
do not cross. It is onto because Aowing backward along
I yields h

To complete the proof of topological equivalence be-
tween the manifold M" and the S' bundle, we must con-
struct a homeomorphism

The map H' is smooth on M 'Xf '(0) because it is
defined in terms of smooth functions. It is onto because
(n, O) is in f (0) and the integral Jr ro along an in-

W
tegral curve y of a increases without bound, so that
(n, t) is eventually attained for all t )0. It is also one to
one, which can be seen as follows. Suppose m, and m2
are two points of M" with H'(m, )—=(n„t, )

H (m2 }=(n2 t2 } Frolll n I n2 and the uniqueness of
integral curves, m, and m2 are on the same integral
curve. By the monotonicity of the integral along the in-
tegral curve the point m at which f (m ) = t, = t2 is
unique. Thus~ m )

—m —m p.
Consider next the end points of I. Let H be the com-

position of H' and the bijection N" 'X[0,1)~8. The
points (n, O) and (h (n},1) correspond to the same point
in M". The map H is continuous because of this
equivalence relation. It is the homeomorphism H of Eq.
(A 1}.

We have thus established that M" may be viewed topo-
logically as a fiber bundle over S'. This is the theorem
quoted as Eq. (3.5).

A further result follows. Given the S' bundle B, a

N" 'XI
(n, O)-(h (n), 1)

(A 1) t=f(m)

where I is the interval [0,1]. We begin by defining a
homeomorphism H' from M" onto N" ' X[0,1). Subse-
quently, the behavior at the boundary of I is treated.

Let m be a point of M", and set t =f (m). Consider
the integral curve I of a in M" passing through m. Flow
back to the point n determined by f (n) =0. The desired
map is then defined by H'(m) =(n, t).

FIG. 3. Representation of the ideas in Appendix A. The
space M" is projected onto [0,1) by the map f. The fiber f '(0)
is N" '. A point m EM" determines a value t in [0,1) via f and
a point n HN" ' via the integral curve I „ofa passing through
m. The integrals may begin and end in diA'erent components if
N is multiply connected. This possibility is symbolically in-
dicated by the dotted line.
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nowhere-vanishing vector field a and a metric g on M"
may be established such that the one-form a constructed
from a using g is closed. The vector may be taken as
a=H~ '(0, 1) in the tangent space at every point. The
vector field (0, 1) is well defined on the tangent space of B
because it is compatible with the monodromy h. The
metric can be constructed via partitions of unity, as we
show next.

Let f'" be a smooth function on I that is unity in the
neighborhood of 1/2 but that vanishes for neighborhoods
of 0 and 1. Let f' '=1 —f"'. The system f'" and f' '

forms a partition of unity for I. I.et g"' be a factorized
metric (g)v, 1) on N" ' X (0, 1), i.e., gz is any metric on

' and 1 is the unit metric on I. Define

F: By(N" 'X
( 1/2J )~N" 'X(0, 1)

(n, t + 1/2) for t ( 1/2
(n, t)~ '

(h (n), t —1/2) for t ) 1/2 .

(A2)

Use F to construct the metric g' ' at a point
p &Bg (N" ' X [ 1/2 J ) from the metric g" ' at the point
F~ (P) via the condition

vi v2l (~)( )
=F.(v) ) F, (v2) I (1)(F ( )) (A3)

g (p) g (F~ (p)) '

where v1 and v2 are tangent vectors at p. Then,
g'=f'"g"'+f' 'g' ' is a metric on B. It respects the
equivalence relation (n, o)-(h (n), 1) because F(n, o)
=F(h (n), 1).

The metric g on M" can be found from g' using the
homeomorphism H of Eq. (Al). Given vi and v2 in the
tangent space of M", define

v, v21(, ( )=H„(v, ) H, ( v2)l .
s( H( )) . (A4)

APPENDIX 8

i =1 n. =1
l

II X
k=1 m =0

k

X exp[ PE (n „n—2, n3, m „m2, . . . , m„)], (81)

where

E( n, (n, 2n, 3m, (m&, . . . , m)

2 2 2 2 1/2
ft1+PS2+Pl3 ~ Gk m c

=cfiTT +4 g +
L 2

1 Ik Am

This appendix treats the statistical mechanics of an
ideal, possibly relativistic gas in R XM". Here, M is a
compactified internal space taken for simplicity to be an
n-torus T"—=S ' X XS ', with the length of the kth
circle being Lk. Replace R by a large but finite box of
volume V(3) L . We are interested in the thermo-
dynamic limit in which V(3)~~ and N —+ ~ with

p=N/V(3) and all L(, fixed, where N is the number of
particles in the system and p is the three-dimensional
number density.

The wave functions for the large box are
isn(mn )x/L)sin(mn y2/L)sin(mn 3x/L), where n; are

positive integers. The corresponding momenta are
p; =~))t'n; /L. The wave functions on the kth circle
are one, sin(2n m(, 8), /L„), and cos(2TTm(, 8), /L), ),
mk =1,2, . . . . The possible values of the internal mo-
menta are zero and pk=2~Amk/L, the latter having a
degeneracy factor of 2: g (0)= 1, g (m& ) =2 for m& ~ 1.

The partition function Z1 for a single particle system is

Then,
a.al, =H, (H (0, 1)) H, (H„'(0, 1))l,,

- (82)

where m is the mass of the particle. The 1V-body parti-
tion function is Z)v =(Z, ) /N!.

The pressure ~' ' in the kth direction is obtained by
differentiating the free energy with respect to Lk ..

=(o, 1).(o, 1)l, ,

1 8
1L), (InZ~) .

(3) n L),
(83)

When the L& are small, the sum in Eq. (81) is well ap-
proximated by the term with all mk being zero plus the
terms with a single mk being one. Combining this ap-
proximation with the thermodynamic limit and replacing
the sums associated with the macroscopic space by in-
tegrals, Eq. (83) becomes

=dOH, (H, '(0, 1))

=d0(0, 1)=1 . (A6)

=1. (A5)
As the metric is factorized, the one-form 8 associated

with a is given by the pullback a=H'(dO) of d8 in B, '

where dO is the standard one-form on the I factor in 8.
It follows from d d 0=0 that a is closed, da =0. In addi-
tion,

d(a)=H*(dO)(H, '(0, 1))

~(( ) (3) 4A7TCp 2pA7Tc

ZD 3LV Lk

3

J dx; exp
p&rcL),

4 1 2 3(x+x+x )

4mp 2PA'etc

I/ L 5/2p3/2(gc)1/2 exp (84)

in the limit of small Lk, where

ZD =3
1

V(3)

QO
2 2

' 1/2

J dx, exp Pfirtc x, +x2+x3+—
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is the partition function per unit three-volume for the
three-dimensional relativistic system. Equation (85) be-
comes (m /2srfi p) ~ in the nonrelativistic limit of large
m and becomes (tr (pA'c) )

' in the relativistic limit
m ~0.

The presure p for the macroscopic dimensions is
p=p/V„p. For Lk small, r'"' is exponentially small be-

cause of the factor exp( 2—phd. c /Lk ) in Eq. (84).
For a general manifold M" one always finds an ex-

tremely small result because the first excitation associated
with the kth compactified dimension has a factor of 1/Lk
in the energy, where Lk is the characteristic size of the
kth dimension.
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