
PHYSICAL REVIEW D VOLUME 40, NUMBER 6 15 SEPTEMBER 1989

Covariant and gauge-independent perfect-Quid Robertson-Walker perturbations

G. F. R. Ellis
Physics Department, Uniuersity of Texas, Austin, Texas 7871&,

Apphed Mathematics Department, University of Cape Totten, Rondebosch 7700, Cape Town, South Africa,
and Scuola Internazionaie Superiore di Studi Aeanzati, Miramare, 8$0IQ Trieste, Italy'

J. Hwang
Astronomy Department, University of Texas, Austin, Texas 787&&

M. Bruni
Scuola Internazionale Superiore di Studi Aoanzati, Miramare, 8$01$ Trieste, Italy

(Received 1 May 1989)

In the preceding paper, covariant and gauge-invariant quantities were defined that charac-
terize density inhomogeneities in an almost-uniform model universe in a transparent way. In
this paper second-order propagation equations are derived for these quantities in the case of a
general "perfect fiuid, " and their properties examined. We do not use a harmonic decomposi-
tion in our definitions, but when such a decomposition is applied, our results are compatible
with those obtained by Bardeen in his harmonically based gauge-invariant analysis. Our second-
order equation enables a unified and transparent derivation of a series of results in the literature,
without any ambiguity from choice of any particular gauge.

I. INTRODUCTION

There is a long history of study of perturbations
of the Friedmann-Lemaitre-Robertson-Walker (FLRW)
universe models, and their use to examine galaxy for-
mation (e.g. , Refs. 1—5). In general the discussions are
plagued by the problem that the choice of variables
to represent the inhomogeneities depends on the gauge
chosen. Bardeen's major paper gives a set of gauge-
invariant quantities to describe the perturbations and
propagation equations for these quantities; but their def-
inition and geometric meaning are complex, and lose di-
rect geometric meaning because a Fourier decomposition
is applied at the outset of the analysis.

In the preceding article Ellis and Brunis (EB) gave a
set of covariantly de6ned gauge-invariant quantities with
a simple geometrical and physical meaning, that code the
information we need to discuss density inhomogeneities
in an almost-FLRW model, and examined their dynamics
in the case of pressure-free Qows. Here we extend the dy-

namic discussion to the case of a general perfect Quid with
nonzero pressure, the physics of which is expressed by a
suitable equation of state (the extension to the imperfect-
fluid cases is discussed in a separate paper7). The for-

malism used here is essentially equivalent to Bardeen's
in its content, 7 but is more transparent because of the
direct interpretation of the variables used.

As in the work of EB, the basic philosophy is not to
perturb a FLRVV model, but rather to solve the exact
equations in the full four-dimensional space-time when

the variables take values close to those they take in a

FLRW universe; the approximation takes place by ne-

glecting higher-order terms in the exact equations. Thus
we do not distinguish between real and background vari-

ables, but do all calculations in the real space-time and
linearize the resulting equations.

II. COVARIANTLY DEFINED
GAUGE-INVARIANT VARIAB LES

The exact covariant Quid equations for a completely
general Quid flow in a curved space-time are presented in
Refs. 8, 3, 9, and 10. The four-velocity vector tangent to
the flow lines (the world lines of a typical observer in the
universe) is u (u'u = —1). The projection tensor into
the tangent three-spaces orthogonal to u is h b

= g b

+u ub. The time derivative of any tensor T b, p along the
Quid Qow lines is T,~ = T,~.,u'. The first covariant
derivative of the four-velocity vector is

1-
ua;b = ~ab +,a'ab + sghab &sub&

where 8 —= u'. , is the expansion, u, b ——ul, bl is the vor-

ticity tensor (u bub = 0), and o b
—

cr~ bl is the shear
tensor (o,bub = 0, o', = 0). A representative length
scale S along the Qow lines is defined by

sos = —,'o. (~)
The vorticity and shear magnitudes are defined by ~2

ab 2 1 ab
24P~b4) ) 0 = 20~bO
Because we are here considering the case of a perfect

fluid, the matter stress tensor will take the form
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where the pressure p and energy density p are related
by a suitable equation of state; for example, if 8 is the
entropy then we can express it in the form

p = p(p, s).
However, as always in thermodynamics many other rep-
resentations are possible, and other forms may be more
suitable for some applications (see Sec. IV B).

A. Gauge-invariant quantities

bp/p. The crucial diff'erence from the usual definition is
that D represents a (real) spatial fluctuation, rather than
a (fictitious) time fluctuation (EB).

The second quantity is the vector

@,=~pS'D = S X,
corresponding to the Bardeen variable 4~ up to a con-
stant, except that this is a vector; and we have not re-
quired a harmonic analysis to make this definition. We
shall later see its propagation equations correspond to
those for the Bardeen variable.

In a FLRW universe model the shear, vorticity, accel-
eration, and Weyl tensor vanish, 8, and the energy den-
sity p, pressure p, and expansion 0 are functions of the
cosmic time t only. Covariantly defined quantities rep-
resenting the spatial variation of the zero-order variables
p, p, and 0, are their orthogonal spatial gradients:

X, = Kh, y i, , 7,'—:~h, pg, Z, = h, Oi,

where K is the gravitational constant. Each of these quan-
tities is gauge invariant, as they all vanish in FLRW uni-
verses (EB). Two other gauge-invariant quantities will
be important, namely, the divergence of the acceleration,
and its spatial gradient:

A:—u', , A, =h Ay.

B. The key variables

Two simple gauge-invariant quantities give us the in-
formation we need to discuss the time evolution of density
fluctuations. The basic quantity we start with is the or-
thogonal projection of the energy-density gradient, i.e.,
the vector X = h Kp i, . This can be determined (a)
from virial theorem estimates and (b) by observing gra-
dients in the numbers of observed sources and estimating
the mass-to-light ratio [Kristian and Sachs, ii Eq. (39)].
However, this does not directly correspond to the quanti-
ties usually calculated; but two closely related quantities
do.

The first is the comoving fractional density gradient

X

which is gauge invariant and dimensionless, and repre-
sents the spatial density variation over a fixed comoving
scale (EB). Note that S, and so D, is defined only up
t,o a constant by Eq. (2); this allows it to represent the
density variation between any neighboring world lines.
The vector B~ can be separated into a direction e~ and
magnitude D where

=De, e e =1, e u =0 m 'D=(D'D ) ~.

III. DYNAMIC EQUATIONS

We can determine exact propagation equations along
the Quid Row lines for the quantities defined in the pre-
vious section, and then linearize these to the almost-
FLRW case. The basic linearized equations are given
by Hawking [see his Eqs. (13)—(19)]; we add to them
(EB) the linearized propagation equations for the gauge-
invariant spatial gradients defined above.

A. Basic equations

~(p+ p)u, + Y, = 0;

the linearized Raychaudhuri equation

8 + ~s02 —A+ ~2~(p + 3p) —A = 0,

where A is defined by (6); and the propagatian equa-

tions for the gauge-invariant variables in (5) and (7). We

will focus on the gauge-invariant variable B; then the
equations we need are

(13)

h, '(Z, )
' = —~~OS, —

2i r.p'D, + S(~i Ku, + A, )

(see EB), where Z = SZ and

K = 2(—si 02 + rcp + A), K = —20(K + 2A).

(14)

When u = 0, jC is the Ricci scalar ~3&R of the three-
dimensional spaces orthogonal to the fluid flow (there
are no such three-spaces when cu g 0). In evaluating this
equation, we may ignore the term A in (15) because the
dHFerence it makes in determining g is first order and
so the difference resulting in determining Z via (14) is

second arder; that is, for the purposes af evaluating (14)
we may take

The basic equations for the linearized case are the en-

ergy and momentum-conservation equations for perfect
Qulds )

(10)

The magnitude 'V is the gauge-invariant variable that
most closely corresponds to the intention of the usual

K=6kjS, k=0
(k corresponds ta the curvature constant for the back-
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ground FLRW universe model).
To evaluate the last two terms in (14), we introduce

(3)Q, the covariant derivative operator orthogonal to u
(obtained by totally projecting the four-dimensional co-
variant derivative operator; see, e.g. , Refs. 9 and 10);
when ~ = 0 this is the covariant derivative in the sur-
faces Z orthogonal to the fundamental flow lines. Now,
from the definition (6) of A and (11)we see that, to first
order,

But

(s)~,(s) ~v ~(s)g&p

(i +p)

(s)~q
(s)~ i'(s) ~,p

—(s)g ~
(s)~,(s)~i p

1 ( )~~ (3)~ y&

(17)

(18)

(20)
(,) ,(+)&S'

on using the notation ( )sV'~'D—:(s)V'i, (s)V'~'D, . In per-
forming this calculation, note that there will not be three-
spaces orthogonal to the fluid flow if u g 0, but still we

can calculate the three-dimensional orthogonal deriva-
tives as usual (by using the projection tensor h ); the
difFerence from when ~ = 0 will be that the quantity we

calculate as a curvature tensor, using the usual definition
from commutation of second derivatives, will not have
all the usual curvature tensor symmetries. Nevertheless
the zero-order equations, representing the curvature of
the three-spaces orthogonal to the Quid How in the back-
ground model, will agree with the linearized equations
up to the required accuracy.

Now, from (4),

y — p~~ ()~
~

p ()~a=
~

ap+ (~ aS

We assume we can ignore the second term (pressure vari-
ations caused by spatial entropy variations) relative to
the first (pressure variations caused by energy density
variations), and spatial variations in the scale function
S (which would at most cause second-order variations in
the propagation equations). Then (ignoring terms due
to the spatial variation of dp/dy, , which will again cause
second-order variations) we find

S(-,iCu. +X.) = —
i ~

Z). + (s)~~Z).
~

1 /dp& k

I+p/S &di & S' )
(22)

and using the Ricci identitiy for the (3&V' 's and the
zero-order relation ( &R ~ = -h~ ( &R for the three-

dimensional Ricci scalar ~ )B we obtain

(19)Q

Thus on using (s)R = iC = 6k/Sz we find

1 3k

This is the result that we need in our future use of (14).

2. The curvature gradient

The orthogonal spatial gradient of K [see (15)] is

JC, = h, 'iC i, W SiC = —~s8& +2~ij D, . (23)

This can be used to substitute for Z in (13) and the
other propagation equations; for example, we find

h, (SXi,)
' = —(SX,)[0 + ~ ~(p + p)8 ']

SsiC,+-8 '~(p+ p) (24)

which (remembering the Hubble parameter H is given by
8 = s8) is essentially Eq. (24) of Ref. 12.

From the definition (23) and the above equations we
obtain a propagation equation for this gradient:

2 S2 6k("') = 31+,/, S
—Z.

i
1+ —

i + 8 D.pb dp

ij di

-28 "i X. —(')V'V.
i

di &S'
(25)

where again one can substitute for Z from (23) if desired.

2. The Baleen variable

Finally, the rate of variation of the Bardeen variable
(9) follows directly from the equations above; it is given
by

@ia+ s8@a+ —,(u~+ 1) @, = —',(1+u)) (S'iC, ),

where we have written it in terms of the spatial curva-
ture variation (23) and we use the subscript J to denote
projection orthogonal to u~.

B. Second-order equations

The equations for propagation can now be used to ob-
tain second-order equations for P and 4, . For easy
comparison, we follow Bardeens by defining

The fractional coinooing gradient

Now difFerentiation of (13), projection orthogonal to
u', and linearization gives a second-order equation for
'Da [we use (12), (14), (27), and (22) in the process].
As before we use the subscript J to denote projec-
tion orthogonal to u; i.e., we write h '(D,)" = Dg
h, '(D, )

' =—D~, We find.

iD = p/p, c, = dp/dp

io = —(1+ io)(c, —io)8. (27)
p'l . 2
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5,.+ (-, —2~+ c,)en~. —
~ (-, + 4m ——,m —3c, )~p+ (c, —w), + (5m —3c,)A

~
V.2 3 2 2 12k

(28)

This equation is the basic result of this paper; the
rest of the discussion examines its properties and spe-
cial cases. It is a second-order equation determining the
evolution of the gauge-invariant density variation vari-
able D~ along the fiuid Qow lines, equivalent to the cen-
tral equation of Bardeen's paper (see Ref. 7). It has
the form of a wave equation with extra terms due to
the expansion of the Universe, gravity, the spatial curva-
ture, and the cosmological constant. 7' group the last
two terms together because when we make a harmonic
decomposition corresponding to that made by Bardeen
(Sec. IIIB3), these terms together give the harmonic
eigenvalues n .

This form of the equations allows for a variation of
to = p/p with time. However, if w =const, then from
(27) c, = io, and the equation simplifies to

~ s ((1—u))(l + 3')'Dg, + (ss —w)e'D~, —
~

~P+2wA ~17,

gradient to increase ("gravitational aggregation"); out-
side these limits, the term is negative and tends to cause
the density gradient to decrease ("gravitational smooth-
ing"). A positive A term tends to cause gravitational
aggregation if m is positive (but smoothing if m is nega-
tive). Also the sign of the damping term (giving the adia-
batic decay of inhomogeneities) is positive if s & m (that
is, 2p ) 3p) but negative otherwise (they adiabatically
grow rather than decay in this case). The equation re-
duces correctly to the corresponding dust equation [(58)
in EB] in the case m = 0.

While this form is expressed in terms of zp, it is conve-
nient for many applications to substitute for p from (15)
and (16). We do so and drop A (which can be represented
by setting tu = —1) to obtain

D~, + (~~ —m)01)g, —(1 —m)(l + 3m), ~ 3k )
2

1p2+

+u I,&. —')V"D.
~

= 0. (29)

The matter source term vanishes if iU = 1 (the case of
"stiK matter" M p = p) or uj = —si (the case p = —p/3,
corresponding to matter with no active gravitational
mass). Between these two limits ("ordinary matter"),
the matter term is positive and tends to cause the density

l+u)~ 'D, —{)V''D,
~
=0, (30)

a form convenient for most applications.

2. The Bardeen variable

We can directly find the second-order equation for C',
[see (9)] from the equations above, obtaining

@i,+@i,O(s+c, )+ ~ (c,' —m)~p —,(1+3c,')+A(l+c, ) ~
Cn+c,

~
@,—{»~~C,

~

= 0 (31)

which simplifies in the case c~ = iU, A = 0 to the form

2k
@g, + 4g e(s + iD) ——

~ (1+3w)C,

Q n (32)

8. IIarrnonic decomposition

It is standard to decompose the variables harmon-
ically, thus effectively separating out the time and space
variations; this conveniently represents the idea of a co-
moving wavelength for the matter inhomogeneities. In
our case we do so by writing 'V in terms of harmonic
vectors Q

" from which the background expansion has
been factored out.

We start with the defining equations

n2
(q(n)) „~ 0 (s)~&q(n) " +(n) (33)

n2 —2k(3)~2q(n} g(n)
S2 (34)

(the factor S ensuring these vector harmonics are approx-
imately covariantly constant along the Ruid How lines in
the almost-FI RW case). Then we can write p in terms
of these harmonics as

corresponding to Bardeen's scalar Helmholtz equation
(2.7), but expressed covariantly following Hawking. s
F»m these quantities we define the vector harmonics [cf.
Ref 5, Eqs. (2.8), (2.10); we do not divide by the wave
number, however, so our equations are valid even if n = ()]

q(n} g {3) ~ g(n) ~ q{n) a
() (q(n)) c

()
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p —) p(n) q(n) (S)~@(n) () (35) C. Implications

1 + ) b(n) q(n) (s)gp 0 (s)~p(n) ()

(36)

where po is a solution of the zeroth-order equations
and b(n) is the nth fractional harmonic component of
p (again, these functions are approximately constant in
the directions orthogonal to u'). Now suitable choice of
the background solution (e.g. , such that the Traschen
integral constraintsis are satisfied) will make all the
harmonic coefficients small and ensure these integrals
(specifically, that for n = 0) converge. In this case there
is a gauge arbitrariness in defining the harmonics, that
will affect the higher-order terms but not the linear calcu-
lations of this paper (because we do not use the absolute
values of these coefBcients, but rather their spatial gra-
dients).

In either case it then follows from the definition of D,
that

) ~(n) q(n) (s)~ ~(n) - 0 (37)

where D(") is the harmonic component of D corre-
sponding to the comoving wave number n, containing
the time variation of that component; to first order,
D(")—:(p(")/p) —= 6("). Putting this decomposition in
the linearized equations (28), (29), or (30), the harmon-
ics decouple. Thus for example we obtain from (30) the
nth harmonic equation

5(")+ (~ —~)ev(")

p(") being the nth harmonic component of p (approxi-
mately constant in the directions orthogonal to u; they
cannot be exactly constant in all these directions if u g 0,
for if they were they would define surfaces orthogonal to
the fiuid flaw lines). As usual the harmonics are orthog-
onal to each other in a suitable measure (the details de-
pending on whether k = +1, 0, or —1), so the coefficients
p(") can be determined by suitable weighted integrals of
p. However, we have to worry about the convergence of
these integrals; this may require consideration of finite
boxes in the Universe, or subtraction of a time-varying
function from p before doing the harmonic analysis. In
the latter case it may be preferable to use an alteriiative
representation:

To determine the solutions explicitly, we have to sub-
stitute for p, 0, and S from the zero-order equations.

1. Speed of sound

We can examine solutions in the case where the diver-
gence term is the dominant term, by examining the case
where 0, ~y, , k/S and, A can be neglected. We see then
directly from (28) that c, introduced above is the speed
of sound (and that imaginary values of c„ that is, nega-
tive values of dp/dp, lead to exponential growth or decay
rather than oscillations).

8, Jeans instability

2(1 —u))(1+ 3m)~P ) w~, ,

that is

(I )ap '~' n
(1 —io) i

—+ 3 i ) —.
2, S

(40)

(41)

In terms of wavelengths, the Jeans length is defined by

2~S ( ~
'

EGp (1 —io)(1+ 3') )
where we have expressed the result in terms of the usual
gravitational constant G. Thus gravitational collapse will
occur for small n (wavelengths longer than Ag), but not
for sufficiently large n (wavelengths less than Ag), for
the pressure gradients are then large enough to resist the
collapse and lead to oscillations instead (cf. Jackson, i4

but his answer appears to be in error; we here present a
corrected version of his result).

(42)

8. Long-wavelength solutions

The Jeans criterion is that gravitational collapse will
tend to occur if the combination of the matter term and
the divergence term in (28) or (29) is positive; that is, if

—,'(1 —io)(I+ 3u)ape. ) io (—'",V. —(')V2u. ) (39)

when c2 = io (we include the curvature term also, be-
cause it comes from the divergence term A ). Using the
harmonic decomposition, this can be expressed in terms
of an equivalent scale: from (38), gravitational collapse
tends to occur for a mode P~"~ if

(1 —zv)(1 ~ 3io) 1 2 3k I n („)
S2) S2

(valid for each n & 0), showing how the growth of
the inhomogeneity depends on the comoving wavelength.
Clearly we can similarly harmonically analyze the other
equations, e.g. , the second-order equation (32) for the
Bardeen variable.

Suppose we can ignore A and so A~; then provided
S g 0 we can multiply (12) by SS and integrate: we find
the Friedmarin equation

3(S) —(~p+ A)S = —3k, k = 0 (43)

applies along each world line. Thus in this case there is
a separate I"IRR' evolution along each world line;r5 xs

these evolutions will dier only in their energies and
starting times (as in the case of dust, cf. EB, Ref. 3).
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then the second-order propagation equations become or-
dinary diA'erential equations along the Quid Bow lines,
easily solved for particular equations of state (e.g. , see
Sec. IV below).

There is a first integral in this case if additionally

A=O, k=0, (45)

which has been used extensively in analyzing perturba-
tions during inffation (cf. Refs. 16 and 17). It is obtained
in the following way: define 4 by (9). Under the restric-
tions (44) and (45) from (26) and remembering that now

by (15) and (16) sic~ = ~p,

~~. + [~3+ —,'(~+ 1)]ec'.= ~4(1+ ~)e(S')C-)

while (25) shows

S K, = C„(C )
' = 0.

Combining these results, we And

(46)

(47)

2 4. + —,'BC.
e 1+u)

C,
2 ' (48)

a first integral of the equations (cf. Bardeen et al. is and
I,yth»»)

If additionally (io = const) ~ c, = io, the second-
order equation (32) reduces to

C i, + 4i, e(~s + iu) = 0 (49)

which can be directly integrated to give

Note the difference from (15), (16) here: in general we are
able to use (16) to determine K as far as the propagation
equation for D is concerned; but this ignores first-order
corrections to this equation, which we must take into ac-
count if we use it to determine O(t) or p(t); the separate
world lines evolve separately in general, and (16) does
not describe their evolution accurately. However, in the
case considered now, we can use (16) for these purposes,
that equation being the same as (43) under these condi-
tions, and giving the independent evolution of S(t) along
each world line. The evolution of the spatial variation
of density will be then governed by the equations above,
where now we drop the divergence terms, that is from
(6) and (20),

A=0 ~ A. =0 ~ c,'~ X. -(')V'X.
~

=0;, (2X
' qS'

(44)

showing how this constant relates to the spatial variation
in the curvature of the perturbed model. A generaliza-
tion of this argument by Mukhanov and Vishniac applies
if w is not constant. If now the equation of state varies
dramatically over a short time interval during a phase
transition, although io varies C stays constant at the
transition [see (47) and Ref. 17], so C, varies greatly;
enabling us to follow the evolution of 4 through the dif-
ferent stages of an inQationary universe. , %e obtain
the isocurvature case (see Sec. III D below) when C, = 0.

g. Scalar modes

In general, D and Z are not parallel. Even if they are
parallel at one everit p on a world line p, the divergence
term A, in (14) will in general mean that they will not
stay parallel; thus they will be essentially vector rather
than scalar solutions. However, each harmonic mode is
effectively a scalar solution (as it is an eigenmode). Also,
when the divergence term may be ignored, that is, (44)
is satisfied, then [as in the dust case (EB)] there is scalar
solution, arising from initial data for which D and B,
are parallel (so 'D and Z are parallel to each other all
along the world line). For example (29) has a scalar mode
obeyirig

5+ (~ —m)OD —
i

t'(1 —u))(l + 3u))
2

Kp+2wA D = 0,

D. Isocurvature modes

From (25) we find that isocurvature inhomogeneities,
that is, perturbations with B g 0, such that

K, =O m Z = — D,3 Kp
(53)

(52)

where B is the magnitude defined in (8). We can always
find such "scalar" solutions [take initial data at p on y
with 17, parallel to 17, and (44) satisfied]; they will indi-
cate the extreme behavior of the vector solutions. Thus
we may use the scalar equations to investigate the max-
imum rates at which density inhomogeneities can grow.
Note that the scalar equation (52) is just the harmonic
equation (38) for n = 0. As we obtain the same equations
in both cases, D~ & varies precisely as D along the Qow
lines; that is the n = 0 harmonic equation is the scalar
mode.

J a =
S(4+S ) & 4'J a = (50) are possible only if

which can be put in (48) to give C explicitly in terms of
two constants. In the particular case where P, = 0 (no
decaying mode), then we have the integral

(51)

[—s2(1+ io)~@+ c,'02]17,

—c~e~
i

17 — V' D
i
= 0.8 S2 a a~ (54)

2 1 + 3(1+~) J
Thus as in the dust case, such solutions are possible if k =
0 and the divergence term vanishes, i.e. , (44) is satisfied,
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whatever the value of A. When e2 = m and A = 0 this
corresponds to the particular case C~ = 0 of the integral
discussed above. Although we have not obtained a formal
proof, it seems likely these are the only such solutions,
that is, (54) can only remain true at all times for ordinary
matter (more specifically, matter such that io g z) if
k = 0 and (44) holds.

IV. PARTICULAR APPLICATIONS

A. Radiation

In the case of pure radiation, p = 3, n = 3 ——e, . Then
we find, from (30),

Dia+ 3e&ia —
3 I

3O'+2 (1, 3Z)

p= (V —1)V (61)

can still be used in this case; it is related to uy and c2 [see

(»)1 by

(62)

p = pi + @2 + ps = Mi/S + M2/S + Ms, M; = 0

(59)

and the total pressure p by

p = p, + ps ———,'M&/S' —M„
where Mi represents the amount of matter present, Mg
the amount of radiation present, and M3 a cosmological
constant.

The relativistic y-law equation of state

+-
~

~.—~'~~'~.
~

= 0 (55)

O, = & d+&+& (57)

(where t is proper time along the flow lines). The corre-

sponding standard result in the synchronous and comov-

ing proper time gauges is diferent, being modes propor-
tional to t and ta ti~~ (cf., e.g. , Refs. 4 and 5); how-

ever, we obtain the same growth law as derived in the
comoving time orthogonal gauge and equivalent gauges
(cf., e.g. , Refs. 18 and 5). As our variables are gauge-
independent and covariantly defined, we believe they
show the latter gauges represent the physics more accu-
rately than any other. Note that we obtain no Actitious
mades (proportional ta t i) as happens, e.g. , in Olson's

paper, because we are using gauge-independent variables.
The Jeans-length criterion (41) is now

(2~@) ~ ) n/S M A(Aq —~—
&4 G~) (58)

as usual. Because our equations reduce effectively to the
Bardeen equations, their further properties (e.g. , solu-
tians when k g 0) are essentially dealt with in his paper,
so we will not discuss them further here.

B. A mixture of simple Auids

Consider a multicomponent fluid (matter plus radia-
tion plus a cosmological constant). A noninteracting mix-
ture of matter and radiation with the same four-velocity
is like a perfect fluid; that is, (3) applies where the total
energy density p is now given by

and, from (52) the scalar form

1 2 (1, 3kb'D+ OB ———
i

-0 + i

'D = 0, (56)
3 3 (3 S')

valid when we can ignore the divergence term (that is, in
the law-frequency limit). When k = 0 then S(t) oc ti~

and we obtain, in the long-wavelength limit,

The quantity p is a constant for a simple fluid; in the
present case we have an effective y(s) of the form

M, /S'+ -,'M, /S4

Mi/Ss + Mg/S4 + Ms

(Madsen and Ellisis). When A vanishes (Ms —0),
y smoothly decreases from 4sto 1 as the universe ex-
pands, and there is a smooth transition from radiation-
dominated to matter-dominated behavior.

We can use the equations in the rest of this paper in
this situation, with p representing the total energy den-
sity and p the total pressure; at most stages j will be
small and can be neglected, so we can use (29) rather
than (28). The Jeans length will be given by (42), where
ur is given by (62) and (63). Because of the possible inde-
pendent spatial variation of Mi and M~, the isocurvature
behavior will be richer than in the simple fluid case, but
(25) remains valid and we find as before that perturba-
tions such that jC~ = 0 are consistent with the evolution
equations if k = 0 and

2k ()
)

and it seems likely that these are the only isocurvature
solutions.

If the fluids interact significantly, we can no longer de-
scribe the situation by the simple equation of state (63);
nevertheless, just as in the case of a dissipative "perfect
fluid" [i.e. , a fluid with stress-tensor (3) but nonzero bulk
viscosityj we can still use the equations in this paper for
the evolution of density gradients, provided we add suit-
able equations of state describing the interactions and
dissipative processes occurring.

However, the situation for multicomponent fluids with
de'erent four-velocities is more complex; generalizations
of the equations given here are needed for that case.
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V. CONCLUSION

We have utilized covariant gauge-invariant quantities
which directly characterize the spatial variation of the
relevant physical variables in the observable Universe, to
represent inhomogeneities in an almost-FLRW universe
with a perfect-fiuid matter content. %'e have obtained
dynamic equations obeyed by these quantities; in partic-
ular, we give second-order propagation equations along
the fluid fiow lines (in terms of proper time along those
fiow lines) for 17, the comoving fractional density gradi-
ent, which is the covariant and gauge-invariant quantity
that embodies most closely the intention of the usual
(gauge-dependent) quantity bp/p; and for C', a vector
corresponding to the Bardeeen variable 4H. Our basic
definitions and equations are valid independent of any
harmonic analysis, but they can be harmonically decom-
posed if desired.

We have considered their solutions in the case of pure
radiation, and related them to standard approaches. We
obtain equations equivalent to standard ones but in a
more transparent way, because in the usual approach the
definition of the density fluctuation bp depends on the
gauge chosen. In our case we need a specific gauge to
write down the solutions to the equations, but the def-
initions of the fundamental quantities are gauge invari-
ant. The key diAerence is that the standard approach
compares two evolutions (the actual one, and a ficti-
tious comparison one) along a world line, whereas our
variables specifically reflect the spatial density variation
in the fluid (they compare evolutions along neighboring
world lines in the actual Universe).

Our analysis reproduces many standard results in a

unified and transparent way: we deduce (1) the speed
of sound in a barotropic relativistic fiuid, (2) the Jeans
criterion for gravitational instability, (3) the general lin-
earized equations for perfect fluid inhomogeneities in an
almost FLRW model; these equations are equivalent to
the general Bardeen gauge-invariant equations (see Ref.
7); and (4) the long-wavelength limit of those equations,
and corresponding integrals in particular cases; (5) re-
strictions on the nature of isocurvature inhomogeneities.
Our equations cover the case of a mixture of perfect fiuids
when those perfect fluids all have the same four-velocity
vector u .

In the case of pure radiation with k = 0, we ob-
tain different growth rates (relative to proper time along
the fiuid fiow lines) than standard analyses using the
synchronous and comoving proper time gauges; our re-
sults agree with those obtained in the comoving time-
orthogonal gauge. As our variables are covariantly de-
fined and gauge invariant, we believe they describe the
situation accurately, and indicate that if one does choose
to deal with the usual variable bp/p, the latter gauge
should be used.

Finally we note that we have not considered the con-
straint equations here, nor verified that their solutions
are preserved along the fluid flow lines under the prop-
agation equations. A full analysis of almost-FLRW uni-
verse models must of course examine these issues.
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