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It has been known for a long time that the gauge problem plagues the study of density pertur-
bations in cosmology. The quantity bp/p (the fractional variation in density along a world line)
usually determined in perturbation calculations is completely dependent on the gauge chosen.
Even the fully covariant approach of Hawking (1966) is not immune. Bardeen's major paper
(1980) determines a set of gauge-invariant quantities that are related to density perturbations,
but are not those perturbations themselves. We give a simple alternative representation of
density fluctuations. This representation is both fully covariant and gauge invariant; thus it
sidesteps the usual problems. The basic quantity used to represent density inhomogeneities is
the comoving fractional gradient of the energy dense'ty orthogonal to the fluid flow Our .descrip-
tion does not make the usual assumption that this gradient is small. Exact (fully nonlinear)
propagation equations are derived for this quantity. They are then linearized to give propaga-
tion equations appropriate to the case of an almost-Robertson-Walker universe. Their solutions
are obtained in a simple case which can be compared with the standard theory; we recover the
usual growi. ng and decaying modes. Thus the result is standard, but its derivation is completely
transparent. We give an interpretation of the Bardeen variables in terms of our formalism.

I. INTR QDUCTION

It has been known for a long time that the gauge
problem plagues the study of density perturbations in
cosmology. To define perturbations, we have to choose a
correspondence between a fictitious background space-
time, and the physical, inhomogeneous Universe. A
change in this correspondence, keeping the background
space-time fixed, is a gauge transformation The ba.sic
point is that "a gauge transformation. . . changes the
point in the background space-time corresponding to a
point in the physical space-time. Thus even if a quantity
is a scalar under coordinate transformations, the value
of the perturbation in the quantity will not be invariant
under gauge transformations if the quantity is non-zero
and position dependent in the background. "

Consequently, "if the gauge condition imposed to sim-
plify the metric leaves a residual gauge freedom, the per-
turbation equations will have spurious gauge mode solu-
tions which can be completely annulled by a gauge trans-
formation and have no physical reality. "

Even the fully covariant approach of Hawking4 is not
immune. s The resulting problem is that the quantity bp
(the variation in density along a single world line) often
calculated in perturbation calculations is completely de-
pendent on the gauge chosen, and unless this gauge is
fully specified the modes discovered for this quantity are
spurious modes (due to residual gauge freedom); while if
it is fully specified, its relation to what we really want to

know (the spatial variation of density in the Universe) is
convoluted and diKcult to interpret.

Bardeen's major paper3 determines a set of gauge-
invariant quantities that are related to density perturba-
tions, but are not those perturbations themselves (they
include metric tensor Fourier components and other
quantities in cunning combinations). His is a theory of
some complexity, which can now be regarded as the stan-
dard theory of density perturbations.

The purpose of this paper is to present a simple
alternative representation of density inhomogeneities
in an almost-Robertson-Walker universe (the back-
ground space-time is exactly spatially homogeneous and
isotropic). This representation is both fully covariant
and gauge invariant; thus it sidesteps the usual prob-
lems. Section II discusses the gauge problem for density
perturbations, and poses the problem of arbitrariness of
by. Section III summarizes the covariant approach to de-
scribing a Quid Bow, and defines gauge-invariant variables
that satisfactorily represent density inhomogeneities in-
dependent of any assumption of "smallness" of these in-
homgeneities. Section IV gives exact (fully nonlinear)
equations for these variables, and obtains from them the
basic perturbation equations. Section V discusses those
equations in various physical conditions, and gives their
solutions in a simple case which can be compared with the
standard theory. Appendixes discuss technical details of
how to compare evolution of the Universe on neighboring
world lines, and the interpretation of a naturally occur-
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ring quantity in the case of rotating-universe models.
When we consider the pressure-free case, we regain

the standard results. However, our derivation is com-
pletely transparent, as our variables are not restricted
to the description of "small" density fluctuations, and
are all covariantly defined quantities which are gauge-
invariant in the almost Friedmann-Lemaitre-Robertson-
Walker (FIRW) case. To make clear the relation to
Bardeen's paper, we give an interpretation of how his
variables relate to our formalism.

II. THE GAUGE PROBLEM

It is very easy to be misled by the "obvious" way of
investigating density perturbations. In this approach we

consider an idealized universe model S (usually taken to
be a FI RW universe); each quantity in this model will

be denoted by an overbar, e.g. , the energy density will

be p and pressure p. We perturb this model to obtain
a "realistic" or "lumpy" universe 9, where the physical
quantities will be denoted by the same symbols as in S
but without overbars (e.g. , the energy density is p and the
pressure p). Then the perturbation of each quantity at a
given space-time point q is the diA'erence between these
quantities at q; considering all points, the perturbation
field is determined. For example, the metric perturbation
is

~gab = gab —gab

and the energy-density perturbation is

However, this approach obscures the real situation. It
suggests that there is something very special about the
way the original model S is related to the lumpy model,
whereas in reality this is not so. Suppose we consider the
lumpy universe model S, not knowing how the model S
was used to make the construction; can we uniquely re-
cover S from S? Without further restriction, the answer
is no; for without a specific prescription for approximat-
ing the lumpy model by the smooth one, the quantities
in the background model S are not uniquely determined
from the lumpy model S [in Eq. (1), the only restriction
relating the two models is that bg b is "small" in some
suitable sense; it is far from obvious how one can extract
g i, from g b in a unique way]. In fact the definition of
the background model in S is equivalent to defining a
map 4 from S to S, mapping the density in S into a
background density p in S [for notational convenience,
we use the same symbol for quantities in S and their im-
ages in S, e.g. , the image C(p) in S of p in S is simply
denoted by p]. The perturbations defined are completely
dependent on how that map is chosen (Fig. 1). This is
the gauge freedom in defining the perturbation.

The situation is usually expressed in terms of the coor-
dinate choice in S, it being understood that t;he coordi-
nates in S correspond to coordinates chosen in 9, so that

FIG. 1. The perturbed density bye is defined by a map-

ping 4' of an idealized world model S into a more accurate
world model S, for 4' maps surfaces (p, = const) from S into
S, where they can be compared with the actual surfaces

{p = const).

a choice of coordinates determines a map from S into S;
thus the gauge freedom is represented as a freedom of co-
ordinate choice in S. It is clearer to specifically consider
the map 4 from S into S, noting that we have coordinate
freedom both in S and in S which we can usefully adapt
to the chosen map 4.

Thus the actual situation is that what we are given to
study is the real (lumpy) universe S (this is all we can
measure), and we define the perturbed quantities and
their evolution by the way we specify a mapping 4 of the
(fictitious) idealized space-time S into S. The determi-
nation of the best way to make this correspondence can
be called the "fitting problem" for cosmology; there
are various ways to do this, so the answer is not unique.
Once we completely specify the map 4, there is no arbi-
trariness in bp; insofar as C is unspecified, that quantity
is arbitrary.

A. Gauge specification

It is convenient to think of this map as having four
aspects (Fig. 2).

FIG. 2. The map C' has four aspects: (A) choice of a fam-

ily of time lines in each spacetime; (B) choice of a particular
correspondence of time lines in the family in S to particular
time lines in the family in S; (C) choice of a faxnily of spacelike
surfaces in each spacetime; (D) choice of a particular corre-
spondence of surfaces from the family in S to surfaces in the
family in S.
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(A) We define a family of world lines 7 in S and a
corresponding family of world lines y in S. This deter-
mines the world lines in each space-time along which we
will compare the evolution of density fluctuations. There
is an obvious choice in S, namely, the fundamental fiow
lines; this will often be the best choice in S also, but
others (e.g. , normals to a chosen set of surfaces) may be
convenient.

(8) We define a specific correspondence between indi-
vidual world lines y; in S and individual world lines p; in
S. This specifies which specific observer's observations
we shall compare with which. In the case where S is an
FI.RW universe, this choice does not matter because of
the spatial homogeneity of those models.

(C) We define a family of spacelike surfaces Z in S
and a corresponding family E in S; these are the "time
surfaces" in each space-time. There is an obvious choice
in S: namely, the surfaces of homogeneity (t = constj;
this means the image of these surfaces in S (that is, the
surfaces ft = const} in S) am the idealized surfaces of
constant density (p = const j we use to define the density
perturbations. There is a variety of choice for the surfaces
Z in S, as discussed in depth by Bardeen. s

(D) We define a correspondence between particular
surfaces Z; in the family Z in S and particular surfaces
Z; in the family Z in S, and so assign particular time val-
ues t to each event q in S. This is crucial: this specifies
which specific point q in 9 corresponds to a point q in
S, and completes the specification of the map 4. In par-
ticular, the time evolution of a density perturbation bp
is now defined, because this choice, by assigning partic-
ular values p to each surface Z; in S (the "unperturbed
value" of the density) defines bp via. Eq. (2).

If we follow the normal convention, we understand (C)
to dePne the coordinate surfaces (t = const j in S (taking
them as the same as the surfaces {t= const)); and (D)
to assign particular values to t at each event q in S by '

this map: t&
——t&. However, this choice is not forced

on us. Note that in general neither t nor t will measure
proper time along the world lines in S.

B. The arbitrariness of bp.

The problem is that the definition of bp depends both
on the choice of the surfaces Z in S and on the allo-
cation of density values to these surfaces. We can for
example choose t = t and then set the dependence of
bp on the spatial coordinates to zero through the gauge
freedom (C), by choosing the surfaces Z as surfaces of
constant density p in S; because these surfaces are re-
garded as surfaces of constant reference density, we will
then have bp constant on these surfaces (they will be
spacelike if the universe S is sufHciently like a FLRW uni-
verse), and as they are also surfaces of constant g, we will
find bp = bp(t). In many ways this is an obvious choice
for the time surfaces (the constant-density surfaces are
covariantly defined in S, and correspond precisely to the
surfaces of homogeneity in the idealized model S, which
are also surfaces of constant density).

FIG. 3. By varying the assignation (D) of particular sur-
faces in 8 to surfaces in 8, we can jive the density perturba-
tion by, = p —p at the event q in S (where the world line
intersects the surface {p = const)) any value we like.

Furthermore given a choice of the family of surfaces
Z in S, we can still assign any value we like to bp at
a particular event through the gauge freedom (D), by
changing the assignation of values p to the surfaces Z.
Thus in particular, given any choice whatever of the time
surfaces, we can set bp to zero at an event q at t = to on
any world line y, by choosing P~ = p~; this is a possible
assignation of a value of the "ideal" density p to the
event q where t = to intersects y (Fig. 3). How this
propagates along the chosen time lines then depends on
the gauge choice and the Quid equation of state. Q'e can
choose a gauge where bp vanishes at every point of y by
assigning the mapping of densities to satisfy the condition
p(t) = p(t) on p. This choice is obtained in Bardeen's
formalisms by choosing the arbitrary function T(7) [his
notation; see his Eq. (3.1)] to be given (in terms of his
variables) by

bT=—
3(1+m)(S/S)

on 7, where the right-hand side wiB only depend on the
conformal time r along any chosen world hne p. Then
his Eq. (3.7) shows b = 0; i.e., the energy-density per-
turbation vanishes along y in the new gauge.

If we combine these two choices, we will have chosen
a gauge where bp = 0 ideritically; we map the I"I.RW
model into the lumpy universes by mapping surfaces of
constant. density p into surfaces of constant density p
with the same numerical values (Fig. 4). We might call
this the zero density-perturbation gauge. This possibility
will not of course mean that there are no spatial vari-
ations of density; in this gauge, inhomogeneities will be
represented by the fact that the proper time separating a
surface of coordinate time t~ from a surface of coordinate
time t2, measured along the normals to these surfaces,
varies spatially (corresponding to the normals to these
surfaces being nongeodesic).

The basic problem, then, is this arbitrariness in def-
inition of bp, because bp (a) is not gauge invariant: it
can be assigned any value we like at any event by ap-
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all the way back to the big bang and then deducing from
this integration what bp is today. Apart from issues of
practicality, this is clearly an unsatisfactory procedure.

g. Flow ort-hogonal hgpersurfaces

FIG. 4. By choosing 4 so that the surfaces {p, = coast) in
S are the same as the surfaces {p = const j, and then choosing
the correspondence (D) to assign the same numerical values
to p on each surface as p has on it, we obtain a zero density-
perturbation gauge. Note that the proper time 7. between any
two of these surfaces in S will vary spatially, in general; the
physical density variation is coded in this spatial variation of
dt/dr.

propriate gauge choice; and (b) is not observable even
in principle, unless the gauge is fully specified by an ob

servationally based procedure (as otherwise p is not an
observable quantity).

As a result, if we are to use bp in a satisfactory way to
describe density perturbations, we must either leave some
gauge freedom, and keep full track of the consequences
of all this freedom; or find a satisfactory, unique way of
making the gauge choices (A)—(D) discussed above. The
alternative is to look for gauge-invariant quantities that
code the information we want.

C. Fixing a gauge

One way of approaching the problem is to choose a sat-
isfactory specific gauge [specifying completely (A)—(D)
above]. We mention four possibilities. s In each case we

choose the corresponding world lines in S and S to be
the fundamental Qow lines. The issue then is the choice
of time surfaces, and then a specific correspondence be-

tween these surfaces.

X. Proper-time gauges

One possibility is to define clearly equivalent proper
times in the two models, and use this to completely spec-
ify both time functions and so fix the gauge. The obvious
choice (cf. Olsons) is to choose proper time along the
fluid Qow lines from the big bang in both models. This
is conceptually a clean solution to the problem, provided
we can start at the big bang and follow the evolution of
each model from then on.

The problem, as pointed out by Bardeen, s who refers
to this as a synchronous gauge, is that the definition is
nonlocal. If we observe the Universe today, this proposal
means we cannot define bp directly from these observa-
tions but have to do so by integrating the field equations

A second possibility is to choose the surfaces of con-
stant time as surfaces orthogonal to the Quid Qow.
However, this choice (called comoving hypersurfaces by
Bardeen) is only possible if the fluid vorticity is zero, so
it is not a generic strategy. Furthermore it is not clear
how to assign specific values of time or density uniquely
to these surfaces (unless the acceleration is zero, proper
time measured along one Qow line from the big bang to
a given surface will be diR'erent from that time measured
along another world line).

8. Equivalent scalars

A third possibility is to identify equivalent scalars in S
and S, which define spacelike surfaces in S. The obvious
choices are the energy density p (leading to the "zero
density perturbations" discussed above, with p~ = p&) or
the fluid expansion 0 (giving Bardeen s uniform Hubble-
constant hypersurfaces, with 0& ——8&). The problem is
that then the information on spatial density Quctuations
is coded in a way that is hard to unravel.

g. Spatial averaging

A fourth approach is to define the ideal density p in
the lumpy model S as a suitable average density in S:
p = (lj), where ( ) denotes some suitable spatial aver-

age (cf. Lyth and Mukherjee9). This is equivalent to
specifying a fitting procedure of the fictitious model to
the real Universe based on this averaging. This is in-

deed a reasonable thing to do, and may be expected to
lead to integral conditions such as the Traschen integral
constraints, as discussed by Ellis and Jaklitsch.

This procedure may well give us the physical infor-

mation we want. However, one will then have to take
seriously the problems associated with averaging in gen-
eral relativity, for example the degree to which averaging
coounutes with the Einstein field equations. i4 is It also
demands investigation of how this average depends on the
choice of space sections over which the average is taken.

The results obtained for the evolution of bp/y, from the
various gauge choices are difFerent (see Bardeen's paper
for an extensive discussion; and see also Goodei"). In
each of the last three cases considered, we have to concern
ourselves with the relation between coordinate time and
proper time along the Quid Qow lines. In the first three
cases, clearly the definitions are such that they have the
correct correspondence limit: if S is a FLRW model, they
define as surfaces {P = const) the surfaces {p = const)
in those universes. However, the fourth approach is the
most fundamental; it tackles the major issue: on what
scale is the real Universe approximated by the FLRW
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model? From the viewpoint of the present paper, the
averaging implied is a sophisticated way of comparing
evolution along neighboring world lines in the real fluid.
In the next section we shall see there are simpler and
more direct ways of making this comparison.

onal to u~ (the rest-space of an observer moving with
four-velocity u ) is

hab
—= gab + ~a~b ~ h'bh c

——h'c, ha ~b ——0.

(4)

D. Gauge-invariant variables

The fundamental requirement for a gauge-invariant
quantity is that it be invariant under the choice of the
mapping 4. The simplest case is a scalar f that is con-
stant in the unperturbed space-time S (f = const), or
any tensor f~,g that vanishes in S: f,s —0. The
reason is that in each case the mapped quantity f in S
will also be constant, so the choice of correspondence 4
does not matter; they ioil1 all define the same perturba
tion bf = f —f The . only other possibility for gauge-
invariant quantities is a tensor that is a constant lin-
ear combination of products of Kronecker deltas (Stewart
and Walker, 's Lemma 2.2).

What are the simple covariantly defined gauge-
invariant quantities in a FLRW universe? We can easily
determine them by writing down a list of all the simple
covariantly defined quantities in a general fluid flow, and
then seeing which ones vanish in a FLRW universe model
(the other two options in the Stewart and Walker lemma
are not useful in our context, as the only invariantly de-
6ned constant in the FLRW universes is the cosmological
constant, and no tensors that are constant products of
Kronecker deltas occur naturally).

To carry this out, it is convenient to use the general
formalism developed by Schiicking, Ehlers, and Triimper.
We turn to this in the next section.

The time derivative of any tensor T,d along the fluid
flow lines is

'ab
ed = T cde&

It is important to note that, because of (3), this is the
derivative relative to proper time defined along these
lines.

The first covariant derivative of the four-velocity vector
1s

ua;b —~oab + oab + sehab uaub1-

where 8 = u . is the expansion, u~y ——ul bl is the vor-
ticity tensor (u bu = 0), and a b = o't b~ is the shear
tensor (o'~bu = 0, o'~~ = 0). It is convenient to define a
representative length scale S(r) by the relation

S/S = -'e,

determining S up to a constant factor along each world
line; then the volume of any Quid element varies as Ss
along the Qow lines (this quantity is the generalization
to arbitrary anisotropic flows of the Robertson-Walker
scale parameter), so S represents the average distance
behavior of the fluid. The vorticity and shear magnitudes
are defined by w

The space-time curvature tensor R b,g is made up of
Ricci-tensor and Weyl-tensor components. The Einstein
equations

III. COVARIANTLY DEFINED
GAUGE-INVARIANT VARIABLES Rob 2(R c)gab+ ~gab = &&ab (8)

A. The covariant approach

We consider now a completely general perfect-fluid flow
in a curved space-time. The exact covariant fluid equa-
tions we utilize are based on the classic paper by Ehlers 9

plus unpublished work by Trumper. They are presented
in the papers af Hawking~ and Ellis. We will re-
peat here only those equations important for our present
deri vations.

In the context of cosmology, there will always be a
preferred family of world lines (the fundamental ioorld
lines) representing the motion of typical observers in the
universe ("fundamental observers"). We will often refer
to the flaw lines as "fluid flow lines", as we will use the
standard fluid approximation.

Let the four-velocity vector tangent to these world lines
be

determine the Ricci tensor R b directly from the matter
energy-momentum-stress tensor T b at each point; K is
the gravitational constant, and we include a casmologi-
cal constant A in the field equations for generality. The
"free gravitational field, " determined nonlocally by mat-
ter and suitable boundary conditians, is represented by
the Weyl tensor Cabcg, related to the Ricci tensor through
the Bianchi identities

Tab 0
) (10)

In this paper we will assume a one-component "perfect
fluid" unless otherwise specified: that is, T b takes the
form

&.b)c~.e) = O.

Together (8) and (9) imply the energy-momentum-
conservation equations

u =dz /dr M u u~= —1, Tab = puaub + Phab = (p + P)uaub + Pgab ~

where 7- is proper time along the fluid Qow lines. The
projection tensor into the tangent three-spaces orthog-

The physics af the fluid is expressed by suitable equations
of state relating the energy density p and pressure p.
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K = 2(—&s 8~ + o.2 + ~p + A). (12)

When u = 0, this quantity acquires a special significance:
it is the Ricci scalar R of the three-dimensional spaces
Z~', that is, u = 0 W sR = K. The meaning of this
variable when io g 0 is discussed in Appendix B.

B. Cauge-invariant quantities

A FLRW universe model is a perfect-fluid space-time
characterized by the conditionsis zi

a

which imply

p = p(t) p = p(t) 8 = 8(t)

These will be discussed in the next section.
When the fluid vorticity vanishes (and only then) there

exists a family of three-surfaces E~ everywhere orthog-
onal to the fluid flow vector ua; these are instantaneous
surfaces of simultaneity for all the fundamental observers.
In a general fluid flow, we can define the quantity

panding FLRW models, and so are not gauge invariant.
However, we can find associated gauge-invariant quan-
tities: namely, the orthogonal spatial gradients of these
variables. We define

X~ =ah~ pb, Ya:&ha p, b& Z~=h~ 8bb b

(we include the gravitational constant v, in these defini-
tions for later convenience); each quantity is gauge invari-
ant, as they all vanish in the FLRW universes [because
of (4) and (14)].

We can easily find many further gauge-invariant quan-
tities by finding more complex invariantly defined quanti-
ties that vanish in the FLRW universe models, for exam-
ple the gradients of the squared magnitudes of the shear
and vorticity, (u~) and (o~); the scalar products of
the shear with the Weyl tensor components, oa Eab and
o. Hab, and so on. These will not be significant to us
in considering linearization around the FLRW universes,
for they will be of second or higher order. However, there
are two other gauge-invariant quantities that will be im-

portantt

subsequently, namely, the divergence of the ac-
celeration, and its spatial gradient:

where t is the cosmic time defined (up to a constant) by
the FLRW fluid flow vector: u = —t; and

A=u', , Aa =h Ab. (20)

E'b ——0, H, b ——0; (15)

c d~ab = Aa Ab tttc. q,

i.e. , the Weyl tensor vanishes (so these space-times are
conformally flat).

From the above characterization plus the Stewart and
Walker lemma quoted in the previous section, ~s the basic
gauge-invariant quantities for an almost-FLRW universe
are as follows.

(1) The vorticity, shear, and acceleration:

In the case of vanishing vorticity, the Ricci scalar R
of the orthogonal three-spaces is gauge invariant if and

only if the homogeneous space sections in S are flat, i.e. , if
that idealized universe is at the critical density. However,
its spatial gradient is always gauge invariant. Thus for a
general fluid flow, it is interesting to define from K [see

(12)] the gauge-invariant quantity

K, —:h, b K b = —~~ 8z + 2x, + 2(o z),,h'o,

the equivalence following from (19). Then isocurvature
fluctuations can be defined as the zero-vorticity pertur-
bations for which K = 0.

c L 'a
gab = lpga lcb Q(c.d) 3Q clbab) Q = Q bid

(2) The electric and magnetic parts E b, H b of the
Weyl tensor C b,~..

c d 1 c st d@ab = +acbd& +
y Hab =

g +acst& g bd+

(3) The matter tensor components:

gg ——h~ Tg(fu ) 7r(gb = h~ hb Tgd s (h TCd) h~b

(18)

(which vanish identically in the perfect-fluid case; how-
ever, we may need to consider nonzero components of
these tensors in some physically significant situations; see
the next section).

These are the simplest; covariantly defined quantities
which vanish in FLR%' models, and so are gauge invari-
ant. The problem is that the list so far does not con-
tain quantities characterizing the variation of the zero-
order variables (the energy density p, pressure p, and
fluid expansion 0), which are in general nonzero in ex-

C. The key variables

The point of this discussion is that instead of concen-
trating on bp, with the arbitrariness that implies, we can
find three simple gauge-invariant quantities that will give
us the information we need to discuss the time evolution
of density perturbations, without the complexity of the
Bardeen3 analysis.

The first is the spatial projection of the energy den
sity gradient, i.e., the vector Xa —= ha p b. This van-
ishes in the FLRW universes, and so is a gauge-invariant
quantity; it is covariantly defined in the real Universe.
It is measurable in the sense that (a) it can be deter-
mined from virial theorem estimates (indeed, dynamical
mass estimates determine precisely spatial density gradi-
ents), and (b) the contribution to it from luminous mat-
ter can be found by observing gradients in the numbers of
observed sources and estimating the mass-to-light ratio
[Kristian and Sachs, zo Eq. (39)]. It describes the density
inhomogeneities which we wish to investigate, for if there
is an overdensity which is a viable protogalaxy, this will
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be evidenced by a nonzero value of X (the magnitude of
X~ directly indicating how rapid the spatial variation of
density is). Thus X~ seems to encapsulate much of the
information we want.

However, we normally will wish to compare the den-
sity gradient with the existing density, to characterize its
significance. Thus we can define the second quantity, the
fractional density gradient

&s gs) (22)

which is also gauge invariant, and represents the relative
importance of the density gradient. While both are ob-
servable in principle, it is a moot point whether X or
L is more easily observable in practice.

Both these vectors can be used to determine the spatial
variation of the energy density p. One important point
should be noticed. In the case where ~ = 0, they will
characterize the distribution of the density p in the three-
spaces E~ orthogonal to the fluid flow (which might nat-
urally be chosen as the surfaces jt = const)). However,
when u g 0, no such orthogonal three-surfaces exist.
These vectors still characterize the gradient of p orthog-
onal to u, but cannot be immediately integrated to give
the distribution of density in the surfaces (t = const} for
a suitable set of coordinates~4 because these surfaces can-
not be everywhere orthogonal to the fiuid flow lines. Even
if u = 0, the time t such that the surfaces (t = const)
are orthogonal to the Quid flow will not measure proper
time 7- along the Quid flow lines unless the acceleration is
zero also, that is, unless there are no pressure gradients.

There remains a problem with X: it is not dimen-
sionless. This is related to the fact that in essentials,
when we consider the time evolution of the Quid, both
X and Z~ represent the change in density to a fixe dis-
tant. e, whereas in the context of considering the growth
of protogalaxy Quctuations we want to consider density
variations at a fixe comoving scale Thus the. third quan-
tity of interest is the comoving fractional density gradient
obtained by multiplying (22) by the scale factor S(r):

'D —= SZ„ (»)
which is gauge invariant and dimensionless. We must
remember here that S is defined only up to a constant
by (7), so 'D is similarly defined up to a constant along
each flow line; this refiects the fact that it represents the
density variation to any neighboring comoving region.
The time variation of this quantity precisely reflects the
relative growth of density in neighboring Quid comoving
volumes, and this is what we wish to investigate.

The vector P~ can be separated into a direction e~ and
magnitude 'V where
'D =De, e e =1, e u =0 ~ D=('D D) ~2.

(24)
The magnitude V is the gauge-invariant variable that
most closely corresponds to the intention of the usual
(bp/p) in representing the fractional density increase in a
comoving density Quctuation. The crucial difference from

the usual definition is that D represents a (real) spatial
fluctuation, rather than a (fictitious) time fluctuation.

The vectors X~, Z~, and D~ are closely related to the
vectors Y~ and Z~ defined above; indeed they are dy-
namically dependent on each other, as shown in the fol-
lowing sections. All are gauge invariant, and directly
determinable (at any desired scale) from a description of
the real (lumpy) Universe at that scale. Thus our further
analysis will concentrate on these quantities.

These definitions are only useful if we can determine
useful equations for these quantities. We turn to this in
the next section.

IV. DYNAMIC EQUATIONS

A. Exact equations

We can determine propagation equations along the
Quid Qow lines in an arbitrary Quid Qow for the quan-
tities defined in the previous section. In particular we
can do so for the zero-order quantities p, p, and 8 on the
one hand, and the first-order quantities (16)—(24), that
are gauge invariant in the almost-FLRW context, on the
other.

1. Zero-order quantities

The energy- and momentum-conservation equations
[the time and space components of the four-dimensional
equation (10)] for perfect fluids take the forms

t +(s+p)o-= o (25)

~(p+p)u, +Y =0,
respectively. The time evolution of p is determined by
(25) plus the equation of state determining p from p.

The Raychaudhuri equation is the fundamental equa-
tion of gravitational attraction, giving the evolution of 0
along the Quid flow lines:

(26)

O y -'8z+ 2(oz —~z) —A+ sir. (P+ 3P) —A = 0,

(K —2o ) '= s8(6o —K —4~~ —2A). (28)

When the vorticity vanishes, this is an equation for R.

2. Gauge-invariant quantities

Propagation equations for ~ p, 0 t„E p, and H p are
given in the literature cited above, and will not concern
us directly here. By the perfect-fluid assumption, q and

where A is defined by (30). It is this equation that es-
tablishes that p+ 3p is the active gravitational mass of
the Quid.

Finally, the time derivative of jC [see (12)] along the
fiuid Qow lines obeys the equation
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x i, vanish in S, so their "propagation equations" are

q =O, my ——0.
The propagation equation for the acceleration follows

from (25) and (26); it is

be zero; this is unlikely to remain true even if it is true
at some initial time]. Indeed (30) and (31) show that,
in general, nonzero acceleration, or spatial gradients in
either the shear or the vorticity, will generate spatial gra-
dients in both the expansion and the energy density.

&c(~ a+& a) ~

where dp/dp is taken along the fluid flow lines. The prop-
agation equations for the spatial gradients of the energy
density and expansion [defined in (19)] are

h, '(S Xc)
' = —~(p+ p) Z, —((u', + 0', )X,

(30)

with source term Z, and

S sh, '(SsZ, )
'

= u, 7Z, + h, '( ——,'X, —2(cr'), o+2(~z), +A )
Zb(~—c+~ c) (31)

with source terms 'Ru„X„A„h,'(o' ),„and hc'(~ ),„
where

'g = —-'8~ —2az+ 2~~+ A+ ~@+A

= ~iC+ A —3a~+ 2~2, (32)

where iC [defined by (12)] is the Ricci curvature sR of
the surfaces orthogonal to the Quid Qow when u = 0.
In effect these equations are the spatial gradients of (25)
and (27).

The equation for the evolution of Y~ will follow from
that for X if the equation of state of the fluid is known

(see Sec. VA); those for Z and 17 follow from (30) and

(25). They are

h, (Z.) =&.8 I

———
~

—Z.
I
1+ —

I

—&.(~ .+~ .)(p I ) r' pl
Ei

and

h, (D.)'= —8&. —
i
1+ —1&.—&.(~ ~ +& .)p f' pb

p ij

(34)

where we have defined Z = SZ .
. It should be emphasized that, given the perfect-fiuid

assumption, these are exact propagation equations for
these quantities, valid in any fluid flow whatever. With
suitable choice of the equation of state, the propagation
equations close to give a higher-order equation for X
only (see the next section). As well as these propaga-
tion equations, these quantities obey various constraint
equations, given in the references cited above.

A significant feature follows immediately from (30):
provided (p+ p) g 0, Z g 0 ~ X, g 0. The converse
result (Xc g 0 ~ Zc g 0) will hold in general as well [if
X g 0, Zc = 0 then the right-hand side of (31) must

B. Linearization about Robertson-Walker universes

1. Propagation equations

The relevant resulting equations for determining the
density fluctuation behavior along the low lines are the
energy- and momentum-conservation equations ('25) and
(26), which are unaffected by the linearization procedure;
the linearized Raychaudhuri equation

0+ si82 —A+ ~i~(@+3p) —A = 0; (35)
and the linearized equations for propagation of X and
ZQ ~

S h, '(S X,) '= K(p+ p)Z„— (36)

S h, '(S Z, )
' = u, Z, —2X, + A„

where now28

(37)

'R = —~s8~+ ~@+A = 2iC, K = —~s8(iC+2A).

These are the linearized equations determining the
propagation of the gradients along the fluid flow lines.
Their development depends on the equation of state of
the fluid, as discussed in the next section. The equation
for Z follows directly [or can be obtained by linearizing
(33), by dropping the last term]. Similarly, the linearized
equation for 'D follows directly from (34); in terms of
Z = SZ, the basic perturbation equations are

We now specialize the above equations to the situation
where the universe is almost FLRW. We do so by treating
the quantities p, p, and 0 as zero order, the quantities in

(16), (17), (19)—(24), and their derivatives, as first or-
der, and assuming the quantities in (18) vanish (this is

the perfect-Quid assumption, with u the fluid velocity
vector). Then in each equation we drop the higher-order
terms relative to the lower-order ones, keeping only the
lowest two orders. Note this does not mean we can al-
ways drop the second-order terms (in some equations the
largest term is first order); and also that although we
treat the pressure p as zeroth order, it may vanish; but
we must allow for those cases where it is large. On carry-
ing out this procedure, we will have linearized the covari-
ant equations about an as yet unspecified FLRW universe
model; as the linearized equations hold for all choices of
background FLRW models, they are gauge invariant.

The basic equations resulting from this process are
given in Hawking s pioneering paper [see his Eqs. (13)—
(19)];we add to them the propagation equations for the
gauge-invariant spatial gradients defined above.
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h, '(D, )
' = —O'D, —

~

—+ 1
~
&e,p (p

IJ

h, '(Z, )
' = —s28Z, —2lrpD, + S(u,R+ A, ). (40)

8. Constraint equations

While the constraint equations are not needed to de-
termine the propagation of interesting quantities along
the Qow lines, they must of course be satisfied at some
initial time on each world line. This gives interesting
information about what is and is not possible.

Specifically, the linearized momentum constraint equa-
tions [(10) in Hawking ] are

I .'(~i, ',, —o.s',.) = ——,'Z. . (41)

This shows that if 8 varies spatially, i.e. , Z g 0, then
either the shear or the vorticity must also be nonzero.
Conversely only restricted shear and vorticity perturba-
tions will be compatible with Z remaining zero.

Similarly, the linearized "divE" Bianchi identity [(13)
in Hawking4] is

(42)

showing that the electric part E p of the Weyl tensor
must be nonzero if there is a nonzero density gradient
(i.e. , if X g 0).

These results give a warning that consistent solutions
to the field equations may demand inclusion of nonzero
gauge-independent variables not initially anticipated.

C. The implied "gauge"

Before turning to specific equations of state, we brieQy
consider the gauge issue relative to the formulation here.
Our equations are gauge invariant, so we can choose any
map 4 we like from S to S when using this formalism
(just as we can use any coordinates we like in S and in S,
because the formalism is covariant). However, there is a
natural map 4 from an idealized FLRW model S to the
realistic model S associated with our formalism, which
is the obvious one to choose unless there is some good
reason to use a diff'erent correspondence. We consider
here this map, naturally implied by the analysis (see Fig.
5).

(A) A very specific choice of timelike lines has been
made in S, namely to examine the propagation of each
quantity along the Quid Qow lines. Because of the perfect
fluid form (ll), these are uniquely defined provided (p+
p) g 0, which we almost always assume. The naturally
associated map 4 from S to S maps Quid Qow lines to
Quid Qow lines. This means we compare observations
made by fundamental observers in the two universes.

(B) Because of the spatial homogeneity of the Fl RW
models it does not matter which specific fiow line in S is
mapped into which one in S.

(C) The implied time coordinate t in S is proper
time along the Quid Qow lines; it is the time coordi-

FIG. 5. In the proper tI me ga'uge (the time coordinate de-
notes proper time along the quid flow lines), we have freedom
to choose an initial time surface Ke. (t = te) arbitrarily; then
the other time surfaces are determined by measuring proper
time from it along the fluid flow lines. This has the advantage
of corresponding to time measurements made by fundamental
observers.

nate of normalized comoving coordinates (t, y") (see, e.g. ,

Ehlers, ~4 Ellis, zi and Treciokas and Ellisz~), character-
ized by t:—t u = 1, y—:(y ) eu = 0. It is arbitrary
by choice of some initial surface Zo,'i.e., the freedom in
t is

t ~ t' = t + f(y'),

where f is an arbitrary function of the "spatial coordi-
nates" y . Thus we compare evolution in the universes
S and S with respect to proper time measured by the
fundamental observers in each model [the standard time
t in S is proper time along the fluid flow lines, without
the freedom (43) because we take t = 0 at the big bang
S = 0]. The objections raised to this choice by Bardeen
do not apply here, for the variables X~, Y~, and Z~ will
be small in any space-time region where the universe S
is "near" some FI RW universe S, irrespective of how the
time coordinate t is chosen, and the definition of our vari-
ables is independent of the time choice; thus the "non-
locality" issue discussed previously (Sec. II B 1) does not
afI'ect the physical interpretation of our variables.

(D) The specific map of times from the idealized model
S to the realistic model S will be represented by a choice
of constants of integration in the solutions to the zero-
order propagation equations (25) and (35), which then
determine the solutions to the propagation equations
(36), (37) or (39), (40) for the gauge-independent vari-
ables; in efI'ect, the zero-order solutions are arbitrary by
independent constants along each world line. This choice
corresponds to the gauge freedom above, and may be
thought of as choosing specific initial conditions for the
perturbed universe at an initial time to.

In the present approach, the definition of the pertur-
bation quantities is independent of the gauge chosen;
however, we have to choose a specific gauge to obtain
detailed specific solutions of the equations (just as we
have to choose specific coordinates to write down a spe-
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cific detailed solution to covariant equations). This free-
dorn should be left to the end (being represented by
the integration constants that naturally arise). Varia-
tion of these constants then corresponds to variation of
the gauge, and also enables us to explore the effects of
different initial conditions on the evolution of the gauge-
independent variables (or equivalently, to explore their
evolution in families of differing FLRW models instead
of only one model). The essential problem in the non-
gauge-invariant approach —that the definition of bp de-
pends on this choice —does not arise with the variables
proposed here.

V. SPECIFIC MATTER DESCRIPTIONS

The implications of the linearized equations (25), (26),
(35)—(40) depend on the equations of state of the mat-
ter, which describe the physics of the situation. The
present paper will consider only the two simplest cases,
after briefly commenting on more complex possibilities.

A. Fluid equations of state

In general we may wish to study perturbations with
a scalar field, fermionic matter, or other matter sources;
or using a kinetic theory description. We here concern
ourselves with situations where a simple or multifluid
description is appropriate. Three rather different cases
arise.

(1) Imperfect fluids will have nonzero energy flux vec-
tors q and/or anisotropic pressures ir, ~. These could
occur due to dissipative processes, when suitable equa-
tions of state will determine the quantities q and m, p

(see, e.g. , Ehlersig); but this description is also appropri-
ate for multicomponent perfect fluids upwith different four
velocities.

In the latter case it would be natural to describe the
situation relative to the four-velocity of the dominant
component; the effective stress tensor of any other per-
fect fluid, moving relative to this four-velocity, will be
that of an imperfect fluid. This would be the situa-
tion for example in isothermal perturbations where the
surfaces of constant matter density are difFerent from the
surfaces of constant radiation density, for in general their
four-velocities will differ, leading to such phenomena as
radiation drag.

The methods used in this paper can be adapted to this
case, but the resulting equations are rather more complex
than those presented here.

(2) Nonbarotropic perfect fluids occur when there are
two essential thermodynamic variables, so that (ll) and

(25)—(42) hold but p g p(p). The importance of this is
that then in general ui X~1 g 0, so that u and X, are
not parallel in (36), (37), implying Z (and so X ) will

not be Fermi propagated along the fluid flow lines (they
will rotate relative to a local inertial rest frame).

A particular case of interest is that of multicomponent
perfect fluids ioith the same four velocity, e.g. , -baryonic
matter plus radiation that is isotropic about that mat-

ter. This might be expected to be the case in isentropic
perturbations, where both the matter and radiation are
significant but the surfaces of constant matter density
are the same as the surfaces of constant radiation density
(the baryon-to-photon ratio is constant), then in general
their four-velocities must coincide, else this condition will
not be maintained. We can then represent the equation
of state in terms of the simple relativistic y laio-equation
of state

J = (v —l)t, (44)

where y = p(S) takes a simple form when the fluid com-
ponents are noninteracting (cf. Madsen and Ellissi).

(3) Barotropic perfect fluids are perfect fluids where p
and p are functionally dependent: p = p(p). Then there
will be a well-defined speed of sound v, = (dp/dp) ~

limiting communication by fluid processes, and from (26)
u, and X~ are necessarily functionally dependent and
parallel. Equations (35)—(40) apply.

The simplest situation is when v, is constant (cf.
Olson ); then the relativistic y-law description (44) may
be used where now p is constant. The important cases
are y = 1 (dust), z (radiation), or 0 (false vacuum). The
first and third cases are considered below. The other
cases will be discussed in a further paper; we merely
comment here that a crucial issue is whether A~ is sig-
nificant or not in Eqs. (37) and (40).ss 9

B. A false vacuum

C. Pressure-free matter

This is the case of "pure gravity", often called "dust";

p = 0, p & 0 so no kinetic or pressure effects are taken
into account. Thus it is not very physical, but enables us
to see how gravity alone functions. It may be a reasonable
approximation to the equation of state of the Universe at
late times.

1. The zero-order equation8

Pressure-free matter must move geodesically: from the
momentum equation (26),

The "false vacuum" equation of state occurs if the
stress tensor is Lorentz invariant, i.e. , if T~y oc g~y. This
will be a good representation of the stress tensor of a
scalar field P when P is nearly zero (e.g. , it underlies the
concept of exponential inflation in the early Universe. )

The false vacuum is equivalent to a perfect fluid for
which p + p = 0; we see directly from (36) that then
S4X is constant along the fiuid flow lines (which are not
uniquely defined, in this case). Thus spatial density gra-
dients die away as S, independent of their wavelength;
relative gradients Z also die away as S ~; but comoving
fractional density gradients B die away as S . This is
the density-gradient aspect of the "no-hair" theorem for
inflationary universes.
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p=0~u' =OmA=A =0 (45)

(there are no pressure gradients to deviate the motion
from freefall). This enables us to omit the projection
tensors in the perturbation evolution equations. The en-

ergy equation (25) shows

Myp=, Mg ——0, (46)

and the Raychaudhuri equation (27) becomes

3SjS = —zi~p+ A. (47)

Provided S g 0 we can multiply by SS and integrate to
find

3(S) —(~p+A)S = —3k, k = 0, (48)

The equations for propagation of X, and Z, are nows5

S (S X )'= —~pZ,

S (S Zi, )
' = —zi Xi, . (50)

From these, we obtain a second-order equation for Xo:

[Sz(S4X,) '] '= zi~P(SsX, ), (51)
where we can substitute for p from the Friedmann equa-
tion on each world line to obtain

(X ) -+ —"0(X ) '+ —
~

—8' —7 + 5A
~
X, = 0

I C»,
2(3 S'

(52)

[if we use expresion (46) for p directly, we must ensure
the correct relation between the constant Mi and k].

The corresponding equations for the relative density
gradient X~ can be written

(Z )
'= —si8Z, —Z„

(Z, ) '= —OZ, —zi ~pZ„

(53)

(54)

(Z, )-+ -O(X, )
' —

i
—A

~

X, = 0. (55)
/2l

Similarly, the equations for D, in terms of Z~ = SZ,
are

+a = +a) (56)

(Z~) = —s8Z~ —
z IcpD~, (57)

which is just the Friedmann equation which governs the
time evolution of FLRW universe models; it is the same
as Eq. (38) with K = 6k/Sz. When ~ = 0 K = sR and
k, constant on each world line p, characterizes the three-
space curvature of the three-surfaces Zg where they in-
tersect p (when u E 0 this is approximately true; see
Appendix B). Thus there is a separate I"LAW evolution
along each world line;4 these evolutions will difI'er only in
their energies and starting times. 4

2. The perturbation equations

leading to the second-order equation

D, + sBD, —
z ~ply, = 0. (58)

To determine the solutions explicitly, we have to sub-
stitute for S(t) from the zero-order equations (or change
to the conformal time variable rl = JCt jS(t) and give
S in terms of that time along each world line). Before
looking at two simple cases, we comment on some general
properties of these equations.

(I) Inhomogeneity on a world line y is indicated by at
least one of X~, Z~ being nonzero. Because the equations
governing its evolution are homogeneous, inhomogeneity
cannot arise spontaneously: if both X and Z are zero
at any event p on p, then they are both zero at all events
on y; if either is nonzero at any event on y, they are both
nonzero at almost all events on y (ane or the other may
be zero at exceptional events).

(2) In general, X~ and Z are not parallel. However,
if they are parallel at one event p on y, they are parallel
at aB events on y; and if either vanishes at any event q
on 7, they are parallel at all events on y where they are
nonzero. In these cases, the vector equations reduce to
scalar equations, giving the rate of change of the relevant
magnitude along y; for example, (58) implies

'D+ szOD —~zlrPD = 0 (59)

for D [defined by (24)]. We can always find such "scalar"
solutions (take initial data at p on y with X parallel
to X„), and they will indicate the extreme behavior of
the vector solutions (the magnitudes of those solutions
should not be able to grow larger than those of the scalar
solutions). Thus we may use the scalar equations to in-

vestigate how fast density inhomogeneities can grow.

(3) In these scalar equations, the sign of the gravita-
tional term is positive, expressing the feature of gravita-
tional instability of inhomogeneities. Thus, for example,
the scalar equation from (51) is

[S (S X) '] '= zi~p(SsX), X = (X'X,)'l

where the source term is positive (assuming, as usual,

p ) 0). However, of course, the expansion of the uni-
verse, expressed in the factor S, works against this in-
stability.

(4) In the case considered here (vanishing pressure),
because the evolution along each world line is indepen-
dent, the evolution of each of X, L, and B is unaf-
fected by the wavelength of the density fluctuations [(58)
and (59) hold independent of wavelength]. Furthermore,
the evolution is unaffected by particles horizons; they are
irrelevant ta this evolution, whether we consider large or
small scale inhomogeneity, because the individual world
lines evolve independently. This is in accord with the
analysis of Ehlers et aI. ,

3 showing that timelike world
lines are characteristics of perturbations of pressure-free
matter.

Equation (59) is the standard equation for zero-
pressure density perturbation growth relative to proper
time along the Qow lines in an expanding universe, ob-
tained by Lifshitz in his pioneering study of the in-
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stability of FLRW models. It can also be obtained from
Newtonian theory. We have here obtained it as an equa-
tion describing scalar modes of the vector equation (58).
An alternative way of deriving it as an equation govern-
ing the relative magnitudes of the density in neighboring
comoving volumes is given in Appendix A.

8. The Einstein static universe

As a first example, we consider a universe that is static
at some event p on a world line p: S = S = 0 at p.
Then, from (47), and (48), k = +1, & zp = S = A at
p. Equation (55) becomes

(z, ) "=
—,'~pz, (61)

For comparison with the standard case, we consider
the simplest expanding solution, the Einstein —de Sitter
universe with k = 0 = A. Then the zero-order solution is

S(t) = a(t —t.) i, a = (3~Mi/4)'~, 8 = 2/(t —t.),

(62)

where t is proper time along the world lines; a, Mi, and t,
are constants. From equations (53)—(60), we find as fol-
lows: in a parallel propagated orthonormal frame along a
world line, the spatial density gradients X~ have power-
law solutions

X, = a+, (t —t, ) + a, (t —t, ) (63)

where the a; are constant along each world line; that
is, there are only decaying modes. Correspondingly, the
fractional spatial densit;y gradients X, have power-law
solutions

Z = b+, +b (t —t„) (64)

where the b; are constant on each world line. Again
there is no growing mode. Finally the comoving frac-
tional density gradients B~ have power-law solutions

17 = c+,(t —t, )z~ + c,(t —t, ) (65)

where the c;~ are constant on each world line, giving the
expected modes with powers of z~ and —1. From (24) it
follows that the magnitude D goes as

'D = P'.& )'" = l c+.c+ (t —t )"'
+2c+ c '(t —t.)
+c,c (t —t„) j'i

at p, independent of the wavelength of the fluctuation,
showing the gravitational instability to inhomogeneity;
any nonzero initial inhomogeneity in a static situation
will grow. This supplements the usual proof of instabil-
ity to homogeneous (FLRW) modes, which follows direct
from the Raychaudhuri equation (47).

1. The Einstein —de Sitter universe

D. IsGcurvature perturbatiGns

As a last example, we look at the implications of impos-
ing geometrical restrictions on the fluctuations. Specifi-
cally, suppose the isocurvature condition following from
(21) holds; the linearized version of this condition is

K =0 ~ X =pZ = a8Z~. (66)

The issue is as follows: suppose this condition is satisfied
initially; under what circumstances will it remain satis-
fied? We examine this by taking the time-derivative of
this equation, substituting from the propagation equa-
tions (36), (37), and simplifying again by use of the
isocurvature condition (66). We find

KZ. +28(Z.u. +A.) = 0 (67)

as a consistency condition. When p = 0 this becomes

nitude in the general case, that is, if c+, and c ~ are
not parallel. Note, however, this is the magnitude of the
scaled energy density gradient 'V, which does not neces-
sarily directly relate the density change between neigh-
boring world lines (it gives the density variation in the
instantaneous direction of maximum density change, but
particles in that direction at one time will not necessar-
ily remain in that direction at other times). The relative
density change b, between two comoving fluid elements
will not show this extra mode, because it will be governed
by Eq. (All), identical to Eq. (59) for the scalar modes
of the vector equation. The growth of this quantity will
thus show only the &s and —1 modes, agreeing with the
standard results for growth of bp/p, in terms of proper
time along the flow lines. s74 s

It is quite clear in our analysis that these are physically
well-defined modes of growth and decay of a density in-
homogeneity; whereas, because of the remaining gauge
freedom (choice of the initial surface from which to mea-
sure proper time), the situation is much more ambivalent
if we use the usual variables. Because the evolution along
each world line p; individually is like a FLRW model I";,
it is clear that the "best fit" FLRW model along p; is I";
(irrespective of the world model S we first thought of).
If we define the map Ci to assign the reference density P
correspondingly, we will have chosen the zero-density per-
turbation gauge (see Sec. II A). Suppose we more conven-
tionally choose a time coordinate which measures proper
time along the world lines in S. Then Olson shows (see
p. 329 of his paper ) that the decaying mode of bp/p can
be eliminated by the remaining gauge freedom, while this
is not true for the growing mode. However, when the de-
caying mode has been eliminated from bp/p, , it will still
be evident in other quantities. The gauge-invariant ap-
proach avoids this kind of problem.

As Eq. (59) is a standard, we will not discuss its prop-
erties further here; the solutions for k = +1 and k = —1
may be found, for example, in Weinberg's book:ss see
p.573ff.

showing that there is also an extra mode in this mag- )CZ = 0 (68)
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showing that in this case isocurvature perturbations with
nonzero density gradients are only possible if K = 0,
i.e. , if the unperturbed universe has flat spatial sections.
When (66) holds, substituting into (50) or (54) gives a
erst-order equation for Z~ [compatible with the second-
order equations (51), (55) provided the consistency con-
dition (68) is satisfied]. We find that when A = 0, p = 0
the isocurvature condition holds if and only if k = 0 (the
Einstein —de Sitter case, Sec. VC4) with Z oc S 4 and
17 oc t; that is, the isocurvature condition is precisely
equivalent to existence of a decaying mode alone.

When p g 0, we have to examine the time-evolution of
the constraint equation (67) to see under what circum-
stances such fluctations can exist at all times.

verse model at a chosen initial time. This will completely
fix the gauge choice [(A)—(D) in Sec. II]. A major issue
then is how well this optimal fitting will be preserved at
later times in the universe models.

How do our variables relate to the gauge invariant vari-
ables of Bardeen? VVhile the quantities he uses as vari-
ables are gauge invariant, they do not directly represent
the density contrast on neighboring world lines, unless
supplemented by ext, ra conditions fixing the gauge by an
appropriate fitting procedure (e.g. , taking a spatial av-
erage across world lines). Without such a condition we
can, for example, first determine his variables r or ez for
some specific Quid Qow, and then choose a zero-density
perturbation gauge (see Sec. II A); we will find then that

VI. CONCLUSION

We have found a set of covariantly defined gauge-
invariant quantities that characterize spatial density vari-
ation in almost-Robertson-Walker universes. In particu-
lar, we have identified the quantity B, the comoving
fractional density gradient and its magnitude 17, defined

by Eqs. (22)—(24), as the covariant and gauge-invariant
quantities that embody most closely the intention of the
usual (gauge-dependent) definition bp/p.

We have obtained exact (fully nonlinear) and linearized
propagation equations for these quantities, and examined
their solutions in the simplest case (pressure-free matter).
Comparison with the usual approach shows we can obtain
the same results as usual but in a much more transparent
way, because in the standard approach the definition of
the density Quctuation bp depends on the gauge chosen.
In our case we need a specific gauge to write down the so-
lutions to the equations, but the definitions of the funda-
mental quantities are gauge invariant. The key difference
is that the standard approach compares two evolutions
(the actual one, and a fictitious comparison one) along a
world line, whereas our variables specifically reflect the
spatial density variation in the fiuid (they compare evo-
lutions along neighbouring world lines in the actual Uni-
verse .

The following paper will use this formalism to ex-
amine the solutions in the case of nonvanishing pressure.
Because we have obtained fully nonlinear equations (30)—
(34) for the quantities considered, we can hope to extend
our analysis to looking at nonlinear effects, such as when
a protogalaxy separates out from the Hubble expansion,
or perhaps even aspects of the effects of averaging on the
effective field equations (cf. Ellisi~, Futamaseie).

An implicit gauge choice is made in our equations:
we always examine the evolution along the uniquely de-
fined Quid Qow lines in the universes, and take derivatives
with respect to proper time along these flow lines; thus
we compare the real situation S with a FLRW universe
model S where the same choices have been made. This
leaves arbitrary the choice of an initial surface (t = tp)
in S to correspond to a chosen surface (t = to] in S. We
advocate use of appropriate "fitting conditions" to
make this choice; that is, choice of some explicit proce-
dure to optimally fit the FLRW model to the real Uni-

e = 3(1+io) (n~ l —B~oi)

in Bardeen s notation, giving us heavily disguised infor-
mation on the density variation.

If his gauge-invariant variables do not directly repre-
sent the density contrast, what are they? They should
correspond to one or other of the quantities listed in
Sec. III B. Nel4o has calculated these quantities using the
Newman-Penrose formalism, and identified them as Weyl
tensor components E~i, [see also Goode, i" Eq. (2.7.3)].
At first this seems highly mysterious, for how could they
then relate to density perturbations? The key is the con-
straint Eq. (42), showing that E'~ is a potential for A
The nature of the central Bardeen relations [Eq. (4.3) in
his paper] is obscured by the Fourier analysis undertaken
at the beginning of that paper, but our contention is that
they are essentially the same as the relations (42) in this
paper, relating the divergence of the Weyl tensor to the
gradient of the energy density (which is what we want to
characterize). Our approach is to deal directly with the
quantities X, instead of their potentials E p.
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APPENDIX A: EVOLUTION
ON NEIGHBORING WORLD LINES

In considering galaxy formation, what we really wish to
examine is the relative density growth in two neighboring
comoving volumes. Suppose we tackle this directly. Let
the relative position vector g&

——h ~@~ link world lines 0,
Q where the connecting vector g' obeys the Lie derivative
relation ' g -pu = u .p g . Then the density p, on G is
related to the density p on 0 by

(A1)

where [using (22)]
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gJ —Lg 7jJ
p

(A2) leading to the completely general exact second-order
equation

Now the time variation of g& is given by A = —BOA+ ~2~pE+ (2o.z, —2~2, )rl~. (A10)

hab('g~) = —gJ a + (&ab + ~ b) 9~

& = &ag~O', (A4)

that is, the time variation of the density difference be-
tween two neighboring comoving volumes is determined
byD.

showing that in the almost-FLRW case, g& varies with

S(t) to first order; that is, 4 X S(t)il&o. Hence if we

define 17 = S(t)X [as in (23)], we see that

A + BOA —~2~pA = 0, (A11)

which is essentially the well-known equation (59) for zero-
pressure density perturbations (obtained in the standard
literature by other means).

APPENDIX B: THE MEANING
OF K WHEN ~ g o

The last equation is linearized in the almost-FLRVV
context by dropping the last term, to give

l. Exact propagation equations

One can obtain an exact first-order propagation equa-
tion for A, defined by (A2), from (33) and (A3):

A = —OA —
~

1+ —~:-,i)
where

(A5)

:-—:O, rl~ ——Z, g~ (A6)

2. The case of zero pressure

In the case of dust, we find from (A5) and (A7) the
simple exact relations

(A8)

:- = —s2 0:- —
2 Icp.A + (—2o 2, + 2cu 2, )ri~ (A9)

[so the expansion 0 on G is related to the expansion 0
on 0 by 0 = 0 + " + 0(:" )]. From (31) and (A3), the
exact first-order propagation equation for = is

= = —2~8:- —2iKpA+ ('Ru, + A, —2o, + 2~, )rl~.

(A7)

When ~ g 0, there are no surfaces orthogonal to the
family of Quid Qow lines, but we can find normalized co-
moving coordinates (t, y"}as in Sec. IV C (see Ehlers, ~4

Treciokas and Ellis ). Using such coordinates, the sur-
faces (t = const) can be set orthogonal to a particular
chosen world line y and almost orthogonal to neighbor-

ing world lines by the remaining gauge freedom (43) (e.g. ,

if we choose an initial surface (t = to} to be generated
by orthogonal geodesics emanating from y). Then K,
given by (12), will be nearly the Ricci-scalar of these
three-spaces on and near y. Note, however, these sur-
faces do not directly correspond to the FLRW surfaces

= const) when there are spatial density gradients,
because if X' E 0 the surfaces (p = const) do not lie

orthogonal to the world lines; similarly if Z g 0 the
surfaces (0 = const} do not lie orthogonal to the world

lines.
More generally, if u is not too diA'erent from the nor-

mals n to a family of surfaces, then K will be not too
different from the Ricci scalar of those three-spaces. The
meaning of "not too different" can be made precise by
either using (a) a formalism equivalent to the Arnowitt-
Deser-Misner lapse and shift formalism (cf. Bardeen, s

Sec. VI), (b) the tilted flow vector formalism of King and
Ellis, or (c) adapted comoving coordinates mentioned
above.
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