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Scale-invariant (flat) fluctuation spectra are the most natural outcomes of inflation. Nonetheless
current large-scale-structure observations seem to indicate more fluctuation power on large scales
than flat spectra give. We consider a wide variety of models based on the chaotic inflation paradigm
and sketch the effects that varying the expansion rate, structure of the potential surface, and the
curvature coupling constants have on the quantum fluctuation spectra. We calculate in detail the
quantum generation of fluctuation spectra by numerically solving the linearized perturbation equa-
tions for multiple scalar fields, the metric, and the radiation into which the scalars dissipate, follow-
ing the evolution from inside the horizon through reheating. We conclude that (1) useful extended
nonflat power laws are very difficult to realize in inflation, (2) double inflation leading to a mountain
leveling off at a high-amplitude plateau at long wavelengths is generic, but to tune the cliff rising up
to the plateau to lie in an interesting wavelength range, a special choice of initial conditions and/or
scalar field potentials is required, and (3) small mountains (moguls) on the potential surface lead to
mountains of extra power in the fluctuations added on top of an underlying flat spectrum. For
quadratic and quartic couplings, the mountain fluctuations may obey Gaussian statistics but the
spectral form will be very sensitive to initial conditions as well as potential parameters; non-
Gaussian mountain fluctuations which depend upon potential parameters but not on initial field
conditions will be the more likely outcome. However, adding cubic couplings can give mountains
obeying Gaussian statistics independently of initial conditions. Since observations only probe a nar-
row patch of the potential surface, it is possible that it is littered with moguls, leading to arbitrarily
complex ‘“mountain range” spectra that can only be determined phenomenologically. We also con-
struct an inflation model which houses the chaotic inflation picture within the grand unified theory
(GUT) framework. The standard chaotic picture requires an unnaturally flat scalar field potential,
A=5X10"'4 and a strong curvature coupling parameter bound, £ <0.002. By allowing the Higgs
field to be strongly coupled to gravity through a large negative curvature coupling strength,
£~ —10% so the Planck mass depends on the GUT Higgs field, the Higgs field can be strongly cou-
pled to matter fields [with A~ (£/10%)?]. This leads to both a flat Zeldovich spectrum of the “ob-
served” amplitude and a high reheating temperature (~10'* GeV), unlike the A~ 107'3 standard
case. The large —& would be related to the ratio of the Planck scale to a typical GUT scale. Al-
though a single dynamically important Higgs multiplet gives flat spectra, a richer Higgs sector
could lead to broken scale invariance.
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I. INTRODUCTION

One of the most promising - inflationary models is
Linde’s chaotic scenario.! In this model, the Universe
emerges from the Planck epoch in a chaotic state, where
any value of the scalar field consistent with a density
<<m} is allowed. In particular, there exist small patches
of space where derivatives of the field are tiny (e.g., near a
peak), and where the energy density of the Universe is po-
tential dominanted, ¢ 2,(V¢$)? << V(). The criterion for
inflation, that the distance between any two points ac-
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celerates, d/a =—(4wG)(p +p/3)>0, rather than de-
celerates, is then satisfied. The comoving Hubble dis-
tance (Ha) ! thus decreases with time, sweeping inward
to encompass ever smaller comoving length scales k ™!,
Once (Ha) ™! drops below k !, the “Hubble damping” of
the quantum fluctuations spontaneously generated before
this on scale k ~!is arrested. The result is that the ¢ fluc-
tuations form a homogeneous and isotropic Gaussian
random field which is completely characterized by its
power spectrum Py(k), the variance in ¢ per logarithmic
interval of k. The natural outcome of chaotic inflation
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driven by a single scalar field is a flat scale-invariant spec-
trum 7,(k) for k~!>(Ha)™'. A region of size smaller

than the Planck length is inflated by a factor ~e6O+N1 to
a region (much) larger than the current Hubble length
Hy '=3000 h™"Mpc provided the number of e-foldings
during inflation is N; 2 70. Without inflation, the region
would have expanded by only a factor ~e% to less than a
micron across by the current time—an aspect of the
“horizon” problem which inflation so successfully solves.
In spite of its naturalness, researchers have been slow to
accept chaotic inflation because it relies on Planck era
physics since a large (~5mp) initial value for the scalar
field is required to ensure enough inflationary expansion.
However, perhaps we should adopt the view that the
structure of the Universe is one of the few conceivable
windows we have to constrain Planck-scale physics.

An inflationary cosmology with an initially scale-
invariant spectrum is completely defined (1) by a “biasing
factor” b, parametrizing the amplitude of the fluctua-
tions and (2) by specifying such global parameters as the
Hubble constant

h=H,/(100 kms™'/Mpc) (1.1)

and the mass densities (relative to closure density) of the
various constituents of the Universe, baryons Qp, dark
matter of various types y, relativistic particles Q,,, and
vacuum energy Q,,. (nonzero A). These relative densities
must all sum to a total  which is necessarily very nearly
unity in inflation models. The post-inflation evolution of
the fluctuations prior to the onset of nonlinearity when
the first objects collapse in the Universe is then complete-
ly determined, characterized by a power spectrum for
density fluctuations, ?p(k). The most successful scenario
to date is the cold-dark-matter (CDM) model, with
Qy~0.9, with a baryon density Q;~0.1, with A =0.5
and bp ~1.4-2.5. The CDM model does very well at ex-
plaining the observed structure on scales <10 h™'Mpc
(Refs. 2 and 3), but seems to conflict with some observa-
tions probing larger scales, such as the clustering of Abell
clusters, as measured by the cluster-cluster correlation
function: at a separation of 25 h™ 'Mpc, the Bahcall and
Soneira* result gives an amplitude of unity, while the
CDM prediction is about an order of magnitude less
[Bardeen, Bond, and Efstathiou® (BBE)]. Furthermore,
there are indications from the apparently large coherent
streaming velocity® of galaxies within a distance of order
25 h™'Mpc from us that the CDM biasing factor would
have to be nearly 1 to accommodate the observations.’
Low values of b,(~1) are inconsistent with the inflation
requirement that Q=1 (Ref. 3). There are other observa-
tions which do not indicate a lack of power in the CDM
model. For example, the angular clustering of galaxies
about galaxies and of galaxies about clusters are both
now apparently compatible with the CDM model.}~ 12
Taken all together, the data as currently interpreted
would impose severe restrictions on the form of the densi-
ty fluctuation spectrum that could give rise to it. Howev-
er, we are not yet at the state observationally to
definitively determine the form of the fluctuation spec-
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trum from observations, and should regard the data as in-
dicating what spectral shapes it would be desirable to
construct theoretically.

One could accommodate the observations by doing ei-
ther of two things. First, one may consider alternative
inflationary models that produce more exotic primordial
(“initial” or post-inflation) density fluctuation spectra,
?ﬁ,”(k). Second, one may alter the transfer function T (k)
which describes how physical processes working within
the horizon affect density fluctuations. The spectrum pri-
or to the onset of nonlinearity is ’Pp(k)=T2(k)?’if)(k).
BBE have systematically varied the free parameters of
T (k), namely, Qp, Qy, Q,,., h, the lifetime of massive
neutrinos, and the biasing factor b,. They find no natural
satisfactory combination, although CDM with large
baryon density (violating nucleosynthesis constraints) or
short-lived neutrinos (little motivation from particle
physics) come close. The first possibility was then con-
sidered by BBE and Bond:!?> phenomenological primor-
dial spectra with more power at large scales than the
scale-invariant spectrum were constructed, independently
of the requirements of consistency with inflationary mod-
els (CDM +plateau and CDM +mountain, see Sec. II).
In this paper, we discuss the possibility of designing gen-
eral density fluctuation spectra in the context of chaotic
inflationary models with multiple scalar fields. Since the
present large-scale structure observations are tentative,
we will not limit ourselves to these phenomenological
spectra.

The standard chaotic model is unsatisfactory from a
theoretical standpoint as it requires fine-tuning of the
cosmological constant A <107 '°m2, the scalar field
self-interaction A~10"", and the curvature coupling pa-
rameter £ <0.002. [The last constraint follows from re-
quiring that the effective value of Newton’s constant,
Gg=(m}—87EP?) ™! be greater than zero.'»'*] The
problem of how a scalar field which interacts only ex-
tremely weakly can reheat the Universe has also not been
solved. We explore the density fluctuations produced by
theories which strongly couple scalar fields to gravity in
an attempt to explain these fine-tunings.

In Sec. IT we transform the phenomenological density
fluctuation spectra suggested by the large-scale structure
data into a form more suited for comparing with the out-
put of our computations of post-inflationary spectra,
namely, in terms of the gauge-invariant variable £ which
is a measure of the gravitational potential fluctuations. &
must have an amplitude about 107*/b_ to explain the
current level of structure in the Universe. In Sec. III we
present our general Lagrangian for multiple scalar fields
interacting among themselves through a potential and
coupled nonminimally to gravity. With nonminimal cou-
plings, Newton’s constant varies with position. Using a
conformal transformation, which is interpreted as a
position-dependent change of units, it becomes constant,
and the action transforms to that of standard Einsteinian
gravity with minimally coupled scalar fields. To describe
the development of fluctuations, we adopt a framework
which is consistent within linear perturbation theory in
which the background fields are treated classically and
the fluctuations quantum mechanically. The high degree
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of isotropy of the microwave background justifies this ap-
proach. We derive the perturbation equations in Sec. IV
and their initial conditions in Sec. V, many of which are
set by quantum requirements.

In Sec. VI the heart of this paper, we describe the mod-
els we have considered. In Sec. VI A we present numeri-
cal calculations of fluctuations for a single scalar field in-
teracting through a Coleman-Weinberg potential of
“new” inflation and a chaotic (~A¢* potential. Scalar
field quantum fluctuations are created inside the horizon
and are transformed into density fluctuations after the
Universe reheats. In Secs. VIB-VID we generalize to
multiple fields. Using a simple but illuminating model,
we illustrate how features of various shapes may arise in
the fluctuation spectrum. It is possible to generate fluc-
tuation spectra with more power at large scales through
double inflation, !>~ 1813 though to tune the characteristic
wave number to be around the scale associated rich clus-
ters would require highly selected initial conditions for
the scalar fields. We also explore the case of two scalar
fields interacting through a general quartic potential as a
means of breaking scale invariance in inflation. We show
that extra power localized over a limited wavelength
range (mountains) is the most likely way to break scale in-
variance.'® 181319

In Sec. VII we consider models in which Newton’s con-
stant is a function of a GUT Higgs field, determined by a
[m?/(16m)—E¢?/2]R coupling of the Higgs field to grav-
ity. The standard result for the amplitude of density fluc-
tuations at horizon crossing (parametrized by the gauge-
invariant variable £), £=400A!"? is now replaced by
£=10A12/|&|, valid for large —&. Thus, if, for example,
A=~5X1072, and £= —2X 104 density fluctuations are of
the ““observed” level. Particularly interesting is the in-
duced gravity model’*~2? in which the bare value of the
Planck mass m is set to zero and its present value is gen-
erated when the scalar field moves to the bottom of its
potential. However, this model has difficulties with
reheating since the scalar decouples from gauge fields (at
least at the classical level). We construct a closely related
model with m ~mp which does not require the unnatur-
ally small value of A required by chaotic inflation, and
has prompt reheating at the GUT scale. After this paper
was written, we learned that the large & <0 fluctuation
formula was obtained using different techniques by
Spokoiny and that Fakir and Unruh have also indepen-
dently derived it.2> These papers do not address how this
can aid in meshing chaotic inflation in a GUT scenario.
These models still suffer from the cosmological constant
problem and from an uncertain origin for the required
large negative curvature coupling constant.

(In this paper, we loosely speak of fluctuations leaving
the horizon and re-entering the horizon during inflation;
what we mean is that k < Ha and k > Ha. By the second
horizon crossing, we mean the second time ak ~! equals
the Hubble parameter. When we speak of the horizon
scale now, we mean the comoving distance that light
could have traveled since the end of inflation. Thus the
horizon scale now is 6000 h™'Mpc for Q=1 cosmologies.
This imprecise terminology has by now become conven-
tional.)

II. PHENOMENOLOGICAL POST-INFLATION
FLUCTUATION SPECTRA

In this section, we normalize possible post-inflation
Gaussian fluctuation spectra allowed by the data as
currently interpreted. Bardeen, Bond, and Efstathiou,’
Bond?*!? and Bond and Couchman!® have used the tests
of large-scale streaming velocities, the cluster-cluster,
cluster-galaxy, and galaxy-galaxy correlation functions,
EcorEcgrEggy and constraints on microwave background
(CMB) anisotropies to construct a phenomenological
linear density fluctuation spectrum #,(k) which, when
evolved, satisfies all of the current cosmic structure data.
The straightforward interpretation of the data is that it is
largely determined by different regions of the density fluc-
tuation spectrum ?’p. However, we cannot prescribe a
unique spectrum, or even upper and lower limits on al-
lowed variations that hold over the entire spectral range
of interest for structure formation since other processes
such as fragmentation or explosions may have contribut-
ed to the formation and growth of structure. The best
bet we have for a simple mapping of observations to the
form of 7’p is the large-scale structure data; in this re-
gime, the density fluctuations are difficult to generate by
nongravitational means (e.g., explosions), and the fluctua-
tions are apparently still linear in amplitude. For exam-
ple, limits on large-angle microwave background aniso-
tropies determined for the Soviet RELICT experiment as
reported by Strukov, Skulachev, and Klypin®® place a
stringent constraint on how large 7, may be in roughly
the wave-number range 600 h 'MpcsSk <6000
h™'Mpc, while the cluster-cluster correlation function
data would restrict the range from ~5 h™'Mpc to about
~50 h™!Mpc. Within hierarchical models for structure
formation, in which galaxies form before clusters, as the
data would seem to indicate, &gz and &g would constrain
wave numbers between ~5 h—!Mpc and ~20h™ 1Mpc; it
is not completely clear at present that these spectral limi-
tations are compatible with the &_. spectral constraints.
This is discussed more fully below and in Bond.!?

The linear spectrum 7,(k) (p variance per Ink) is fixed
in shape once the Universe enters into a phase where it is
dominated by pressureless nonrelativistic matter; the
shape is retained even if it subsequently becomes vacuum
dominated or curvature dominated. The transition from
the initial post-inflation spectrum ?Li)(k) to P,(k) is de-
scribed by the transfer function T (k): ‘PP( k,t)
=DX1)T*(k)P)(k). Here D (1) is an overall growth fac-
tor (e.g., Peebles,?® Sec. 2.3). For wave numbers which
enter the horizon in the matter-dominated epoch,
T(k)=1. For shorter scales it is necessarily less than
one. It is conventional to define a local power-law index
n to characterize the shape of 7,(k):

3p (k)
p

K3 2
P (k)=—< >o<k3+". @.1

P 2772

The average, defined more precisely in Sec. IV, is taken
with respect to the random field ensemble. The 272 fac-
tor depends upon the Fourier transform convention; we
use dp(k)/p= fd3x [6p(x)/plexp( —ik-x). For initially
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adiabatic perturbations, the scale invariant (Zeldovich)
spectrum has n =1. A clearer way of presenting the phe-
nomenological spectra which emphasizes the scale invari-
ance is to use the linear power spectra for the gravitation-
al potential ‘P(DH, defined by

Py (2.2a)

H

=K o t0P)
Toop o H '

The potential perturbations are related to the comoving
energy density fluctuation 8p by?’

Vi, =—47Ga’8p , (2.2b)
4
9 | Q'2Ha
Po, =7 |7 | o (2.2¢)

Thus, for adiabatic spectra for which n =1 initially, 7)4,”

is k independent on large scales, and just reflects the
shape of T%(k) on shorter scales. Further, in the matter-
dominated phase, 73‘1’11 is time independent (although the

amplitude, but not the shape, does evolve in subsequent
vacuum- or curvature-dominated eras).

Although ®, has the advantage of a simple physical
interpretation as a gravitational potential obeying the
Poisson-Newton equation (2.2b), it is also a gauge-
invariant variable in general relativistic perturbation
theory. We use it extensively in our numerical computa-
tions in Sec. VI. However, there is an even more useful
gauge-invariant measure of the amplitude of the metric
fluctuations arising in the post-inflation era, {ggy, intro-
duced by Bardeen, Steinhardt, and Turner.?® In this pa-
per, following Bardeen, Bond, Kaiser, and Szalay,3 we in-
troduce a new variable § which is a factor of 3 larger than
&pst so that § reduces to 8p/p well inside the horizon for

nonrelativistic matter (see also Bardeen®®):
§=3Cgst
2 s
=—(Py;+H 'O
1+p/p (Pu u)
2
I PRI, S T T 2.3)

9a%H? 1+p/p

Here p and p refer to the total pressure and energy densi-
ty of the background matter including that of any scalar
fields present. § is also hypersurface invariant for pertur-
bations outside of the horizon, and is only large ([ >1)
if either the matter perturbation or the metric perturba-
tion is large. Furthermore, { has the remarkable proper-
ty of remaining constant in time for adiabatic perturba-
tions [8p /8p=/(dp /dt)/(dp/dt)] outside of the horizon
during the radiation- and matter-dominated phases, and
even through inflation and reheating.

For scales just outside our present horizon, the value of
P, is simply related through (2.3) (with p =0) to the
value of 734,11,

15 8p

2 p (2.4)

1/2 — gpl /2 —
Py 5?’4,”

H

The characterization of the amplitude of the fluctuations
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by the rms value on the horizon is the conventional (but
imprecise) way of presenting the spectrum normalization.
In Fig. 1 we plot ’P¢H for two generic phenomenologi-

cal spectra (CDM+pl and CDM +mt, where pl stands
for plateau and mt stands for mountain); these are com-
pared with the CDM model and some variants construct-
ed from scale-invariant spectra (7)¢H=const), but with

different cosmological parameters. The phenomenologi-
cal models preserve the success of the CDM model on
small (galaxy to cluster) scales by maintaining the same
flat initial spectrum at high k with essentially the same
amplitude as the CDM spectrum. To agree with the
large-scale data, an ad hoc n = —1 rise from a scale k, !
of order 25 h™'Mpc to ~200 h™'Mpc is added, followed
by a return to the flat spectrum, either by leveling off to a
plateau (CDM +pl) or by dropping down to the same lev-

6 [ T T

—
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CDM+pl

log [P, (k)]
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FIG. 1. The power spectra at the present epoch for a relativ-
istic analogue of the Newtonian gravitational potential for den-
sity fluctuations, @, are plotted against comoving wave num-
ber (with scale factor normalized to be ¢ =1 now). Log is to the
base 10. CDM+pl and CDM+mt are two possible phenome-
nological spectra which roughly accord with the data
(CDM+pl has some difficulties with large-angle CMB con-
straints). Except for the isocurvature baryon mode, all the rest
began with scale-invariant initial conditions. The CDM,
CDM +pl and CDM +mt models are all normalized with the
(rather low) biasing factor b,=1.44 (i.e, bf,?’d,H would be the

power spectrum if the galaxies are good tracers of the mass dis-
tribution). The hot-dark-matter model has b,=0.53 corre-
sponding to a redshift of 1 when rms density fluctuations be-
come nonlinear. The low Q,, model is normalized assuming
galaxies are fair tracers of the mass. The isocurvature baryon
model, with initial spectral index n,= —1, is also normalized
this way. To make Q=1 in this model, Q,,.=0.6 is required.
This does not change the normalization from that of the open
model. These spectra are also proportional to T%(k).
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el as at high k (mountain, CDM +mt). The starting point
for the rise must be delayed to well beyond cluster scale
to accommodate the observations of the drop from a
power law in £,, as inferred from the angular correlation
function of galaxies.® ! The plateau or mountain can-
not be too high or else intermediate angle AT /T con-
straints are violated.>>* The normalization of these mod-
els and of the standard biased CDM model is given by the
biasing factor b,=1.44, at the lower limit of the range
required to make the CDM model compatible with Q=1.

The spectra have one overall normalization constant.
It is conventionally parametrized by the biasing factor
b 0 determined by relating mass fluctuations AM /M eval-
uvated assuming linear theory to fluctuations in the num-
ber of galaxies AN,/N,, suitably averaged over some
large scale r. More precisely, we use “J; normaliza-

tion”’ .30

AN on
<_§Aﬂ(<r)§2(o)>5_l__< g (<,.)___g(0)>
P N, n
1

M

The normalization for the scale-invariant spectrum is, for
the CDM model,

PY*=10"%/b,, . (2.5)
As mentioned in the Introduction, b o is currently not yet
well determined by the model, and could be anywhere in
the range ~1.4-2.5. The normalization for the hot
dark-matter (massive neutrino-dominated) model shown
in Fig. 1 is essentially identical, except that bp <0.5, the
lower value being required to ensure galaxy formation
occurs sufficiently early. (This model can be ruled out by
small-angle CMB constraints, >!"3?)

Large-angle CMB anisotropy experiments strongly
constrain allowed extra power models. For example, in
universes with Q=0 =1, for any spectrum which is
scale invariant for k !> 300 h‘lMpc, the resolution
scale of the RELICT experiment, the constraint on how
large & can be is quite stringent:2>24

P2 <107*5, 95% confidence limit . (2.6)

In the plateau case shown in Fig. 1, to which this limit
applies, the Py(k) spectrum rises from P}?=10"*/b, at
short distances to 732/2z 10'3/bp, therefore violating
(2.6). Having a lower amplitude plateau could alleviate
this problem, but at the expense of a drop in & . beyond
~50 h™!'Mpc (where the data cannot be believed any-
way). These phenomenological spectra can be obtained
by a finely tuned fluctuation generation mechanism which
imprints the scale k' in the initial spectrum 25 , as dis-
cussed in Secs. VIB and VIC. For the mountain case,
P}/?~107°/b,, is approximately the peak value we would
be shooting for. The large-angle CMB constraints are at
present not as strong for mountain spectra, and indeed
there is a reported observation®® of anisotropy on inter-
mediate angular scales, probing the spectral region
around k ~'~300 h ™ 'Mpc.
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A more conservative approach is to relate k, ' to
known physical scales that are imprinted upon the
transfer function 7' (k) from evolutionary effects. Since
T (k) must fall below its small-k value of unity, such
spectra must be of the plateau variety. Therefore we may
expect it to be difficult to avoid excessive large-angle
CMB anisotropies in such models. Further, it is unlike-
1y'° that any T (k) modification can give both the spectral
drop beyond cluster scale required to reproduce the &,
data and the rise to push up the large-scale amplitude of
gcc‘

To illustrate the problems, consider the effects of vary-
ing the baryon and vacuum energy contents of the
Universe on T(k). A reasonable variant of the CDM
model would be one with the baryon abundance increased
to the limit imposed by primordial nucleosynthesis con-
straints, Q3 ~0.2 (Yang et al.’*). However, only larger
variations which violate the nucleosynthesis constraint,
Qp~0.5 give significant large-scale structure in 7 (k).
An extreme example of adding a large vacuum energy
(©Q,,,=0.8 and ©,.=0.2) and also increasing the Q5 /Qy
ratio to 1 is shown in Fig. 1. Although the features in
‘PQ,H do give ample large-scale power, the price is viola-
tion of small angle microwave background anisotropies,’
a low redshift of galaxy formation, and, of course, un-
palatable assumptions. Further, although this model
does give an adequate £, it does not give'® the break in-
ferred observationally for &,,, the problem mentioned
above.

Another conservative approach is to assume the initial
perturbations are isocurvature (7)(“?;1:0)’ with fluctua-

tions in some component of the matter which eventually
is an important contributor to the mass density. Exam-
ples are isocurvature baryon perturbations, in which fluc-
tuations in the baryon density are compensated initially
by opposite fluctuations in the rest of the relativistic plas-
ma present, ensuring that the net comoving density per-
turbation vanishes. In this case, the initial perturbations
are characterized by the power spectrum

3 2
73(1‘):__k_< >c<k3+”i )

"B g2

Sng

(k) (2.7)

np

Similarly, in CDM models there can be isocurvature ax-
ion perturbations,?® with a perturbed axion mass density
initially opposed by energy fluctuations in the quark-
gluon plasma. The relevant initial power spectrum to be
specified is ‘Pﬁ,‘j{. Any pseudo-Goldstone boson candidate

which attains a nonzero mass in the post-inflation era
may give such perturbations. The transfer function relat-
ing initial to final spectra now has 7 (k)=1 on short
scales, before the perturbed baryons or axions begin to
dominate the density, dropping as k2 on large scales once
they do.

Initially scale-invariant isocurvature perturbations
have an initial spectral index »n; = —3. In this case, both
isocurvature axion and baryon perturbations can be con-
vincingly ruled out since they violate large-angle CMB
anisotropy constraints if their amplitude is large enough
to generate structure on smaller scales.*®> For such
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models to be viable, scale invariance must therefore be
broken. A plateau variation would not be viable since it
would give worse CMB anisotropy problems. A moun-
tain variation could avoid this difficulty only if its ampli-
tude plunged below the short-distance value, somewhere
beyond cluster scale. However, one difficulty with such
models is that the redshift of galaxy formation is uncom-
fortably low.>>

Another possibility is an initial power-law slope steeper
than scale invariant over some range in k-space; with
n; > —2, the falloff in power at large scales is great
enough to satisfy the CMB limits. Of course, power laws
with n; < —3 strongly violate CMB limits. For steeper
n;, the relative amplitude between galaxy and cluster
scales is increased, alleviating the problem of the redshift
of galaxy formation. Extra large-scale power can be ob-
tained by including vacuum energy. For example, Pee-
bles,>®* %0 has recently advocated considering isocurva-
ture baryon fluctuations with an arbitrary power-law ini-
tial spectrum of fluctuations in the entropy-per-baryon in
open universe models with 3 ~0.2, saturating the pri-
mordial nucleosynthesis limit. With n ~ — 1, this was the
preferred phenomenological spectrum of the 1970s (Gott
and Rees*’. The transfer function for such universes nat-
urally imprints large-scale features of the desired form.
This is illustrated by the Q; =0.4, n;, = —1 model in Fig.
1; the spectrum has many similarities to the phenomeno-
logical mountain model of Fig. 1. Provided the Universe
remained ionized, the small-angle temperature anisotro-
pies in these isocurvature models can be below current
limits.>*37 To be compatible with the flatness predicted
by inflation, we must assume Q,,.=1—Qz, which lowers
the anisotropies even further.

Nonscale-invariant power laws for adiabatic perturba-
tions are more difficult to constrain. Spectra shallower
than n =1 have more large-scale power. Provided n; R0,
they cannot be ruled out by large-angle CMB con-
straints.*> On the other hand, without violating these
constraints the extra large-scale power required by &, is
not possible. The plunge beyond cluster scale to give the
&g break would also not occur.'® Further, the redshift of
galaxy formation becomes uncomfortably low.

III. LAGRANGIANS FOR INFLATIONARY MODELS

A. General Lagrangian

In this section, we analyze an action which describes a
large variety of inflationary models, with N scalar fields,
¢y, self-interacting through an effective potential V(¢,),
and interacting with gravity via a f (¢, )R term:

S=fd4x\/——g[f(¢k )R —1T(¢, )g#"9,,4:0,9;
—V(g)].

For generality, we have also allowed the kinetic matrix
T é,) to be arbitrary.

Fermions and gauge bosons are not included in Eq.
(3.1) since they only have influence on the effective poten-
tial and during the reheating phase of inflation models. If
fermions have a conserved current associated with their

(3.1
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number, the number density will decline <a ~* during
inflation. Gauge fields can be produced classically only if
charged sources are present, but the density of these will
have exponentially declined. Further, gauge fields are
conformally invariant in four dimensions; consequently,
p<F,F.g"g B g 74, implying that any initial energy
density in gauge fields will decay just like ordinary radia-
tion. (Note that if conformal invariance is broken then
the above conclusions are not valid. See Turner et al.,*
who try to produce primordial magnetic fields by includ-
ing nongauge invariant terms such as R4, 4%.)

One-loop quantum corrections to gravity generate a
term quadratic in the Ricci scalar bR? with b a dimen-
sionless constant. If we naively choose b~ 1, then the
corrections to our models will be exceedingly small, of
the order H?/m2~10"'°. For the opposite case, b >>1,
see Kofman, Linde, and Starobinsky* and Sec. VII A 4.

The action (3.1) contains the essential elements neces-
sary to produce viable models of density fluctuations. It
encompasses:

(1) New and chaotic inflation. These require only a sin-
gle scalar field, N =1. The coefficient of the kinetic ener-
gy is normalized to unity, T'=1, and the interaction with
gravity is minimal, i.e., f(¢)=m3/(167). The potential
for new inflation is conventionally taken to be of the
Coleman-Weinberg form (Sec. VI A)

25
25677

Vig)= gélo*/2+¢In(¢?/0?)—0.5]} , (3.2)
which arises from one-loop gauge-boson corrections to
A¢*/4. [In this case, the single scalar ¢ is interpreted as
the component of the Higgs field in the SU(3)
X SU(2) X SU(1) direction. The normalization convention
is given in Appendix B.]

The chaotic inflation potential is unrestricted, except
that it must be very flat for ¢ > m; it is usually assumed
to have a quartic and possibly quadratic piece:

A m? 2
V($) 4¢ + 3 ¢ . (3.3)
The generalization to multiple scalar fields (Secs. VIB
and VIC) is a natural one.

(2) The Brans-Dicke scalar, the dilaton, and induced
gravity. If N=1, T¥%¢,)=1, V(¢,)=0, and
f (¢ )=—EP?/2, where £ is the curvature coupling con-
stant, then ¢ is related to the Brans-Dicke* scalar ggp, by
@pp = —87EP?; the Brans-Dicke coupling constant is just
w=—1/(4€). This theory has a history dating back to
Jordan,*® and plays an important role in supersymmetry
and superstrings,?” where ¢ is called the dilaton. If one
assumes instead a  potential of the form
V($)=Mp?>—0?)?/4, then the Planck mass is generated
through symmetry breaking,

mp

167

=flo), (3.4)
in the same way that the Higgs field generates the weak-
boson mass. The extensive literature on this subject is re-
viewed by Adler.*® We consider these models in Sec. VII.

(3) The nonlinear sigma model. An example of a
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theory with a nontrivial kinetic matrix T%(¢, )78" is the
nonlinear sigma model, in which the transformation of
T(¢,) under redefinition of fields is

- y d¢; 9¢;

i'j' — rij —_ T

T T(¢k)8¢,~. 36,

just like a rank-2 tensor. To ensure parametrization in-
variance of the quantum fields, the potential ¥ (¢;) must
vanish. By itself, the nonlinear sigma model is not of par-
ticular interest for inflation since the pressure equals the
density. To obtain inflation, one must have a nonzero po-
tential. It is possible that these may be generated by
quantum corrections. A more interesting possibility for
inflation models is the appearance of a nontrivial kinetic
matrix, T%(¢, )8, which occurs for nonminimally cou-
pled fields when the conformal transformation discussed
in Sec. III B is performed. With T"(¢, 8", the normal-
ization of scalar field quantum fluctuations is altered, as
we demonstrate in Appendix A.

B. Conformal transformation of the Lagrangian

The form of the action (3.1) is very inconvenient for
studying density fluctuations in theories with non-
minimally coupled scalar fields. For example, the stress-
energy tensor contains many additional terms beyond the
£=0 case* and the analysis is difficult. More important-
ly, in any quantum treatment we wish our action to be a
function only of first derivatives in order to define field
momenta, e.g., P =565 /8¢, so we can impose the equal-
time commutation relations, e.g., [¢(x,2),P(x',1)]
=;83(x —x'); similarly we would introduce momentum
for the gravitational field. However, R contains second
derivatives of metric terms, and consequently f(¢;)R
must be integrated by parts, producing derivatives in ¢,.
The details are presented in Appendix A. The main point

is that the standard commutator [¢(x,?),0¢(x’,t)/0t]

=jg ~383(x —x') used in the normalization of scalar field
fluctuations (Sec. V) is no longer valid. With the commu-
tator given by Eq. (A2) of Appendix A, we can treat both
small- and large-£ couplings unlike Acceta, Zoller,
Turner,?? and Lucchin, Mataresse, and Pollock,>® whose
results are valid only for small £, the regime they were
primarily interested in.

A more elegant approach to deal with the troublesome
f(d,) term is to perform a conformal transformation
g#“,,g: nguv’ where Qz=(m,%/1677 )f 7. Using the identi-
ty

R(Q%,,)=Q7’R(g,,)—6Q7g"Q,,, , (3.5)

where the covariant derivative is taken with respect to
g,., and integrating by parts, the action (3.1) becomes

S= fd4x\/_—_'g- R—1KU¢; )8 #"9,4,0,¢;

mp
16

—U(gy) (3.6)

Here,
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F
= - — 1~
8= | Tom |/ B> (3.7a)
R=R&u) (3.7b)
2
' Mmp | 2|, 0f df y
ij — 2 of of i
K'Y (¢,) 167 f 3a¢i a¢j +fTY(¢,) |, (3.7¢)
2 2
_ | M _
U= 16, | / Vi) (3.7d)

The result is therefore the normal Einstein action in the
new metric g,,, plus minimally coupled scalars interact-
ing through a modified potential, which now have a more
complicated kinetic matrix. The field equations following
from the action (3.6) are much easier to deal with than
those derived from (3.1).

The physical meaning of this transformation was given
by Brans and Dicke.*> In the Brans-Dicke theory, the
Planck mass is taken to be a function of spacetime coor-
dinates through the scalar fields, m3.;=167f (¢;), as in
Eq. (3.1). The conformal transformation (3.7a) is just a
position-dependent change of units, arranged to make the
coefficient of R in (3.6) constant. The potential and kinet-
ic energies also change units, and, because of the position
dependence, an extra term also appears in the kinetic ma-
trix (3.7¢c).

IV. EQUATIONS

In Sec. IVA we discuss the general features of our
treatment of the action (3.6) to first-order perturbation
theory. We write the scalar fields, é;, J=1,...,N, as
the sum of a spatially homogeneous background field [ﬁj
and a first-order perturbation, 8¢;. The scalar fields are
assumed to interact through the effective potential (3.7d),
U(dy,...,¢y) and a flat kinetic matrix, K¢, )=8Y,
dissipate into radiation through a phenomenological fric-
tion law, and couple to scalar perturbations of the
transformed gravitational metric g,, which obeys regular
Einsteinian gravity. In Sec. IV B we present the actual
equations we solve and in Sec. V the initial conditions for
the fluctuation generation problem. Most of these initial
conditions are set by quantum conditions. We are free
only to choose the initial background values ¢;(z;).

A. Perturbation theory of quantum fluctuations

Expanding to linear order in perturbation theory, we
have ¢j(x,t)5¢j(t)+8¢j(x,t), j=1,...,N, for the N
scalar fields and g,,(x,t)=a*(#)[7,,+h,,(x,1)], where
a(t) is the expansion factor of the Universe, Ny is the
background metric, and 4 Mv(x,t) is the metric perturba-
tion. A flat background has been assumed. This will be
adequate for our calculations of the fluctuation spectrum
provided the scale of curvature is inflated far outside the
current Hubble length, the conventional assumption in
inflation models. We assume a perfect-fluid stress-energy
tensor to describe the other matter present:
T=p,+8p,, Tio=—(p,+P,w', Ti=8l(P,+5P,),



1760

where we take P,=p, /3, appropriate for a tightly cou-
pled relativistic fluid. The form of the dissipative cou-
pling describing the damping of the scalar field into radi-
ation is discussed in Sec. IVB. [We adopt the
diag(—, +,+,+) form for n and Misner, Thorne, and
Wheeler®! sign conventions. We also take #i=c =1, and
define the Planck mass by G =m %, so mp=1.221X 10"
GeV.]

We assume that $j and a are classical homogeneous
“background” fields, ignoring their quantum nature (see
below). The perturbations to the scalar fields and the
metric coefficients are treated as quantum (Heisenberg)
operators; they can be expanded in terms of normal
modes labeled by comoving wave vectors k:

3
56,(x,0=3 [ 4K

ooy [8¢;(k,s,1)e’*™
T

+ —ikx
+8¢)(k,s,1)e %], (4.1a)
d’k ke
Pl 0= 3 1 Ut e
+h),(ks,0e 3] (4.1b)

Here ¢’®* are spatial eigenfunctions of ¥’V? for the flat
background which we adopt. The eigenfunctions are
much more complicated if the background is taken to be
closed or open (see Bardeen®’ and Halliwell and Hawk-
ing®? for recent discussions). The additional index s is re-
quired to specify the modes, for example, labeling wheth-
er the perturbations are scalar, vector, or tensor. In this
paper we only treat scalar modes. The other modes are
independent of the scalar modes and the vector modes
decay rapidly. The tensor modes (gravitational waves)
are generated quantum mechanically, but the tensor part
of h,, is totally decoupled from the perturbations of the
scalar fields.’>%%32

The scalar models are associated with dynamical oscil-
lations of the scalar fields and the fluid. The quantum
generation of sound waves (phonons) has been considered
by Lukash®® and by Chibisov and Mukhanov®® in the
context of perfect-fluid cosmological models, but here
any radiation present when Fourier modes of astrophysi-
cal interest leave the horizon is diluted by the inflationary
expansion. The reheating of the Universe following
inflation completely swamps any primordial phonons,
and the fluid perturbations in the Friedmann epoch
evolve out of primordial scalar field fluctuations.

Therefore, we suppress the index s and consider as the
independent annihilation operators the 8¢;(k,?) for the
Fourier modes of the scalar field. If there is just one sca-
lar field, the quantum operators 8¢(k,?) and 8¢T(k,t) are
related to the conventionally normalized annihilation and
creation operators for the modes of wave vector k, a(k),
and a'(k), by
8¢(k,t)=1(k,t)a(k) and 8¢'=vy*(k,0)a’(k), (4.10)

where ¥(k,?) is the mode function, a complex solution of
the classical mode evolution equations. For multiple
fields the picture is slightly more complicated. Since
there are N scalar fields, there are an equal number of an-
nihilation operators, a;(k), j=1,N, which satisfy the
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commutation relations
[a;(k),a](k")]=(27)%8,8%(k—k') , (4.1d)
with all others vanishing. In general,
8¢j(k,t)=2¢j,(k,i)a,(k) (4.1e)
1

is a sum over the annihilation operators for all of the
fields and not just the jth one; the single mode function is
now replaced by ¥, the mode function matrix. The
reason for this complication is that the mass-squared ma-
trix

mj=9"U /3¢;d¢, (4.1f)
need not be diagonal, leading to mixing of the various an-
nihilation operators within the perturbation equations
[(4.7¢)-(4.7f) below]. Even if it were diagonal, metric
perturbations would cause a small amount of mixing.

In a classical treatment, a,(k) would be a complex ran-
dom variable having a probability distribution to describe
the initial occupation of the mode, and a,T(k) would be its
complex conjugate. Once the k-mode content of the
Universe is specified, it is fixed for all time until mode-
mode coupling occurs.

To determine the evolution of the operators (random
fields) 8¢;(k,t), we need only solve the classical mode
evolution equations. Our calculations are self-consistent
quantum mechanically only if 6¢;(k,?) and &, (k,?) are
both treated as quantum operators (random fields), since
they are coupled to one another. (The gravitational po-
tentials we actually solve for involve combinations of the
metric perturbations and their derivatives as described in
Sec. IVB.) Ignoring the quantum aspects of the back-
ground fields ¢ ; and a does not introduce a mismatch be-
tween classical and quantum variables. This approach of
taking 6¢; and h,, as quantum fields defined upon a
background manifold is similar to treating the graviton as
a spin-2 field upon a Minkowski background.

The initial quantum state |W(¢;)) is all that is required
within our formalism to determine the full evolution of
the state. For pure states, it can be expressed as a super-
position of states |{n(k)}) having different occupation
numbers for the modes. In some cases, it would be more
appropriate to consider a mixed state described by a den-
sity matrix with a distribution (e.g., thermal) character-
ized by an energy scale T; (e.g., a temperature). The usu-
al assumption in inflation calculations is that |W¥(¢;)) is
the Bunch-Davies vacuum of de Sitter space which has
none of the modes occupied: a(k)|¥)=0. If the distri-
bution is similar to the thermal form, modes within our
current Hubble length have k/a >>T; and therefore
essentially zero occupation number. Lower k scales with
nonzero occupation would be inflated outside of our
current horizon. Since the length scales within our hor-
izon were smaller than the Planck length before inflation
and the linear perturbation approximation breaks down
when the wavelengths are very small compared with the
horizon, such arguments can only be regarded as sugges-
tive. In this paper, we assume the initial state has zero
occupation number. The fluctuations are then purely
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zero-point oscillations of the perturbation fields in the
flat background spacetime. The wave functional
V[8¢;(x,t),h,,(x,1)] is then Gaussian, and can be written
as a product of independent multivariate Gaussians, one
for each of the k-modes. For example, for one scalar, the
probability amplitude for the k-mode field is Gaussian
with dispersion equal to the classical value |¥(k,?)|?, the
power spectrum of the field. As in Sec. II, we use the
power per logarithm of wave number 7, to characterize
the power spectrum. It is related to the equal-time two-
point function of the field by

k3 3. —ikx
p¢zﬁfd X e (W|8¢4(x)84(0)|W)

3
-_——k~2|1/f|2 . (4.2a)
For multiple fields, the generalization is

p K3 3 —ikex
[JMEEZId x e TRI(W|8¢,(x)56,(0)| W)

k3
= pye) % Yim ¥l » (4.2b)
which is not necessarily diagonal.

To solve the full quantum gravity plus scalar field
problem quantum mechanically is, of course, beyond the
scope of current theory. The formal treatment within the
context of quantum gravity is to solve the Wheeler-
DeWitt equation for the wave functional Y[¢,,a, 8¢;,hyl,
treating ¢ ; and a as quantum fields. At best this can be
done with the equations linearized, with no back action
of the fluctuations on the background fields included
(Fischler, Ratra, and Susskind,”’ Halliwell and Hawk-
ing.’?) Halliwell and Hawking consider a massive scalar
field and the initial quantum conditions are specified by
the Hartle-Hawking®® ansatz for the form of the wave
function of the Universe. The equations for the fluctua-
tions when cast into the Heisenberg framework are simi-
lar to ours for chaotic inflation with a massive nonin-
teracting scalar field potential, given that the Universe is
at a specific time fixed by requiring the volume (or a) to
have some definite value. With their ansatz, inflation is
shown to be a natural outcome of the quantum behavior
in the ¢-a sector. The mass in their case must still be
chosen small enough to ensure enough e-foldings of ex-
pansion.

The inclusion of dissipation of the scalars into matter
destroys the simplicity of the quantum analysis, since
even the background scalar field with no momentum con-
tent will decay into particles with high momenta which
depend upon ¢’s temporal frequency content. However,
these momenta are large compared with the momenta k
of the modes we are following, so it is an adequate ap-
proximation to treat the creation of high-momentum
modes in a phenomenological manner, and yet still treat
the low-momentum modes we are concerned with quan-
tum mechanically. The k-modes for the density fluctua-
tions in the radiation are then analogous to long-
wavelength phonons, while the high-frequency fluctua-
tions form a ‘“thermal” bath. We will therefore expand

the radiation energy density fluctuation and the radiation
momentum density potential (p+P),v, in terms of the
annihilation and creation operators (IV B). It proves
more tractable numerically to use instead the total energy
density fluctuation 8p and the total momentum density
potential ¥, defined by V=3 V¥, =—a3,(p+P);v,,
where the sum is over the scalar fields and the radiation;
expanding in terms of a Fourier integral, we have

—f 3[zsp(k De®*+8p'(k,1)e ~**], (4.3a)

(4.3b)

_r d% ikx 1t —ikex
Y= W(k, e **+wi(k,1) ,
f(27r)3[ e nle ¢

where once again 8p and 1 are quantum operators.

B. Perturbation equations

We must choose a gauge, the spacelike hypersurfaces
upon which to measure the fluctuations, and the specific
combination of variables to solve for. The primary cri-
terion used for this choice should be suitable for accurate
and simple calculations, whether the computations are to
be done numerically, as in our case, or analytically, the
approach taken by most authors to fluctuation genera-
tion. We present equations for two gauge choices, one
the venerable synchronous gauge that has been so widely
used in perturbation theory in the expanding universe,
beginning with the classic work of Lifshitz,> and the oth-
er, the longitudinal gauge. The choice of metric variables
used in the synchronous gauge is rather novel.?®

Although the general kinetic matrix K%(¢,) intro-
duced in Eq. (3.7c) need not be the identity, in this paper
we assume it is K(¢, )=8"Y. If N =1, the fields may al-
ways be redefined so this is true (Sec. VII). Varying the
action (3.6), we find the following equation of motion for
the scalar fields ¢;:

-1 3 ATV —g,0,)+3U($) /3, +J,=0 ,

V=g

(4.4a)
J;=T;¢;, é;,=sgn(é;)d,4;0"¢,|'*, (4.4b)
L,=fM | (4.4¢)

The interaction term J; in Eq. (4.4a) representing the
coupling of the scalars to matter is generally extremely
complicated. We adopt the phenomenological friction
form Eq. (4.4b) for J;. The time derivative here must be
defined covariantly as indicated; sgn(é ) ;) denotes the sign
of the time derivative which is an invariant for any coor-
dinate time ¢ (as long as d,¢; is timelike). In working in
gauges with hy 70, there are linear-order perturbative
corrections to ¢; ; as deﬁned here which cannot be ignored
(cf. Den and Tomita®® who do neglect the extra term).
The dissipation time scale l“j_1 is parametrized in Eq.
(4.4c) by a dimensionless friction coefficient f; and an en-
ergy M;, which we take to be ¢, itself for a GUT inflation
model and the scalars’ masses for chaotic inflation mod-
els.
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The equations of motion for the matter must guarantee
that the energy and momentum dissipated from the sca-
lar field end up in the radiation; i.e., the total stress-
energy tensor must be covariantly conserved. It can be
numerically advantageous to avoid following the details
of this energy-momentum transfer, and use as variables in
place of the radiation energy density and radiation
momentum density the total energy density perturbation
Sp and the total momentum current potential ¥. In fact,
we have found it desirable to go further and replace 5p by

8Pcoms

80com=06p—3HY, H=da/a . (4.5)

Note that 8p.,, is a gauge-invariant variable which be-
comes the energy density perturbation in the comoving
gauge, defined by ¥=0.

The complete set of equations we must solve consists of
the zeroth- and first-order versions of Eq. (4.4a) for the
scalar field, the equations V-7 =0, and the Einstein equa-
tions for the gravitational field. The zeroth-order back-
ground equations are

da /dt =(87Ga’p/3)'?, p= S ps, e (4.6a)
J
p¢j=%$2+U(¢), p¢j=%$2——U(¢) (4.6b)
d?¢,;/dt*+3Hd,;/dt +3U($)/3¢,;+T,;6,=0,  (4.60)
| da* pr
pr = 2 r;62. (4.6d)

In the synchronous gauge, hy,=h,; =0. This does not
fix the gauge until the initial hypersurface and spatial
coordinates in the initial hypersurface are specified. For
scalar perturbations, the perturbation in the spatial part
of the metric can be written in terms of two functions ¢
and y: h;=2@d;+2y ;. While y changes under a spa-
tial gauge transformatlon v and @ are spatially gauge in-
variant. The nontrivial gauge transformations are time
gauge transformations, which affect both ¢ and y. If we
decompose the perturbation into independent modes
characterized by the wave number k, and choose the k
axis to be the three-axis, then ¢@=(h —h;)/4,
y=k X h —3h;;)/4, and the scalar three-curvature of
the constant time hypersurfaces is a’R=4k%p. The ex-
trinsic curvature is ;= —h;;/2. For scalar perturba-
tions there is no intrinsic dynamics of the gravitational
field and the 8G§ and 8G) constraint equations suffice to

determine the metric perturbations. Only ¢ and
K= —h /2 enter the matter equations of motion and are
given by
p=47GVY , (4.7a)
k=—h/2=[(k*/a’)p—4nGSp]/H . (4.7b)

In most previous numerical work utilizing the synchro-
nous gauge, the “dynamical” 8R equation was integrat-
ed to find «. For the particular case of scalar fields plus
tightly coupled radiation, ¢ does not enter the equations
at all. However, the conventional approach can lead to
numerical difficulties. The advantages of using Eq. (4.7b)
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for k are discussed more fully in Bardeen.?’

The equations for overall conservation of energy and
momentum, after eliminating « with Eq. (4.7b) and 6p in
favor of 8p ., are

8pcom= —3H[1+3(1+p/p)18pcom
k2/a®)[H Yp+plp+¥], 4.7¢)
V=—3HV—8p , (4.7d)
op :";‘SPcom+H\P+% E ‘¢18¢1 —2 a¢ 8¢1 (4.7e)
j

The advantage of using 8p_,, is that over much of the
evolution 8p ., <<8p,3HY. The perturbation in the sca-
lar field obeys

¢f+(3H+r) ¢’+(k2/ 5¢1+2a¢ 86,
j

dt* 9%,

—k$;+¢,6T,=0. 4.7

Equations (4.7) are the full set of synchronous gauge
equations cast in the form in which we solve them.

The stress-energy perturbations for the scalar fields and
the explicit expression for the comoving density perturba-
tion are

o, oU(¢)
=30, +23, 80,
__$]6¢j ’

= . aU(4)

¢ :¢j8¢j__—#8¢j ,

8pcom= 2, $j8¢;j+3H$j8¢j+a 8¢;

j ¢;
+(8p,—3HVY,) .

The synchronous gauge provides a valid description until
coordinate singularities arise, that is, until pancake for-
mation first occurs, a phenomenon that will be delayed
until the fluctuations enter the horizon for the second
time, just before the epoch of galaxy formation.

The gauge-invariant variable ®4 of Sec. II was intro-
duced by Bardeen?’ to give a useful generalization in the
cosmological setting of a perturbed Newtonian gravita-
tional potential. @y satisfies a Poisson-Newton equation
with source the comoving density perturbation:

&, =k *41Ga’Sp.o, - (4.8a)

@, remains constant outside the horizon in the
radiation-dominated phase. In the longitudinal gauge,?’
the metrlc perturbation is diagonal: h;=2®48;,
hoo/a*= —2® ,; if there is no anisotropic stress as in the
case treated here, ® , = —®y. The perturbations in this
gauge take the simple form (see also Sasaki® and cf. Den
and Tomita®)
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2
8¢, +(3H +T)8¢,,;+(k*/a®)8¢;+ 3 8—23%8%
i ae

+$j8rLj= g: +¢J i |Pa— 4¢1®H , (4.8b)
. . 2
b, +5Hb,+ |2+ 3270 g
Imp
8 = .
2 2 a¢ 8¢L_[ ¢18¢Lj (4.8¢)
P J

The transformation of the scalar field perturbation from
the longitudinal gauge to the synchronous one is

8¢ =86, —2a%k ~Ak+39)4; . (4.8d)

Equations (4.7) and (4.8) are quantum operator equa-
tions. To reduce to the complex-valued equations which
we solve numerically, we expand 8¢;(k, ) in terms of the
N annihilation operators according to Eq. (4.le), and
similarly for the remaining variables:

8pcomk, )= ri(k,t)a;(k) ,
’ (4.92)
‘P(k,t)z Zy,(k,t)aI(k) y
I
K= ZK, (k,t)a;(k sz(k t)a,(k (4.9b)
8= 3 G;(k,t)a (k) . (4.9¢)
- ,

Note that extra creation operators for the metric pertur-
bations and the matter perturbation are not required be-
cause these fields are given directly in terms of the N sca-
lar fields through Egs. (4.7).

We have solved these equations numerically both in
both synchronous and longitudinal gauges; both are satis-
factory for accurate computations of fluctuation genera-
tion. As an explicit illustration of the equations we solve,
the N operator equatlons (4.7f) now become N? complex
equations or 2N ? real equations:

d%s
a8y, ddyy
+(3H + 2/a*)sy;
i ) — -+ (k2 /a5y
+3 20U sy —3K +566,=0. @10
; a¢]a¢l 1ﬁil ¢j ! ¢j j (4.10)
If we fix /, we may think of ¢; and Gy, j=1,...,N as

vectors, r;,K;,7;, as scalars; these variables satisfy Egs.
(4.7a)-(4.7f), now interpreted as complex -valued equa-
tions, subject to the initial conditions given in Sec. V.
Numerically, this set of equations must be solved N
times, once for each /, in order to describe the full dy-
namics of the quantum system.

As we mentioned in Sec. II, § defined in terms of @y
by Eq. (2.2) is an extremely useful variable for us to moni-
tor in our calculations. It is related to the synchronous
gauge variables @, the scalar three-curvature, and 8p, the
density fluctuation, by

§=3¢+8p/(p+p) . 4.11)

C. Connecting with the present length scale

The integration of the equations of motion is terminat-
ed as soon as the Universe becomes radiation dominated.
In practice, we stop the calculations when p, < 10 3pi0rs
and we then determine the end temperature T, from the
simple thermodynamics of relativistic particles:

)

Po=8 e 0 T (4.12)

The effective number of degrees of freedom at tempera-
ture T expressed in terms of the number of bosonic and
fermionic degrees of freedom gz and g is

=gy(T)+1gp(T) . (4.13)

geﬂ( T)

In this paper, we use the minimal SU(5) value,
8. =160.75, although other GUT models would give
higher values. T, should not be confused with the reheat
temperature, T ,.,, which is defined as the maximum tem-
perature attained during reheating; both, of course, are of
the same order of magnitude. In order to link scales of
the inflationary phase with those of the present epoch, we
must determine the expansion factor, a,/a,, in the
radiation- and matter-dominated eras. Assuming conser-
vation of the entropy in relativistic particles per comov-
ing volume,

s,=%a’p/T,
we have

a’g.s(T,)T2=10.75T3a}

=(2T3,+4T)aj . 4.14)
We have assumed that there is no entropy generation be-
tween neutrino decoupling at 7T ~1 MeV, when
g.7=10.75 for 6 neutrino degrees of freedom, and the
present, so the relation between the neutrino temperature
and the observed photon temperature is the conventional
T,=(#)"T,,. We take T,,=2.7K. The number of
e-foldings from the end of our computation to the present
is then
N,=In(ay/a,)
=72.58328+In(T,/mp)+1In(gz) . (4.15)

For convenience we set the present value of the scale fac-
tor a, to unity. Thus physical and comoving length

scales coincide at the present epoch: k;,},;s
=ay,k “!=k !. The value of the scale factor at the end

__NE

of inflation is then e . To solve the horizon problem,
the initial values of the background fields, ¢;(z;), must be
chosen so that the physical scale starts well within the
Hubble radius, k /a (t;)>>H (t;) or equivalently the num-
ber of e-foldings during inflation, N; must exceed
In(H/k)—N,. One can then prescribe the initial values
of the perturbation equations (Sec. V). Typically, N;~60
for kK ~'=5000 h ™~ 'Mpc.
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V. INITIAL CONDITIONS INSIDE THE HORIZON

The calculations of the mode functions are begun when
(1) the background scalar fields are in their slow-rolldown
phase and (2) the waves are well inside the horizon
[k /(Ha)~50]. Given the initial values ¢;(z;), ¢;(t;) is
uniquely determined by (1), aj(t,-)z —(3H+I“j)718U/
9 ;.

<7Ve first consider the case of a single scalar field. Using
the commutation relation [6(x,2),00(x’,1) /0t]
=ia "3(1)8%(x—x’) to set the overall amplitude we find
that Eq. (4.7f) or (4.8b) has the WKB solution

S¢(k,t)=1y(k,t)a(k) , (5.1a)
exp [-—ikfdt/a]
k,t)=
w( (2k)1/2a
for k/Ha >>1,dH " '/dt,|m;|/H , (5.1b)
2 2
=|H | | L 12y o H
7)¢ 2 Ha ’ (7)4, )hor"’ o (5.10)

The influence of metric perturbations is only felt at
higher order in Ha /k in the 3 solution. The WKB solu-
tion for the metric perturbations f and K of Eq. (4.9b) are
given by

flk,t)= —4771'0%431/;(1(,:) , (5.2a)

K (k,t)=127iG $y(k,1) . (5.2b)

Note that f and K are then purely oscillatory and that
K =0. Equation (5.2b) explicitly illustrates that the
metric terms have no influence on ¢ [since
K (k, )¢ << (k /a)*P(k, 1)].

The initial conditions for our longitudinal gauge com-
putations are ¥, is still given by (5.1b), with the
difference between 1; and ¢ given by Eq. (4.8d) being of
higher order; @ is given by Eq. (4.8a) with the radiation
contribution neglected; ®, is given by

$y=—H®,—47G$d¢ . (5.2¢)

For all the calculations shown here, p, was also set
equal to zero initially. Whether we use Egs. (5.2a) and
(5.2b), or Eq. (5.2¢) or even assume that all metric pertur-
bations initially vanish, the results are essentially identi-
cal, differing by less than a part in a thousand.

In addition to the ‘“‘positive energy” WKB solutions
(5.1b), there are negative-energy solutions. We choose
the positive energy ones. The state with no mode occupa-
tion (a (k)|W)) is then the ground state. However, if the
expansion is highly dynamic, an initially positive-
frequency mode will generate negative-frequency com-
ponents; hence, different results could be obtained de-
pending upon precisely how far within the horizon we be-
gin the evolution. For the models treated here, this is not
a problem. Since (5.1b) gives complex initial conditions,
we must solve complex equations; the real and imaginary
parts are decoupled, but we must solve both sets of per-
turbation equations.
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The modifications of Eqgs. (5.1) and (5.2) required to
treat multiple scalar fields are straightforward. The
overall amplitude of the mode matrix ¢ is determined
by the equal-time commutation relations

[¢;(x,1),0¢,(x",1) /3t]=ia >(1)8,8%(x~x') .

Substituting into Eq. (4.1e) gives the normalization cri-
teria
=08 .

2a* 3 Im (5.3)

9«
¢jm(k,t)a¢1m (k,t)

Far within the horizon, the positive-energy WKB solu-
tions of (4.7f) or (4.8b) which obey (5.3) are

exp | ik [ di/a
1pﬂ: (2k)' g 51‘1
for k/Ha >>1,dH ~'/dt,|m;|/H . (5.4a)
The cross-correlation power spectrum (4.2b),
2 2
_ | H k
Py = o Ha 8 (5.4b)

demonstrates that the various scalar fields are initially
uncorrelated. Rotation to a different combination of the
fields will not change this. However, once horizon cross-
ing is approached, nondiagonal terms in the mass matrix,
m 1-21#:0, will lead to nonzero ¥/;; when the metric terms
cease being oscillatory, we also have non-negligible ;.

The initial conditions for the synchronous metric mode
functions f; and «,; defined by Egs. (4.9) generalize Egs.
(5.2a) and (5.2b) to

Filk,0)=—4miG - 3 bk, 0) (5.52)
J

K (k,0)=12miG 3 ;9 (k,1) . (5.5b)
J

Longitudinal initial metric perturbations are given by Eq.
(4.8a) and

Cy=—H®,—41G 3 $;8¢; . (5.5¢)
J

Translation to appropriate mode functions is obvious.

VI. CALCULATIONS OF INFLATION SPECTRA

In this section, we present numerical calculations of
fluctuation evolution for various inflationary models.
Since there is no definitive particle-physics model for the
form of the potential V of Eq. (3.1) and the dissipation
term, Eq. (4.4b), they are at our disposal. We primarily
choose examples with quartic potentials—formally re-
quired to ensure renormalizability of the scalar field
theory. More general phenomenological potentials are
discussed in Sec. VID. For illustration, we consider two
cases for V' (¢) in Sec. VIA: a Coleman-Weinberg poten-
tial and a typical chaotic inflation potential. The parame-
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ters defining the potential, the dissipation term and ¢;(¢;)
are chosen to satisfy the basic requirements for “success-
ful” inflation: (1) At least 60 e-foldings of expansion in
addition to the ~ 60 e-foldings that occur in the standard
radiation-dominated phase of the big bang to ensure that
flatness, isotropy, and homogeneity are obtained. (2)
Fluctuations in the gravitational potential of order 10~°
arise to ensure that galaxy scale structure can form
without overgenerating anisotropies in the microwave
background. As is usual in inflation, obtaining (1) and (2)
impose severe restrictions on the flatness of the potential
V. To create features in the fluctuation spectrum at an
astrophysically interesting length scale imposes further
restrictions on our choice of parameters. Mechanisms
which can drive such features are explored in Sec. VIB in
the context of a simple single scalar field model by allow-
ing the Hubble parameter and effective mass to be time
dependent, which isolates the important physics of more
complex multiple scalar field models. Detailed numerical
calculations of chaotic inflation models with two scalar
fields are given in Sec. IV C. We show that, in addition to
the fine-tuning of the potential parameters required to
solve (1) and (2), the initial conditions of the background
fields must often be carefully chosen to place the features
in the fluctuation spectrum near the scale of rich clusters,
as in the phenomenological spectrum of Sec. II.

A. Standard inflation with one scalar field

1. New inflation

Before turning to the promising chaotic scenario, we il-
lustrate the use of our numerical techniques on the well-
studied standard new inflation model utilizing a GUT-
inspired Coleman-Weinberg potential, Eq. (3.2), for a
massless and minimally coupled scalar field. For the pur-
poses of this study, however, we may take the parameters
o, where the potential has its minimum, and g;, a mea-
sure of the interaction strength, as tunable, with values
guided by cosmological rather than particle-physics re-
quirements. V' (¢) has a relatively flat “slow rollover” re-
gion near the origin, followed by a fairly abrupt drop to a
well centered on ¢ =o0.

In Fig. 2 we show the 7,(k) fluctuation spectrum that
emerges in a GUT inflation scenario with a Coleman-
Weinberg (CW) potential. The small downward slope of
the CW potential during slow-rollover results in H de-
creasing slightly with expansion, giving the slightly small-
er fluctuations at high k than at low k. Some of the pa-
rameter choices are, of course, entirely nonstandard in
order that the density perturbations remain small; here,
the coupling of the scalar was taken to be
86 =5.4X10"* whereas the natural value is closer to 1,
which would give #}">~75 instead of the ~7X107°
value obtained in Fig. 2. The other parameter choices are
more conventional: o=1.2X10"" GeV, I'=0.05g20,
and g.»=160.75. The tiny coupling effectively requires
that ¢ be a gauge singlet. Some models have been pro-
posed to fit into a GUT framework a gauge singlet with
tiny g¢ utilizing supersymmetry, but none are very at-
tractive.%? A difficulty with such weak coupling is that T’
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FIG. 2. The P¢(k) fluctuation spectrum that arises in a GUT
inflation scenario with a Coleman-Weinberg potential is plotted
against k in Mpc™! for an & =0.5 model. The extremely weak
breaking of scale invariance (a factor of 3 drop over seven de-
cades) has a negligible effect on structure formation. The ampli-
tude of the spectrum depends mainly on the coupling strength,
which is chosen to be g =5.4X 1074, whereas the natural value
is close to % The relevant regime for galaxy formation and
clustering is indicated by the scales for clusters (cl) and for
galaxies (gal).

should also be tiny, necessitating low-temperature baryon
synthesis. In Sec. VII we are able to drop the small g
condition.

The background field ¢ shown in Fig. 3 begins at
3X 107 % to ensure sufficient e-foldings, and changes
very slowly until about 50 e-foldings after our current
Hubble length, ~10* Mpec, left the horizon. Once the
scalar nears the bottom of its potential, it only takes
about 1073 of a Hubble time for its vigorous oscillations
to have decayed into radiation. Of course, the tiny
choice of I' gives a small reheating temperature,
T, ~ 108 GeV. Also shown in Fig. 3 are the fluctua-
tions, 8¢, @y, and £ associated with the scale k ~! =5000
h~'Mpc. The amplitude 8¢ Hubble damps as 1/a(t),
Eq. (5.1b), within the horizon, and, upon crossing, freezes
out at the Hawking temperature, H /2. The negative
curvature of the Coleman-Weinberg potential causes 8¢
to grow by 11 orders of magnitude during the slow-
rollover regime. During this time, ®; is essentially zero
and only during reheating does it grow, reaching a value
of £/4.5 after a few e-foldings.

If only the magnitude of the adiabatic fluctuations is
desired for single-field inflation, the precise behavior dur-
ing reheating is unimportant, since the perturbation ¢
remains constant outside the horizon, even through
reheating, as Fig. 3 indicates. An accurate analytic re-
sult?® utilizing this constancy gives the amplitude of {(k)
for single scalar field inflation: ¢=—3H&t, where
8t =8¢ /¢ is the lag of the perturbation relative to the
background value and H =H (k) is the Hubble parameter
when the wave crosses outside of the horizon, Ha =k.
With Eq. (5.1c) giving the amplitude of the fluctuations
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and slow rolldown giving $, we have
PYAK)=3HG NPy /= HG . (6D

Substituting the values used in Fig. 2, we obtain excellent
agreement with our numerical results. By including the
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FIG. 3. The evolution of the background field during

inflation demonstrates the gradual increase during slow roll-
over, while ¢ follows the flat portion of the CW potential, and
the rapid rise towards high-frequency oscillations about o as ¢
falls into the steep-sided potential well centered on ¢ =0, which
damp as the field dissipates its energy into radiation. The num-
ber of particle degrees of freedom was taken to be 160.75, and
the reheat temperature was 10'%® GeV~gso. Log denotes log;o
and In denotes log,. Note that (b) represents only about 1073 of
a Hubble time. For a wave with k ~'=5000 h™'Mpc, which is
just now reentering the current “horizon,” the amplitude of the
scalar field fluctuations P}’? drops as a ~' [Eq. (5.1b)] while in-
side the horizon during inflation, reaches the Hawking tempera-
ture H /(2m) at horizon crossing, and then grows slowly (but
significantly) outside the horizon in response to the gradually
downcurving CW potential. { is extremely constant outside the
horizon, whereas the gravitational potential grows only during
reheating, reaching a final value {/4.5 several Hubble times
later.
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modification with k of ¢ as the field rolls down the poten-
tial, the rise from small to large distances can also be ob-
tained quantitatively.

Our results disagree with the numerical computations
with CW potentials of Den and Tomita,® who solved
equations similar to (4.8), but started far outside the hor-
izon just prior to the onset of fast rolldown into the well,
while assuming fluctuation levels appropriate to horizon
crossing. As we have seen, a significant amount of
growth in 7, occurs between horizon crossing and fast
rolldown. Den and Tomita therefore seriously underes-
timated the amplitude of the density fluctuations.

2. Chaotic inflation

In this scenario, a simple potential of the form of Eq.
(3.3) is assumed, with A=5X10"'* chosen so the final
adiabatic fluctuations come out at the right level, and m
chosen to be very small so that the A¢* piece dominates.
This value of A and the parameters m =10 3%m P>
I'=0.1m, anid ¢(t;)=5mp were chosen to generate the
fluctuation spectrum for chaotic inflation with a single
field given in Fig. 8 below (curve nearest the bottom).
Again there is a small rise from short to large distances,
but the spectrum is basically scale invariant.

Inflation is possible with such a potential provided the
field is initially large enough and homogeneous enough
that the potential energy ¥ (¢) dominates the kinetic
piece, $2/2+(V¢)*/2. For homogeneous fields to give
N;Z 60 e-foldings of expansion during inflation, the
field must start far out on the potential, ¢(¢;)
~(N;/m)"’mp 2 4.4mp. $(x,t;) must attain such values
coherently over a scale a,k "2 N}?H;”!, ~15H;"! for
#(t;)=5mp as in Fig. 8 below. [H~4X10%(¢/mp)*
GeV.] '

For chaotic inflation, the analytic result equation (6.1)
gives ?Dé-/z(k)z(677')l/2}\.l/2(¢/mp)3, which, for the wave
which is just crossing the horizon at ¢, gives 10~ %1,
dropping slowly as k increases to values which agree very
well with our computations.

B. Breaking scale invariance with one driven field

In standard chaotic inflation,! initial values of the
background fields as large as ¢ ~A " /*m,~3000m, are
possible without requiring a quantum gravity treatment.
Yet the structure we observe that could derive directly
from primordial perturbations, from k ~'~1 kpc to the
current horizon scale k ~!~10* Mpc, only corresponds to
scalar field values in the narrow between 3.7mp, and
4.4mp [using N;~m(¢$/mp)* for a Ap* chaotic inflation
average potential]. Reheating occurs a little later, usually
when ¢=1mp, corresponding to a scale Kk '~1 m. In
CDM models, we could possibly have dark-matter con-
densations down to scales kK ~!~1 m; with a very large
amplitude for the fluctuations these could be stable
enough to ultimately influence gas or be observable in
dark-matter halo searches. We could gain information
on the 1 m to 1 kpc scales only if such exotic phenomena
were to occur, but the limits we can currently place are
very crude. Even over the more directly observable range
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the evidence for a flat spectrum in any one regime is not
very compelling. (The best evidence comes from galaxy
clustering, covering the region from 4.0mp to 4.15mp,
and even this can be argued as being largely due to dy-
namics rather than primordial spectral shape.) Thus
from an observational point of view models with even
severely broken scale invariance cannot be excluded. The
smallness of this observational window on the potential
surface is emphasized by Fig. 4.

We now seek to modify the flat spectrum by changing
the structure of the potential surface over this limited ob-
servational window. Since the shape of 7 is largely
determined by the shape of 7’¢ outside of the horizon, it is
natural to concentrate on how to change 7, for one sca-
lar field. To isolate the most important terms we consid-
er N=1 version of Eq. (4.7f) with the damping and
metric terms omitted. We are still free to modify (1) the
occupation number 7(k), (2) the Hubble parameter
H(t)=a/a, which enters in the Hubble drag term
—3Hb¢;, (3) the diagonal component of the effective
mass matrix m?3, =3’V /343, or (4) the curvature
coupling  constant &, which enters in f
=[m}/(16m)—E@? /2], the coefficient of the Ricci scalar
in (3.1). H(#), and m;(t) vary in time according to the
behavior of the background fields, which we can control
by a suitable choice of potential. In the action (3.1), the
curvature coupling term enters as an effective term in the
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FIG. 4. In standard chaotic inflation, all observable structure
in the Universe originates during the slow-rollover regime when
¢ is between 3.7mp and 4.4mp, although inflation can presum-
ably start with any initial value consistent with classical gravity,
¢ <A 4mp=~3000mp. At 4.37mp, the present “horizon” scale,
~10* Mpc, would have left the horizon during inflation, assum-
ing 60 e-foldings of inflation are required and # =0.5. (Depend-
ing upon the details of reheating this could be 60+5.) Cluster
scales (~10 Mpc) cross at 4.1mp, galaxy scales (~10 Mpc) at
4.0mp, and the post-recombination baryon Jeans length (~1
kpc), the smallest scale of gas condensations in the standard
CDM model, at 3.74mp. Reheating occurs when ¢~mp. Thus
observations of cosmic structure probe only a small part of the
potential surface and exotic fluctuation spectra are quite con-
ceivable.
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mass matrix; £ may be positive or negative; it is O for
minimally coupled fields, L for conformally coupled
fields, and is subject to renormalization so the value could
evolve. Unfortunately, we cannot probe the role that the
off-diagonal driving terms m%j&b ;» J7°1, have on the be-
havior of 8¢, without doing a numerical integration. The
role of such terms is considered in Sec. VIC.

As we discussed in Sec. IV A, it is usually assumed that
the modes which are currently within our horizon would
have had such large values of k /a relative to any charac-
teristic energy scale describing mode occupation that
ri(k) can be taken to be zero, so that only zero-point fluc-
tuations contribute to the spectrum. Since we are dealing
with sub-Planck-scale physics it is by no means clear that
this assumption is valid. If 7(k) is nonzero then the fluc-
tuation spectrum would be unlikely to be scale invariant,
reflecting instead whatever physics would determine the
primordial occupation of modes, and the fluctuations
would be non-Gaussian.

An approximate solution to Eq. (4.7f) can be used to il-
lustrate the effect of (slowly) varying the H (¢) and m%(t)
histories: outside the horizon k ~! <(Ha)™!, but before
growth due to the perturbed metric occurs, the power
spectrum is

Pyk)=[H (1;)/(2m)]

X exp —ftdtH(t)[3+n(t)]l , (6.22)
I
n(t)=Re(—3{1—4m¥1)/[9H*)]}'"?), (6.2b)
P eXp —ffdzH(z)[Hn(t)]] , (6.2¢)
k
a,=a(t,)=k/H . (6.2d)

The time ¢, and expansion factor ¢; when a wave number
k crosses the horizon are given by Eq. (6.2d). Equation
(6.2a) is valid provided n >0 at t,, and remains valid
even if n subsequently vanishes [2m /(3H)>1]. If n is
zero at t,, then the prefactor H%(z, ) should be replaced
by H*(t,)/m(t;). Note that if n is constant, then the ex-
ponential term in (6.2a) is simply [k/(H(t)a)]**", a
power law in k if H is constant. A number of interesting
cases follow from this result:

1. Scale invariance

If m?=0, then the spectrum is scale invariant if H is
independent of the expansion factor a, just as in Sec.
VIA 1. The value of a when k first “crosses” the horizon
is a;. Since H*=(87G /3 )(2j$jz»+ V), judicious choice
of V can lead to structure in 7)¢. However, the most like-
ly case over the ~6 orders of magnitude observable k
range and the corresponding 14 e-foldings in a (which is
relatively short compared to the total number of e-
foldings possible during inflation) is that V will fall gent-
ly, leading to only slight deviations from scale invariance,
with just a little more power on large scales than on
small.

We can distinguish two types of behavior, depending
upon whether the field is driving inflation (in which case
it is the inflation) or its Hubble drag is driven by another
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field (in which case it is an isocon). The inflation leads to
adiabatic fluctuations with the power spectrum
P~[3H (a; )/¢]27)¢( k,a,)/H?. For an isocon, for which
we take the axion as the generic case, the fluctuations in
the axion mass density after the axion mass is generated
is TM <P In both cases, approximate scale invariance

is the outcome. An isocon which preferentially dissipates
into baryons rather than antibaryons can lead to isocur-
vature baryon perturbations. Again the Snyp spectrum
will be scale invariant if the ¢ spectrum is. The con-
straints on adiabatic and isocurvature modes are dis-
cussed in Sec. II.

2. Double inflation and plateaus

Since P, H %(a,) for adiabatic fluctuations if m =0,
one way to get more power on large scales is to let H
drop, but still retain m /H <<1. The quantum fluctua-
tion spectrum that arises if H drops suddenly is displayed
in Fig. 5. It is easily computed using the exact solution of
Eq. (4.70) with metric terms neglected. The ringing
would not appear if H were changed more gradually,
which is more realistic if the change in H is attributed to
the effects of two scalar fields with differing potentials
(Sec. VIC). For the feature in 74 to appear at the pre-
ferred scale k, (Sec. II) would require tuning the redshift
of the drop quite precisely. This is the mechanism of
double inflation. The generic outcome is a plateau spec-
trum.

Another way to get a plateau spectrum is to change the
potential. If we allow for more than one degree of free-

Quantum Response of a Driven Field to Changes in H
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FIG. 5. Several snapshots in time of the 7, spectrum are
shown as the Hubble constant drops abruptly from 10'° to 10°
GeV in a simple model of double inflation. The earliest shows
all scales within the horizon, where the modes are oscillating vi-
gorously, and the spectrum is «k?2, Eq. (5.1b). As the scales
leave the horizon, they freeze-out at a value equal to the Hawk-
ing temperature, H /27, thus exhibiting a flat spectrum at large
k and a plateau at small k. The transition region in between
would be smoother if the Hubble constant varied continuously
(see Fig. 8).
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dom for our scalar fields, then marvelous mountain
ranges, valleys, and moguls can be envisaged for potential
space. One’s intuition regarding motion in this space can
be utilized except that the rolling fields are subject to
Hubble drag (—3H ¢ ;) which can result in a terminal ve-
locity (slow rollover), a phenomenon fundamental to the
realization of inflation. Fluctuations 8¢ are small spreads
in the field about the rolling background value ¢. Fluc-
tuations within the horizon at the specific epoch are still
oscillating, while those outside have their shapes frozen
in although the values may change with time. For some
purposes it is useful to include those waves outside the
horizon with the background field, to allow for a gentle
variation from place to place.®®

If there are a number of flat directions in potential
space, inflation could be a complicated process, modify-
ing the H profile with time and also the form of the mass
matrix mj This will certainly map onto structure in the
fluctuation spectrum. However, to transform specific
features in potential space to features in a particular
range in k-space, we must arrange for the fields to pass
through this V structure at a specific range of a values.

Consider first the case of two scalars having a potential
forming a broad valley with the valley minimum line very
gently sloping down towards the origin with somewhat
steeper walls rising away from the minimum. This
configuration leads to double inflation.!”~'® If the two-
dimensional field begins high enough on the wall away
frem the origin, it will be potential dominated by the wall
part, and experience inflation with a large value of H.
The field will roll down towards the valley minimum, os-
cillating in one direction (m%>0 so the power in the field
in this direction damps away as a ~**" as above), while
continuing to roll down towards the origin in the other
direction with a lower value of H. The field in the second
direction is all that is left after the end of inflation. Since
it experiences first the high H for long waves as they
leave the horizon, then the low H value for short waves, a
plateau structure is generic. The ramp between the two
levels will depend upon the specific form of the potential.
To arrange for the location of the ramp to be tuned to an
astrophysically interesting scale, the initial location of the
field matters. If the field remains near the valley
minimum for too long a period then the spectrum within
the current Hubble length will only reflect the low value
of H and be effectively scale invariant.

3. Mountains

Choosing m? positive or negative can give spectra ris-
ing or falling with increasing k, but at the expense of ex-
ponential decreases or increases in both the background
field energy density and in the fluctuation power—
assuming inflation is continuing.

If m? is fixed, the drop of H with time eventually leads
to n reaching zero. The field oscillates coherently with an
energy density averaged over an oscillation period de-
creasing as pPy—a ~3 like nonrelativistic matter, with frac-
tional fluctuations #;/p, being constant. This is the
mechanism by which the axion, once it attains its mass
when the temperature of the Universe is about 200 MeV,
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behaves like cold nonrelativistic matter. However this
occurs after inflation, so the a ~3 law is not devastating.

To have a field whose fluctuations are still of interest
we can only have m? positive or negative over a limited
regime during inflation. To shape a mountain of power,
we would want m? to begin positive, then become nega-
tive for about five e-foldings, and finally settle to zero.
An example of this is shown in Fig. 6(b). To ensure the
mountain is not too high or too short, too broad or too
steep, a highly precise balance between positive and nega-
tive m %(¢) behavior is required. This is in addition to the
fine-tuning associated with fixing the position of the peak.
If instead m? becomes negative first, the plateau plus
ramp structure will arise, as is shown in Fig. 6(a).

If, in the example of Fig. 6(b), the driven (isocon) field
had m? becoming positive rather then finally dropping to
zero, its mountain spectrum would inflate away. This
transient could still leave an imprint upon the observed
fluctuations through its coupling to other fields, such as
the inflaton. A mogul in potential space provides a reali-
zation of this mechanism, as discussed in Secs. VIC and
VID.

4. Power laws

One way to get extended power laws over some k range
is to arrange for n to be constant over the associated
range in a;. This would be possible if m 2 scales with H?.
The natural way for this to occur is to make use of
nonzero curvature coupling constants &, for then the lo-
cal spectral index for isocons is n =—3(1—16£/3)!2
The severe price to pay is the ~a ~ 3" fall of the energy
density in the field throughout inflation. Only for n = —2
might we envisage getting the perturbation strength back
by relative growth compared with the radiation, and this
requires the very special choice £~ 2, which could prove
disastrous if it causes Newton’s constant to change sign
(Sec. VID). It is easier to contemplate £ negative with
n < —3, falling to short wavelengths, although this could
be valid only for a limited time to avoid precipitous
growth of the field. We have assumed that the isocon
contribution to H is negligible and that |£| is not very
large. The £ <<O0 case is more complicated. (See the
treatment for inflatons in Sec. VII.)

Another way to get power laws has been to invoke
power-law inflation,®#% with the expansion going as
a~t? with ¢ >1 to ensure & >0. This necessitates an
equation of state yielding fixed p/p=—1+2/(3q). For
the scalar field which drives power-law inflation,
Py~(H /2w ~kB"™,  where n=—(3¢—1)/(g—1)
=3(1—p/p)/(1+3p/p). As shown in Sec. VII, this is
also the k dependence of 7, hence the density fluctua-
tions subsequently generated would have the power-law
index n,=n +4. This always gives n <—3, n,<1, if
inflation is realized, hence there is more power at
large scales than the Zeldovich spectrum. A disadvan-
tage of such spectra is that the redshift of cluster and
galaxy formation will not be well separated for
power laws with n pSO. Further, if n is too negative,
large-angle CMB anisotropies become too large. With
an interaction potential of the specific form
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FIG. 6. Another way to modify the evolution of the mode
functions of the scalar field (¢,) is to change the effective masses
m}. This figure illustrates the influence on #; of sudden
changes of the effective m},, as indicated. In (a) m? passes from
zero to a negative value then to a positive one; (b) is the reverse.
During the negative phase, 2, grows for waves outside the hor-
izon, while maintaining a spectrum of form Eq. (5.1b) inside
provided (k /a)?> << |m?;|. If m?, were then to return to zero, a
spectrum with more power on large scales would result. For
positive m %,, fluctuations outside the horizon oscillate with fre-
quency m;, with an envelope decaying as a ~3, the law of de-
cline of the density of nonrelativistic matter. If inflation contin-
ues, the ¢ fluctuations would diminish exponentially. The gen-
eric spectrum has plateau initial conditions. The reverse history
for m?, shown in (b) leads to mountain initial conditions. Small
wave numbers damp since they are outside the horizon when
m?, is positive, intermediate wave numbers grow, since they
leave the horizon when m?, <0, generating a ramp slowing
downward toward higher k& which leave the horizon later, and
large wave numbers that leave the horizon when m{;, =0 remain
constant.
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V(¢)=Voexpl —(167/q) > /mp] for the inflaton,
power-law inflation could be realized, with n related to ¢
as given above. Power-law inflation could also drive an
isocon to develop power-law isocurvature perturbations.
For example, a Goldstone boson such as the axion would
have 73¢~k3+", with n also as given above. The axion
density perturbations developed once the axion mass is
generated would have the same power n; such isocurva-
ture CDM spectra can be strongly ruled out by large-
angle CMB anisotropies.>®

From this discussion, there does not seem to be much
hope that the —15n S0 power-law isocurvature baryon
spectra advocated by Peebles®® will arise within the
inflationary paradigm. In any case, these models would
naturally have Qp =1 yet smaller values Q5 ~0.2—0.4
are apparently preferred observationally. To agree with
the Q=1 requirement of inflation, the remaining energy
density would have to be made up with vacuum energy
(A70), which has severe fine-tuning problems.

C. Specific realizations of broken scale invariance

Consider two minimally coupled scalar fields interact-
ing through a chaotic inflation potential containing only
quadratic and quartic terms:

V(b1dy)= m%qS% + }‘2¢§ T m%q&f + )\141"1‘ _ V¢%¢%

o182 2 4 2 4 2

+V,.

(6.3)

The constant ¥ is chosen so that the minimum of the
potential is zero. We first consider the simplest case in
which the scalar fields are decoupled, then add the extra
complication of v#0. Finally we add a cubic term
—p,6,¢3 to show the effects of breaking the d1——d,
symmetry. These cases illustrate the range of behavior
expected for more general interaction potentials, as we
discuss in Sec. VID.

1. Decoupled scalars: v=0

If v=0, then inflation is likely to be double inflation: If
Ay >>A,, first ¢, dominates H, then ¢,. We again assume
m; is small and that both fields couple to matter with a

dissipative term of form Eq. (4.4b). The free parameters -

in the model are ¢,(¢;) and ¢,(¢;). We adopt the follow-
ing standard set of potential and damping param-
eters: A;=5X107'% A,=5X10"" m,=10"%mp, m,
=10"%*mp, v=0, I',=10"3m,, I',=10"'m,; we also
take g.+=160.75.

In Fig. 7(a) the evolution of the background fields ¢,
and the Hubble parameter H is given for the initial condi-
tions ¢,(¢;)=2.3mp and @,(t;)=4.36mp. ¢, dominates
the energy density until redshift ~e!>* when ¢, takes
over. Once the ¢, energy is no longer potential dominat-
ed (z~e'0), Py, behaves as a ~3, unless it damps into radi-

ation, in which case the energy density falls as @ ~%. Since
¢, is rolling down its very flat potential so slowly, it will
still be driving inflation at this time. It is therefore una-
voidable that the density fluctuations in ¢, or the radia-
tion it decays into are unimportant.

The power spectrum of the ¢, field follows the behav-
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FIG. 7. (a) Evolution in a typical double inflationary model
with two scalar fields interacting only through gravity. Since
Ay >>1,, ¢; dominates the energy density of the Universe initial-
ly, but it quickly rolls down its potential, becoming energetically
unimportant after redshift z =e¢!2, although it does not start to
oscillate about the minimum of its potential until z=e, [The
integration variable Ina = —In(1+2z) in terms of the redshift.]
The Hubble parameter reflects the behavior of the dominant
field, becoming approximately constant once ¢, dominates.
When the scale k 7'=5000 h~! Mpc leaves the horizon at
z=e'?, P, acquires a value of [k*/(27*)[(3H,,/$,)%, where
all quantities are evaluated at horizon crossing, but grows to the
constant result of [k3/(272)[(3H,,/$,)?, where now all values
are determined at the time that ¢, dominates. (b) Longitudinal
gauge calculations of quantum fluctuations are shown for the
scale k~'=5000 h™!Mpc in a double inflation scenario. The
cross correlation P;,, which is set initially to zero, grows be-
cause of gravity, then freezes out at the start of the ¢,-
dominated era, and finally decays when the mass of ¢; exceeds
the Hubble parameter. Both P4, and Py, cross the horizon
with the same value H. /(27). Whereas Py, remains essential-
ly constant, P, grows slightly because of the gravitational in-
teraction, then quickly damps when m, is larger than H. It
freezes out when the reverse is true, and eventually decays in
time much like Py,.
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ior of H% The mechanism is identical to that of Fig. 5,
although here the drop in H is gentler. Note that ¢,(¢;) is
essentially irrelevant for the production of a break, since
it just determines the number of e-foldings until ¢, takes
over. The precise value of ¢,(¢;) will determine the num-
ber of e-foldings until the end of inflation, thereby deter-
mining the location of the ramp in the spectrum.

Figure 7(b) displays the time evolution of the perturba-
tion variables in the longitudinal gauge for a specific
choice of k 7! (5000 h~'Mpc). This figure illustrates how
the computational procedure for more than one scalar
field described in Secs. IV and V proceeds in practice.
The calculations are based on two independent runs, the
first using the quantum fluctuations v¥,; and ¥,; and the
second using ¥, and ¥,,. The power spectra of the
correlation functions (4.2b) mix the output of the two
runs:

k3
73¢$11: 272(|¢11]2+|¢12|2) , (6.4a)
p— L pa— k3 * *
Py, =Pjy = 2Tr2(¢11¢21+¢'12¢22) ) (6.4b)
= 2 2 6.4
Pyp= 2172(|¢21| +l¥yl?) . (6.4¢)

The integration of the fluctuation equations (4.8) begins
at Ina =—136. At this time the cross-correlation power
spectrum, |7’¢121 is set to zero. It grows in time because
of the metric terms in Eq. (4.8b). (The small overshoot at
the beginning is a consequence of starting at zero rather
than at the true value.) It freezes out at the end of the
¢,-dominated era, when the Hubble parameter exceeds
the effective mass of ¢, then oscillates and damps away
when the reverse is true at Ina = —70. P;y,(k) remains
relatively near its horizon-crossing value [H (a; )/(2m)]%.
P411(k) also leaves with this value, grows slightly because
of gravity, and then follows a path similar to |P,|.
Both reflect the behavior of 3,, since, in these latter
phases, only the 1,, and 3,;, terms contribute, so that
In|Py,,| is the average of InPyy,(k) and InPy;, (k).

The ¢§ spectrum also has two contributions,
Pe=k*|£,1*+£,1*) /(277), where {(k,0)=(a;+Esa, in
the language of Sec. IV. Outside the horizon and long
before reheating, the dominant term for £ in Eq. (2.3) is
the one with the 1+p/p denominator. It may be evalu-
ated using Eq. (5.5¢) for ®4: '

&= _3H(¢’1¢11+¢"2¢21)/(¢;%+¢%) ’
2= “3H(§51¢12+¢2¢22)/(d;%+¢5%) .

(6.5a)

(6.5b)
When the scale leaves the horizon during the
¢,-dominated regime, §i=—3HvY, /¢, and
&~ —3Hyd,/d3, and &, sets the value of P;. This
holds until Ina = —120, when ¢, dominates; then §; and
&, quickly reach constant values of —3H41,,/¢, and
—3H1,,/d,, and &, essentially determines the final value
of P.. This explains why 7, rises from one constant
value to another. We emphasize that 7}’? does not reach
its asymptotic value, «<,,~H (a;)/(2m), until ¢, dom-

inates. This is the naive value that one would have ex-
pected.

In Fig. 8 the { spectrum for the initial conditions of
Fig. 7 (solid line) demonstrates that 7, follows the evolu-
tion of H closely. These conditions are those required to
produce an initial spectrum of the CDM + plateau form
(long dashed). However, small variations in the initial
value of the ¢, background field move the position of the
rise to the plateau: e.g., the dot-dashed curves with
¢(t;)=2.3mp, ¢,(t;)=4.4mp (ramp at low k), and with
&(t;,)=2.3mp, @,(t;)=4.3mp (ramp at high k). The
short-dashed curve shows that it is also easy to get
different shapes by flattening the ¢, potential, A;=10"1°
instead of the standard A;=5X107'% the initial condi-
tions chosen were ¢,(¢;)=2.3mp, ¢,(¢;)=4.36mp. The
spectrum for chaotic inflation with a single scalar field ¢,
with standard parameters and initial value ¢,(¢;)=5mp
are shown for comparison. We conclude that two decou-
pled scalar fields give plateau initial fluctuation spectra.
To reproduce the phenomenological spectrum involves a
careful choice of the initial value @,(¢;) to position the
break at the required location and of the relative ampli-
tude of the scalars’ potential parameters to ensure the re-
quired shape.

2. Interacting scalars: v#0

We now consider the richer possibilities that can arise
if v#20. In some circumstances, mountains can arise. We
know from Sec. VIB 3 what the critical features are for
the potential surface to lead to mountain spectra: one of
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FIG. 8. Double inflation spectra for models with various po-
tential parameters and background-field initial conditions. The
solid curve has ¢,(t;)=2.3mp and ¢,(t;)=4.36mp in order to fit
the CDM +plateau phenomenological spectrum (long dashed).
If ¢,(¢;) is varied by = 1%, the dotted-dashed curves are the re-
sult. These spectra generate dramatically different large-scale
structure than that for the solid curve. The short-dashed curve
illustrates the result of decreasing A, by a factor of 5 to
A;=10"1% All models assume A,=5X10"'4 and the lowest-
lying curve has ¢,(¢;)=0, ¢,(¢;)=5mp, and thus is the standard
inflationary model for a single scalar field.
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the fields must enter into a region of negative mass
squared. If the mountain is to survive in the isocon field,
it is also essential to avoid a prolonged m 2 > 0 region for
the isocon while inflation proceeds. A transient moun-
tain in the isocon field spectrum can however imprint a
mountain in the inflaton field spectrum, leading to adia-
batic mountain spectra. It is now only necessary to work
with the parameters of the potential (6.3) to demonstrate
concrete examples.

It is not possible!® to get mountains if v>0. The po-
tential surface has a valley where 3V /94, vanishes, given
by a hyperbola centered about the ¢, axis,

172
vg3(1)—m} m,
’ 2>

bt == - —_— (6.6a)
1

Vy

whose two branches converge to a single trough along the
¢, axis for smaller ¢,:

$1.(1)=0, ¢<—= . (6.6b)

my
Vv
There would be a double inflation phase while ¢, rolls
down to its valley. After this the ¢, field drives inflation.
It always has m3, >0. However, the effective mass in the
¢, direction,
m3, =02V /33 =3\,07— (vdi—m?) , 6.7
is negative within the Ilobes of the trough
(I¢)| <|$y| /V'3). However, it remains positive along the
trough, except at ¢,=m,/V'v. Kofman and Linde'® en-
visaged a model where the first scalar field would oscillate
about ¢,,,. They assumed that ¢, would find its way into
the region of negative m?, when ¢,~m,/V'v, leading to
a mountain shape. However, numerical and analytical
calculations show that m?, is always positive about the
true trajectory in (¢,,¢,) space. A typical run is shown in
Fig. 9. The interaction terms were chosen to be
A= 1079, A= 107 v=10"12, the mass terms to be
m{=4.5X10"%mp, m,=10"%mp, and the friction terms
to be I',=10"°m,, I',=10"'m,; here g.4=1.0. Al-
though we started ¢, in its trough, this figure demon-
strates that ¢, deviated from its trough value as ¢, ap-
proached m;/V'v, and, as a result, m%l never became
negative.

This result is generally true: Hubble drag ensures that
the ¢, field will lag behind its trough value provided that
the rough valley is curved. We can illustrate this in
linear perturbation theory, assuming the background field
¢, deviates from ¢, by a small amount

f)=¢(1) =y (2) . (6.8)

Substituting (6.8) into (4.6¢), neglecting particle damping,

and retaining only first-order terms, we find that f
satisfies the equation

.o . 2 . .
FH3HF+ %;%f+¢m+3y¢m =0. (6.9)
1

In about an e-folding, f will settle to the value

D. S. SALOPEK, J. R. BOND, AND J. M. BARDEEN 40
10TIWT11|I\\1|!!1\‘1|\T{1l!¥]!l¥"wTIfT/,I'\
: Background Fields for v > 0 I,”/ :
8 — ’ —
6 ; , 10V,1(¢,,¢z)/m,2 ;

< AN L 7
r \\ \\ 7 $2/my 4
L N N L 1
2= O\ - —
- \ -
| - \ -
L 50¢1u/m\f 50¢,/ms -
0 — L — _
T N N I R L I
-140 -130 -120 -110 -100 -90 ~-80 -70 -60
In(a)

FIG. 9. Models with coupled scalars and v>0 do not gen-
erate CDM + mountain spectra. While @, is in the slow-rollover
regime, ¢, settles into its trough, but it deviates from its trough
value as ¢,~m,/Vv. As a result ¢, never reaches a region of
negative mass squared.

f=~($ltr+3H¢1tr)/m%l .

The second term is dominant. On the ¢, > 0 side, ¢,,, <0,
hence f is positive and the lag from the trough is always
in the opposite direction to the m?; <0 region: negative
mass squared is therefore unattainable.

The v>0, m? <0 case has a minimum which is offset
from (¢,,¢,)=1(0,0). In this situation, the region of nega-
tive mass squared is separated from the trough by a finite
amount, and it seems unlikely that the scalar will deviate
sufficiently from the trough value to reach this area.

A negative mass-squared region can be reached if v <0,
provided we also take m? <0, as Kofman and Pogosyan'®
(KP) suggested. (If m? >0, the trough lies along the ¢,
axis, with m?; >0, leading to double inflation with no ex-
tra ingredients.) The v<0, m? <0 potential surface is
somewhat similar to the v> 0, m? > 0 surface, except that
it is inverted:

(6.10)

61:=0, ¢,>(m? /)%, (6.11a)
and it bifurcates into an ellipse for smaller ¢,:
$re=2[(mi=Iv|$3) /2,12,
(6.11b)

by <(m? /)72 .

The m?, <0 region is shown by Eq. (6.7) to be an ellipse
with the same semimajor axis, but a smaller semiminor
axis. Isocurvature Gaussian mountain spectra do not
survive at an interesting level in this model, since m?, is
positive in the trough. However, adiabatic Gaussian
mountain spectra can arise. Nonetheless to achieve a
prescribed location, width, and amplitude in k space,
three parameters must be tuned. We illustrate this sensi-
tivity in Figs. 10 and 11.
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Figure 10(a) shows the evolution of the background
fields and Fig. 10(b) of the perturbation variables for a
specific wave number, k “'=158 A ~! Mpc. The parame-
ters chosen for Fig. 10, A,=107°% A,=2X10"1,
v=—7.935X10"1° (—m)V2=10"*mp, m,=10""mp,
I''=0 and I',=0.1m,, give a mountain spectrum which
is not violated by any observational data, and is similar to
the phenomenological CDM +mt spectrum of Fig. 1. Of
these, m% and v are crucial. The spectrum is extremely
sensitive to the initial value ¢,(¢;), which controls the
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FIG. 10. Mountain spectra do arise when v<0 and m? <0.
¢, dominates the energy density of the Universe initially, but it
quickly rolls down, oscillates, and damps to a small value, as (a)
shows. Once ¢, decreases below (m?/v)'"2=3.55mp, m?, be-
comes negative for about four e-foldings; ¢, then grows very
rapidly until it settles in its trough. Thereafter, ¢, dominates,
and at z =e% it oscillates because its effective mass exceeds the
damping rate. In (b), the perturbation variables for k ~!=158
h™'Mpc are shown. The rapid increase of Py, when m?}, <0 is
evident. Since ¢, is coupled to ¢; by the —vd2d3 /2 term of the
potential, both P, and P, also grow very rapidly. The net re-
sult is a peak in the Py, and P, spectra. After z=e'?, P, de-
creases by a factor of 2 because ¢,,, is time dependent.
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FIG. 11. Mountain spectra generated in a variety of models
with v <0 and m? <0 are shown. The short-dashed curve gives
healthy cluster correlations and large-scale streaming velocities,
and yet is within the RELICT CMB anisotropy limits. At small
k, the amplitude is very high because these scales left the hor-
izon during the first of the two inflation epochs. The parame-
ters, m3, v, and &,(z;) (listed in the text) must be finely adjusted
to give the desired shape and position. For example, the dotted
short-dashed and the dotted long-dashed-curves show the effects
of varying ¢,(¢;) by less than a percent. The phenomenological
CDM +mountain spectrum of Fig. 1 is shown for comparison
(long-dashed). If a cubic term —pu¢,¢? is present in the poten-
tial, one can avoid the tuning of ¢,(¢;) but at the expense of
small g, p=1.3X 10715 (dark solid curve).

height and width of the mountain. In Fig. 10
&,(t;)=3.71mp and ¢,(t;)=2mp. Initially, ¢, remains
frozen at ¢,(z;) while ¢, dominates the potential before it
rolls down to its trough where it oscillates and Hubble
damps. Double inflation is the result, as indicated by the
drop in H at In(a)= —135 in Fig. 10(a). Before the ¢, os-
cillations have fully damped, the slow rolldown of ¢, to
below (m? /v)1/2=3.55m causes ¢, to enter the m?2; <0
region, remaining there for about 4 e-foldings. The
effective mass squared reaches a minimum of —6H?2,
During this time ¢; grows extremely rapidly until it
reaches its new trough, given by Eq. (6.11b), where it os-
cillates and dies away. At this stage, we have two
relevant time scales which are quite different, the ¢, oscil-
lation period and the ¢, rolldown time. To follow the de-
tails of the ¢, oscillations as it Hubble damps is compu-
tationally demanding and unimportant physically. Ac-
cordingly, we set ¢,=¢;, once ¢, falls below
0.9(m7/v)!"? and p, falls below <107 °p, . Similarly,

the fluctuations in the first scalar field are set to zero at
this point. (See Appendix C for details.) With ¢, in its
trough at the end of inflation, the effective mass of ¢,
exceeds the damping rate I',; hence, ¢, oscillates for
many periods before the Universe reheats, in contrast
with the situation encountered in Fig. 7 even though the
same I',/m, was used.

Figure 10(b) shows the evolution of the perturbation
variables. At Ina = —126, the quantum fluctuation v,



1774 : D. S. SALOPEK, J. R. BOND, AND J. M. BARDEEN 40

feels the effect of having a negative mass squared and
grows exponentially. Because of the coupling term
—v$id3/2 in the potential, ¢,, behaves similarly. The
abrupt drop of #; and Py, to zero at Ina =—117
occurs where we froze ¢, into its trough to facilitate the
numerical computation as mentioned above. Unlike our
previous models, ?g is not strictly constant after this time
since the potential seen by ¢, is time dependent—as is
evident if one replaces ¢, by ¢, in Eq. (6.3). In this
model, ‘Pg decreases by a factor of 2 from lna =—120 to
Ina = —62.

Our computed spectrum for the model of Fig. 10 is the
short-dashed line in Fig. 11. The mountain peaks at
k ~1'=250 h~'"Mpc. There is sufficient large-scale power
to produce large cluster correlations and large coherent
streaming velocities. At the largest scales the power
spectrum grows steeply, reflecting the epoch of ¢; domi-
nance, when the Hubble parameter was large. Figure 11
also illustrates how small variations in v and
@,(¢;) dramatically affect the position and width of the
mountain. The  dotted-long-dashed curve  has
v=—7.506X10"1° ¢,(t,)=3.81mp, and the dotted-
short-dashed curve has v=—8.16X1071°  @,(z;)
=3.66mp. All other parameters are the same. Although
one must ultimately use trial and error to produce these
curves, the order of magnitude of the parameters may be
found through the following prescription: A,~107!*
determines the large-k behavior; ¢,(t;)=~(m?/v)!/?
~4mp will produce a mountain near cluster scales;
(—m?)V/2~10H yields a sufficiently large mogul; [,(z;)
—(m?/v)"/?]=0.2mp determines the width of the
mountain; and finally A, >v?/A, ensures that the effective
coefficient of ¢4 is positive when ¢, =¢,1,. We argue in
the next section that the more interesting case of ¢,(t;)
beginning exactly in the trough leads to non-Gaussian ¢,
fluctuations and that the perturbative treatment adopted
here breaks down. The reason for this is that both the
ridge and the trough have ¢,=0.

One can, however, get Gaussian mountain fluctuations
by ensuring that the mogul ridge is offset from the
trough. To generally define ridges and troughs, we must
consider the structure of a potential surface for N scalar
fields, V(¢y, ..., dy). There will be one inflaton field, ¢
say, and N —1 isocon directions. The extrema
oV /3¢, =0, i=1,...,N —1 define curves parametrized
by ¢y. For troughs m,%- is positive definite while for
ridges m,~2j is negative definite. At points where the
(N —1)X(N —1) matrix m,%- is singular, new curves ap-
pear. For N >2, saddle lines as well as minimum and
maximum lines arise, complicating the analysis. For the
N =2 case of interest here, ridges ¢,,(¢,) and troughs
¢,.(¢,) are the only possibilities. In the symmetric case
discussed above, the ¢,,=0 curve goes smoothly over
into the ¢,,;=0 curve defining the backbone of the mogul
at ¢,=(m?/v)!/2. Ensuring instead that ¢,;=0 is not a
continuous extension of ¢,,,=0 avoids the non-Gaussian
behavior. With the natural starting condition ¢,=d,,,
appropriate if the ¢,-driven inflation epoch is over by the
time the 10* Mpc wave leaves the horizon, the trajectory
#,(¢) then passes along a specific side of the mogul. The

final spectrum becomes sensitive to the level of offset,
defined by the potential, rather than by the initial condi-
tion ¢,(¢;), which no longer requires such fine-tuning.

One realization of this is to add a cubic term, —u,¢,¢2,
to the potential (6.3). The trough and the ridge lines are
solutions of

¢%=(7&1¢?+m%¢1)/(v¢1+p1) s

rather than of Eq. (6.11). For large values of ¢,, there is
only one solution, a trough along the line ¢, =—pu,/v
rather than along the ¢, axis; near ¢,~(m?2 /v)!/2, this
trough bends smoothly toward the minimum of the po-
tential which remains at ¢,=0 and ¢,=(—m?/A,)/%
Although the trough never actually crosses the m?2, <0
region [which is still given by Eq. (6.7)], the true trajecto-
ry #,(¢) deviates slightly from ¢,,,, following Eq. (6.10),
and slips into the m?; <0 region for a short period of
time. The subsequent evolution of the background fields
then follow closely the u; =0 case considered above. The
ridge line of the m3, <0 region appears near
¢,~(m?%/v)!/? where Eq. (6.12) has three solutions for
¢,: it is connected to a trough with ¢, <0, but is well
disconnected from the global ¢, > 0 trough.

In Fig. 11 the solid curve is the fluctuation spectrum
for a model with the same potential parameters as the
short-dashed curve model discussed above except that
#;=1.3X10"1" mp, a value chosen to give a suitable
mountain. We started the scalar fields exactly in the
trough, ¢,(¢,)=2X10""mp, ¢,(t;)=3.8mp. A similar
mountain spectrum is therefore obtained by replacing the
extremely sensitive tuning of ¢,(¢;) by a less sensitive tun-
ing of ;. Nonetheless, a specific mountain shape still re-
quires delicate adjustment of the potential parameters.

(6.12)

D. Prospects for Gaussian spectra
with broken scale invariance

Based on our analytic and numerical computations, we
feel that a strong case can be made against useful power-
law spectra arising naturally in inflation. We have also
shown that useful Gaussian plateau and mountain spectra
are also improbable if we restrict ourselves to potentials
involving quadratic and quartic terms. However, more
general potentials could lead to interesting nonflat Gauss-
ian spectra. We justify these assertions in the following.

For the double inflation calculations, the position of
the ramp in k space is controlled by the initial value
¢,(t;). In the spirit of chaotic inflation as originally pro-
posed by Linde,! ¢,(#;) should fluctuate in space on
comoving scales similar to the comoving scales on which
¢, fluctuates, with amplitudes which should range up to
1A,¢3~mp. Given that the initial values of ¢, allow the
first stage of inflation to take place in some region, the in-
homogeneities in ¢, will inflate away (if ¢, is not rough
on arbitrarily small scales compared with the initial
Planck scale). The value of ¢, at a given location is
frozen until the end of the first stage of inflation. Only if
the frozen value of ¢, is very precisely a certain value
near 4.3mp will the ramp on the final perturbation spec-
trum be at an astrophysically interesting scale. If initial
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values of ¢, do indeed range over |$,(¢;,)| SA; /*mp and

if, as is necessary for the amplitude of the density pertur-
bations, A, S 1074, then the desired range of ¢,(¢;) would
be a tiny fraction of its possible range. Although the
probability distribution of ¢,(¢;) over this range is un-
known, it will undoubtedly be necessary to ‘““fine-tune”
the initial conditions—as well as the potential
parameters—to place the ramp in the desired location,
making this version of double inflation rather unattrac-
tive in our view. In any case, making the ramp interest-
ingly large to generate structure will result in a high pla-
teau giving a high-amplitude scale-invariant spectrum for
microwave-background fluctuations which would violate
the stringent bounds set by the Soviet RELICT experi-
ment as discussed in Sec. II.

In new inflation, the initiation of inflation from
“thermal” initial field configurations, an issue raised by
Masenko, Unruh, and Wald, now appears feasible
through Hubble damping, as Feldman and Branden-
berger have demonstrated with numerical simulations.®’
However, although double inflation is also realizable in
new inflation, the required tuning of ¢, at the onset of the
second stage of inflation to get the ramp in the right place
does not follow from thermal initial conditions.

Double inflation also results if one adds a term quadra-
tic in the Ricci scalar to the action (3.1) with a single sca-
lar field.** Starobinsky®® showed that the conformal
anomaly of massless scalar fields (nonzero trace of the
stress-energy tensor due to quantum effects) is of order
R? and this term may drive inflation. However the con-
formal anomaly terms that were most likely to appear in
typical theories were shown to be unlikely to lead to
inflationary behavior. To avoid excessive density fluctua-
tions, the R? terms in the gravitational Lagrangian was
instead parametrized by a small mass scale M:
Ls=(mp/16m)[R +R>/(6M?)]. To give P; at the “ob-
served” level, we require M = 10“6mp, for bp= 1.44 (see
Sec. VIIA4). The Friedmann equation is now
significantly modified over the form with no R? term in
the Lagrangian. Provided M >(A/6m)!"?mp, both the
scalar field potential and the R? term drive the initial
inflationary epoch, followed by an era where the scalar
field dominates, leading to double inflation.** A ramp
plus plateau spectrum remains the generic outcome.
Again, the end of the first inflation phase must somehow
coincide with the time that cluster scales cross the hor-
izon.

Adding the coupling v#=0 in (6.3) does not aid matters
appreciably. Models with both v and m? negative can
produce mountain fluctuation spectra which are con-
sistent with cluster-cluster correlations and the large-
scale streaming velocities and yet remain within the
RELICT CMB constraints. However, they too suffer
from the problem of unnaturalness since both v and m?
must be carefully tuned. In addition, the position and
breadth of the mountain depend crucially on the initial
value of ¢,; hence, the arguments against double inflation
also apply here.

The more likely situation would be one in which the
first scalar has settled into the ¢, =0 trough before ¢, hits
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the mogul, so the result is independent of ¢,(¢;). In this
case, the quantum perturbations ¥;; would exceed the
value of the background field @, so it is these that drive
the rolldown from the mogul, influencing the
“background-field”” value &, through the #,-¢, coupling.
The net result would be non-Gaussian fluctuations in ¢,.
If the field ¢, does not enter into a prolonged m?, >0
phase after the m?, <0 phase, significant non-Gaussian
isocon fluctuations would survive. Thus the generic case
for moguls centered about a ¢,,(¢,) ridge line which is
continuous with the incoming ¢,,(¢$,) trough line, as in
the v<0, u;=0 case of Sec. VIC, is a non-Gaussian
“mountain,” provided

(3P Ax, V22 |y — 1l -

In this expression, the quantum fluctuations
{(8¢4,)%(x,t)) are assumed to have the short-distance rap-
idly oscillating k 'S (Ha)™! waves filtered out. Note
that starting from ¢, =0 with a symmetric mogul leads to
bifurcation of the field, which can lead to domain walls.
To avoid a domain-wall density problem, we must sup-
pose that either the mogul is localized in ¢, or another in-
teraction is present at lower energies to destroy the walls.
In either case, the large-scale non-Gaussian metric per-
turbations will survive intact.

So far in this subsection, we have considered only two
scalars interacting via quadratic and quartic terms. The
addition of cubic interaction terms to the potential (6.3)
can also give m?3, <0 over a short range. If they are sym-
metric about ¢,,,, the induced ¢, fluctuations would again
be non-Gaussian. Bardeen®® has explored a model of this
type, adding a —pu,¢$,4? interaction to (6.3). The poten-
tial can be rewritten in the form of (6.3), with a
—%v(q&z—a)zzﬁ term replacing the ——%wﬁ%qﬁ% term, and
with A, >>—v>>1,>0, 2. Since

(6.13)

0<—m?}<<—va’
m?, <0 only temporarily, no isocon perturbations sur-
vive. The nonlinear interaction of 8¢, with 8¢, generates
adiabatic perturbations whose primordial amplitude ¢ is
quadratic in the Gaussian field 8¢, as evaluated at the
end of the m?}, <0 period. The spectrum has a mountain
centered on the comoving wave number leaving the hor-
izon at the beginning of the m3; <0 period. The statis-
tics and final amplitude of the density perturbations in
this model depend only on the tuning of the potential pa-
rameters, not on the initial conditions. The probability
distribution for the density perturbation field falls off
with height as a simple exponential, rather than as a
Gaussian. There is a patchy distribution of lower mass
peaks of high amplitude on the scale of the mountain in
the 8¢, power spectrum, which is what one might like to
explain voids and other large-scale structure. However,
rather elaborate tuning of the potential, particularly the
parameters v, a, and m?3, is required to get the scale and
amplitude of the perturbation mountain.

If instead the added cubic interaction offsets the mogul
peak from the trough position, so the background ¢, tra-
jectory determines the ¢,+8¢ trajectories, a Gaussian
mountain which is independent of the initial conditions
for the fields can arise as we showed in Sec. VIC2. In
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that model, the non-Gaussian criterion (6.13) is not met,
for |§,—¢,l exceeds H/(2m) by ~10%. However, to
generate a viable mountain, the potential parameter u,
must be tuned precisely to be a tiny value, =10~ m pe

It therefore seems quite unlikely that there would be
just one mogul appropriately placed to solve our large-
scale structure problems. A more likely variant would
have a potential surface populated by many small moguls
and valleys, perhaps of varying heights and width. As we
emphasized in Sec. VIB and Fig. 4, such potential space
structure over the narrow observable range is certainly
not inconceivable. However, it would be necessary to
control the bumpiness so that inflation still proceeds. On
average, the ¢, direction would still have the downward
slope that drives slow rolldown. The ¢, direction could
still have on average m?, >0, as in the v <0, m? <0 mod-
el of Sec. VIC, or be a Goldstone boson, with m?, =0 in
the regions without moguls. An example of the latter
case would be a generalized axion model, with ¢, and ¢,
related to the argument and modulus of a complex scalar,
respectively. Isocon fluctuations could survive in such
models. In both cases, one could get either non-Gaussian
or Gaussian perturbations, depending upon whether or
not Eq. (6.13) is satisfied. If Gaussian, the fluctuation
spectrum would have a wavy appearance rather then a
flat one, with peaks and troughs reflecting the topogra-
phy in potential space that the ($,,é,) trajectory passed
over.

Power laws other than scale invariant can also be
achieved in inflation. For an isocon field, this occurs
quite naturally if it is nonminimally coupled. To avoid an
excessively small energy density at the present epoch, one
requires £~ 2 leading to a spectral index of n =—2.
This index can be ruled out by RELICT observations. It
also differs from the 0R n * —1 law advocated by Pee-
bles.* %0 Power-law inflation produces power-law adia-
batic fluctuations which generically give more power on
large scales. However, the bound set by the RELICT ex-
periment make. it difficult for these models to fit the
cluster-cluster and large-scale streaming observations.

For single-inflaton models with the ultraweak cou-

plings required by observations, although fluctuations
can be quite non-Gaussian on scales very much larger
than our current horizon size, they are very nearly
Gaussian for the patch of the Universe corresponding to
our observable Universe, even for such nonstandard cases
as power-law inflation’! (Bardeen and Bublik, Bond and
Salopek, cf. Ortolan et al.). Some other possibilities for
non-Gaussian fluctuations from inflation have been dis-
cussed in the literature. Allen, Grinstein, and Wise®
considered a Universe with massive axions which pro-
duced non-Gaussian fluctuations through  self-
interactions. Kofman, Linde, and Einasto’® suggested
that the transition to a second phase of inflation might
proceed by quantum tunneling through a potential bar-
rier, as in Guth’s original “old” inflation model, leading
to bubbles being generated, superimposed upon a
Universe smoothed during the first inflationary epoch.
Such fluctuations would certainly be non-Gaussian, but it
would be extremely difficult to arrange for their ampli-

tude to be just right to be useful to explain the large-scale
texture we observe now. We regard the addition of
moguls in potential space, with trajectories obeying Eq.
(6.13), as being a more promising realization of non-
Gaussian fluctuations from inflation.

Finally, we discuss a general problem associated with
all chaotic models. To obtain enough e-foldings of
inflation with a potential for ¢, of the form Eq. (6.3), it is
necessary for the field to start at a value many times the
Planck mass. If one were to assume nonminimal cou-
pling in the action (3.1), f=m}/(167)—E&,d3/2
—&,¢42/2, then Newton’s constant, G =(167f)"!, may
actually become negative. Once negative, it would
remain so because it must cross a singularity before it
changes sign. To avoid this catastrophe it is necessary
that £,50.002 (Refs. 13 and 14). The field must be
effectively minimally coupled, or have &, <0, a case we
treat in detail in Sec. VII. A similar restriction would
hold for &, if we were contemplating large initial values
of ¢, as well. Even if £, did not have to be zero, unless it
is quite negative the potential gives a positive effective
mass m3, =m?2+12& H*+ 31,43 —vd3: the ¢, fluctua-
tions again inflate away, and only in special cir-
cumstances could they be important now (Sec. VIB4).

VII. NONMINIMALLY COUPLED SCALAR FIELDS

In this section we show how to incorporate chaotic
inflation in grand unified theories using nonminimally
coupled fields, and apply it to an SU(5) GUT example in
Sec. VIIB. To illustrate the basic principles, in Sec.
VII A we restrict our attention to a single scalar field, ¢,
with quadratic coupling to the Ricci scalar,
f=m?*/(16m)—Ed* /2, where the free parameter m is the
bare value of the Planck mass. Since a —&R ¢* coupling
is required for the renormalizability of a A$*/4 potential
in curved space-time,49 it is natural to consider the
cosmological significance of this coupling for arbitrary
values of &.

We first provide an overview of the main results de-
rived in Sec. VII A. We have already noted in Sec. VID
that if m =mp Newton’s constant may become negative
in chaotic inflation unless £ <0.002. The constraint is an
embarrassment for chaotic inflation if one insists that &
be positive: one is simply tuning the curvature coupling
constant in an ad hoc and unnatural manner. We shall
therefore analyze the other possibility, £ <0. One may
object on the grounds that the field is now a tachyon,
mé= &R <0, but we will always choose potentials of
form V(¢)=A(p>—02)*/4 to stabilize the theory. The
effect of a negative coupling constant is to flatten the po-
tential for ¢ >mp/(8w|&])1/2. If, for example, A=0.05,
and £ is chosen to be large and negative, £= —2 X 10%
metric fluctuations of the correct level are produced.
Gauge-boson radiative corrections, which proved disas-
trous for new inflation, do not destroy the desired flatness
of the potential in this case. If m =mp, the reheat tem-
perature is quite high, =~1.0X 10'> GeV. To avoid mono-
pole overproduction and yet have gauge bosons produce
the baryon asymmetry of the Universe, we find the GUT



symmetry-breaking scale must be found within the nar-
row limits, 1.5X 10! GeV <o <3.0X10"* GeV, which is
quite close to the value found from renormalization-
group calculations for SU(5), o0 =1.2X 10'> GeV. How-
ever, if baryogenesis proceeds through the decay of the
Higgs particle, then only the upper limit is necessary and
the constraint is not as stringent.

A. Induced gravity and related models

1. & fluctuations from nonminimally coupled scalar fields

Here we demonstrate how to relate ‘7’; determined for
the conformally transformed model of Sec. IIIB with
f(@)=m?/(16m)—EP? /2 to that determined in the un-
transformed system 73§. For single scalar field models, it
is possible to define a new field ¥ which has a standard ki-
netic energy term and for which ‘7)5 can be calculated us-
ing techniques for minimally coupled fields:

x=[[K"($)1"%d¢, (7.1a)
2 2
M4 slel(1+6leh -2
11— mP mP
K= . (7.1b)

2 2
i"—2+87r|g|—‘L2
mp mp

The kinetic term K !! therefore transforms to unity in the
X variable. Integrating (7.1a) yields

s/2 ——————
eor=(87/¢])!”2 { tts | ¢V @+ (BmP
1—' 2mP
#°+ (Bm)*—s¢ ” (7.22)
V2 +(Bm)+s¢ ’
where a, 3, and s are constants:
172
_ | _8xlél —1
T areler | M
B=[8w|&l(1+6]g)]17 12, (7.2b)
172
| _slel
l+6|§|

The effective potential is a function of Y only, and is
given in (3.7d):

-2
Ux)= Vig(x)) . (7.2¢)

2 2
m_2+8,ﬂ§|95_%(_)
mp mp

Similar formulas were also obtained by Futamase and
Maeda,'* who used them to discuss the background-field
evolution. Here we are more interested in the fluctua-
tions that are generated. The important point here is
that although the effective potential U(Y) is identical to
V($) for ¢ <<m /(8w|&|)!/?, it approaches a constant,
U,=Amp/(16w|&])]*, in the opposite limit,
¢ >>m /(87| &)/

For the transformed metric g,,,, the standard formula
for metric fluctuations, ‘7)2/2=(3/27r)(H2/)(), Eq. (6.1), is
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still valid because only Einsteinian gravity appears in the
transformed Lagrangian, (3.6). Since the original metric
8, is related to g,, through the conformal transforma-
tion (3.7a), their perturbations satisfy

af .

f g,uv

bg,,= | 2T +82
Euv = 167Tf 8 v

The ratio of the first term to the second is of order
Py 12(df /f). Since df quickly decreases to zero once
the scalar field settles down to the minimum of its poten-
tial, the second term dominates after the inflationary
epoch. Thus after inflation has stopped the metric fluc-
tuations are identical in both frames, and ‘P§=‘7’§.

2. Fluctuations in the induced gravity model

In induced gravity, the bare Planck mass is zero, its
present value being generated when the Higgs field be-
comes trapped at the minimum of its potential which
occurs at a value determined from Eq. (3.4),
o=mp/(8m|E| )1/2, In the m =0 limit, Egs. (7.2) become
2

(1—e 72X, =g /g . (7.3)

The potential U, shown in Fig. 12(a), grows exponentially
for Y << —a~!, attains its minimum at y=0, and then
approaches its limiting value, U, for y >>a~!. In this
case, although y varies from —o to +o, it only
parametrizes half of the original potential and neglects
¢ <0. Another field, for example, a” !In(—¢/0), is re-
quired to describe the other half.

There are two inflationary models to consider here, de-
pending on which side of the origin the scalar field origi-
nates.

Case 1. x(t;)>>a~!: During the slow-rollover epoch,
all scales k leave the horizon with approximately the
same value of H,

_A
96mE?

1/2

i mp,

due to the flatness of U. The amplitude of the metric
fluctuations (6.1),
9 H}

27 AU ’

PyAk)= (7.4a)

can be related to the number of e-foldings from the time
t, when the scale k crosses the horizon to the end of
inflation at ¢,,

H?

1

m , (7.4b)
ax X\

3
Ni(tk)zHi(te_ti)z_z——g

found by integrating the slow-rollover equation. The
final elegant expression

1 VA

Pé/z:WTgTNl(tk), §<<"'% ’ (7.5)
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only involves the dimensionless variables of the theory.
Of course, N,(t, ) is a reparametrization of x(t ).

For definiteness, we now choose a reasonable value of A
consistent with the radiative corrections of GUT models,
A=5X10"2 The scale where the fluctuation spectra are
typically normalized, as discussed in Sec. II, is k "'~ 10
Mpc. The number of inflationary e-foldings after horizon
crossing would be N,(t,)~50. To get the “observed”
fluctuation level 7’2/ 2~7X107° would then require
E~—2X10*. The number of e-foldings associated with
our current horizon is only slightly larger N,(¢; )~ 60:
the spectrum is very nearly scale invariant. An extremely
small A is therefore not required to get the observed fluc-
tuation level, but the price is the introduction of a large
negative curvature coupling constant.

Some characteristic quantities for this successful fluc-
tuation generation model are

o=0;=— \/—ﬂ =1.7X10'% GeV ,
m,=gso;~8.6X10" GeV ,
(1, )=[4N,(1,)/31"%0,=1.5X 10" GeV , (7.6)

=a n[¢(t,)/0;1=1.3X 10" GeV ,
A 172
> | mp=T7.9X10" GeV,
96mE

x(2)

where m , is the superheavy boson mass and ¢(z; )[ x(#;)]
is the value of the scalar field required to give a sufficient
number of e-foldings. Note that the induced gravity en-
ergy scale, o, is close to that of grand unified theories,
and hence it is plausible that the scalar field could actual-
ly be the Higgs particle for a GUT as well as for gravity.
Case 2: Xo<<—a ! In this limit, the potential is an

exponential,
A mb |
—_ P —4q
Uv)=Z X 7.7
(x) e e (7.7
and the background field has the exact solution®
x(1)=(2a) " 'In(bt)
-1
ratm§ atmp
with b2 — 1—— , 18
967°E 3m '
describing power -law inflation, a(¢)=t9 with index
q =(1+6/£])/(8|£]) which may vary from 3 to «. Hal-
liwell’? has shown this solution to be a stable attractor for

g>1 (£>—1). The potential is too steep for larger |£|
for inflation to be possible. Therefore, the only one we
need consider is the £ > — 1 case.

Fluctuations follow from (6.1) which is valid even if the
1

m2 | m2
4y 5 Pp_1_F
s=[d' 8l Ter R 2 16n”
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slow-rollover approximation does not apply:
PL2=3p (1, )a . (7.9)
¢ . k
The resulting metric fluctuation spectrum
1/(1—¢q)
?1/2 7)1/2 Kk
& kl ’
(7.10)

1/2—3[(1+6|§i)/ (8w|ENTVHH, /mp)

generalizes the flat Zeldovich spectrum to a power law
with negative exponent (see also Sec. VIB). Here k, is
some characteristic scale, e.g., the present horizon scale.

© P/ is of the right order if H, /mp~10"". However, we

must choose the parameters of the model to be very
small, typically A=10"2% and £=—0.029, to ensure that
the Universe inflates by at least a factor of ¢

a(t,) t, |7
60<< e=[e

e

a(ty) 1

92 q2(4q-—3)27)§'

/2
872  3g—1 r

Accetta, Zoller, and Turner? first analyzed this possibili-
ty, using a different technique, and also concluded that A
had to be extremely tiny. In this expression, the initial
time, t;, is determined by the level of fluctuations,
7’1/2~7X10‘5, and the final time, t,, occurs when the

background field reaches the bottom of its potential well,
x(t,)=0. In addition, this model is unnatural because
the exponential behavior for large negative y, (7.7), de-
pends crucially on the vanishing of the bare Planck mass.
Unless this is guaranteed by some symmetry, we have yet
another example of a fine-tuning. For these reasons, we
favor case (1) for which the potential is extremely flat
provided only that ¢(z, ) exceeds both m /(8x|&|)!/?, and
mp /(87|EN)1/2.

Unfortunately, induced gravity suffers from a perhaps
fatal flow: although the gauge bosons acquire a mass,
given by m?% =g2m}2 /(87|£|), where gg is some coupling
constant, they are totally decoupled dynamically from the
scalar field. The same holds true for fermions. Therefore
there is no reheating.

To see this, let us assume for simplicity that ¢ is a com-
plex scalar coupled to some U(1) gauge field 4, which
can be accommodated by adding terms quadratic in the

field strength, F,,, to the Lagrangian (3.1), and by replac-
ing the kinetic ~term 9,49, by  (9,0*

+igg A,9*)(3,6—igs A,4). (The non-Abelian case is
treated in Appendix B.) Performing the now familiar
conformal transformation, and then redefining fields,
¢=Be™, 4,=A4,+S /85, where B and S are real
fields, we find the action to be

2 2

mp

167f

m
V(B)—————
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where F,,=3,4,—9,4,. If f=—E¢*¢p/2=—EB%/2
then the gauge field becomes a superheavy boson,
m?%=gim2/(8w|&|), and, remarkably, B totally decou-
ples from A e

Models that couple the scalar field to fermions (which
would become superheavy upon symmetry breaking) do
not solve the reheating problem either. Fermions are also
conformally coupled to gravity, and they behave much
like gauge bosons. To illustrate this point, we consider a
simple model containing a left-handed fermion field, ¥, ,
carrying a U(1) charge —gg, and a neutral right-handed
field, ¥ . The Lagrangian density is

L= iJLVa($a+igG Va'uAy)lva +11ZR ya$a¢R
_h¢1ZR¢L _h‘ﬁ*’ZL”bR .

The covariant derivative D, is defined in terms of the
vierbein”® V' *:

(7.12)

D=V 8, +30p VﬂvV";“y‘) ’ (7.13)
opy="3lvp7,]

and A is some dimensionless coupling constant. If we
write g,,=Q%x,#)g,,, then the vierbein transforms as
Ve¢,=QV?*, and the Lagrangian density becomes

L= iy Dy +iggV A, +itgy Dabr
—hQéPr, —hQb* T, Pr -

The covariant derivative 9, is just (7.13) with V, * re-
placed by 7V, and the transformed fermion field is
VLR =Q3/2¢L‘R, which produces a Dirac mass 7 Q¢. In
our case Q=m, /(8m|&|¢p*$)!/% hence, the transformed
fermion field also totally decouples from the scalar field.

This situation is disastrous because the Universe would
not reheat. ¢ would act like cold dark matter as it oscil-
lates endlessly about the minimum of its potential. Radi-
ation and baryonic matter would be produced only in
trace amounts through gravitational particle creation.
This problem may perhaps be resolved by calculating the
quantum corrections to the action (3.1). Except for the
scalar self-interaction, there is no scale in the theory.
Quantum corrections will probably break this symme-
try,*® possibly in the same way asymptotic freedom is
broken in low-energy quantum chromodynamics. More
work is required to test whether this type of broken scale
invariance can make induced gravity viable.

(7.14)

3. Fluctuations in the variable Planck mass model

To ensure that reheating will occur, we drop the condi-
tion that mp be totally induced by the scalar field, and
present a less ambitious proposal, which we call the vari-
able Planck mass model, with

mp
O —F— .
vV 8w|€]
The bare mass must then be m =mp. In this case, ¢ acts

only as the Higgs to the GUT bosons fields; as its
minimum it provides only a nominal contribution to mp.

(7.15)

1779

The effective potential U () is plotted in Fig. 12(b). For-
tunately, the extreme flatness of the potential at large
values of ¢, ¢ >>mp /(87|£])1/?, is not destroyed by radi-
ative corrections because gauge bosons, as in the case for
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FIG. 12. The effective potentials [Eq. (7.2¢)] for the induced
gravity (a) and variable Planck mass (b) models are plotted as
functions of the transformed GUT Higgs field y. In (a),
m peﬁ=mpexp(a)() is generated entirely by the y field, reaching
its standard asymptotic value when Y =0 at the bottom of its
potential. Power-law inflation results if ay(¢;) << —1, but to en-
sure sufficient e-foldings A must be exceedingly small. In a
chaotic setting, ay(tz;)>>1 is more natural. The black dot
marks the position where the scale 5000 h™'Mpc left the hor-
izon. If A=0.05 and £=—2.0X 10%, P}" of the “observed” am-
plitude, 7X 1073, is obtained, thus solving the small-A problem
in exchange for large —&. However, this model has severe
reheating problems. The model of Fig. 11(b) has a bare value
for mp equal to its present value. At the 5000-h~'Mpc horizon
crossing point (black dot again), mp is an order of magnitude

larger than mp. For ay>>1, the model retains the asymptotic
behavior of the induced gravity model, with successful ?; gen-
eration using the same A and £. Coupling to gauge bosons is
small on the plateau, and radiative corrections do not destroy
the flatness of the potential. At the minimum, coupling is
strong and reheating is efficient. The GUT symmetry-breaking
parameter o was chosen to be 0=10"3m, for plotting pur-
poses, although the o = 10™*m,, is theoretically preferred.
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induced gravity, essentially decouple from ¢. To show
this, consider the one-loop radiative correction to the
effective potential given, for example, in Cheng and Li:™*

4

_ 3m7

rad 2
64

where, ¢ is some fixed normalization scale, and m% is the
effective value of the boson mass, which may be read
from (7.11), m 3? =(m3/16m)géB?/f. This correction
term may be combined with the tree-level potential. Its
effect is to produce a running coupling constant Ag:

2

m&
4

V —
t

In , (7.16)

2
ma
12

3gé
1672

If A=5X10"2 and g; =0.5, then the radiative correction
is of the same order as the tree value of A, but does not
overwhelm it, which was a fatal flaw for earlier models
with A=5X10"1* (Sec. VIA). The modification due to
fermions is at a similar level. Although these arguments
are crude because the potential U(Y) is not renormaliz-
able, they are nonetheless extremely suggestive.

Using Eq. (7.15), one can easily show that the effective
potential in this model has the same large ¢ asymptotic
behavior as the induced gravity model. Therefore the 7’§
formula (7.5) remains valid. As in Sec. VII A 2, there is
no small A problem in this model. Moreover, when the
scalar field rolls down to the bottom of its potential, it be-
comes strongly coupled to gauge bosons via the term
85B*4, A* in (7.11), and reheating is expected to be
efficient. We will therefore write the reheat temperature
T .., as the product of an efficiency factor € and the max-
imum allowed reheat value:

Ag =A+

In (7.17)

30 1/4
Ten=¢€ ——z'ge_ﬁ'l U,
T
15 1/4
= —1pr—2
=¢ |——gx N/ ‘P m
16172geﬂ‘ I g] P

=2.0X10%¢ GeV , (7.18)

where we have taken P}/?=7X107°, N;=60, and the
number of degrees of freedom, g.;=160.75. The
efficiency factor must be determined numerically.

It is essential that T,; should not exceed the
symmetry-restoration temperature Tg otherwise in more
realistic non-Abelian GUT models, monopoles will be
produced in copious numbers as the Universe cools. In
the simple U(1) model used in this section, the thermal
correction to the potential is”

AV=T tm?T?
i

2

=%[(4A|¢|2—2Aaz)+3gél¢l2] ; (7.19)
the first term arises from the scalar field, ¢=¢,+id,,
3 m2=03%V /3¢3+3*V /343, whereas the second comes
from the massive gauge boson A, which has three spin
degrees of freedom. The U(1) symmetry is broken if
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3%V +AV;)/d|¢|* <0 at the origin, which is the case if
the temperature is below
20

Tg=—--2 7.20
S (4/3+g2 /M) (7:20

[Actually, the above derivation of the symmetry-breaking
temperature should replace ¢ and V(¢) by xy and U(y),
but at ¢=0, the results are very nearly the same if
o <<m.]

One might also like to arrange for T, to exceed the
low-energy superheavy boson mass, m , =gso, for then
baryogenesis proceeds according to the standard picture:
superheavy gauge bosons leave thermal equilibrium as
the Universe cools and decay through baryon-
nonconserving CP-violating channels to produce slightly
more matter than antimatter. Since there are other ways
of doing baryogenesis, this lower bound is not an essential
requirement of the theory.

In order to solve the monopole problem and still retain
the standard model of baryogenesis, we would then re-
quire

2

<T ey /O<———"7%5 (7.21)
:{¢; reh (4/3+g2 /M)
which always has a solution provided
gé
————=1.7X10"? if gz=0.5 . (7.22)
4—4gs /3

The value A=0.05 adopted in Sec. VII A 2 satisfies this
inequality. If we assume that perturbation theory is val-
id, A <1, then o is constrained to lie within the narrow
limits

1.3X 105 GeV <o <4.0X 105 GeV . (7.23)

The limits from a more realistic model are given in Sec.
VIIB.

However, if the Higgs particles rather than the gauge
bosons generate the baryon asymmetry of the Universe,®
we would only require that m, <T,.,. At the minimum
of the potential, this always holds, since the mass of the y
field is

= V2io
X (14487202 /mp)1 2
=1.5X10" GeV .

We have assumed that o >>mp /(487&%)!/2 and that the
ratio A/£? is given by the fluctuation formula, (7.5).
Therefore only the lower bound in Eq. (7.23) must be
satisfied, to avoid excessive monopole production.

In Fig. 13(a) we show the last five e-foldings of our nu-
merical calculations of the variable Planck mass model,
with A=0.05, £=—2.0X10* and 0 =10"*mp. The ra-
diation energy density reaches its maximum value shortly
after the damping factor I and the mass of the Yy field,
m(x)=(]d2U /3x?|)'?, exceed 3H, for then the rate of
rolldown and the particle creation rate are larger than
the expansion rate. The value of the efficiency factor € is
determined primarily by the value of ¢ when
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2m (y)=3H, provided I" exceeds 3H and 2m at that time.
For the case shown in Fig. 13(a), €=0.48. This depends
somewhat on the choice of I'. At the moment this is the
greatest source of uncertainty in our models. We believe
that it is natural for the coupling to bosons and fermions
to be sufficiently strong as the scalar field drops into the
well around ¢ ~o for the field to remain in the well,
without crossing over the hump to negative ¢. Other-
wise, undesirable topological defects might arise.
For the calculations shown we have assumed

T(x)=fV2ka[m?/m3+8mll(1+6|£))p*(x)/mE]1~1/2 .
(7.24)

Our motivation for this choice is that when ¢=~o, I is
just proportional to the mass of the y field, while for
¢>mp/(87|E])1/2, it is negligible compared to the Hub-
ble parameter, so that slow-rollover rate is determined by
the 3H y term of (4.6c). We used f =5.0 in Fig. 13(a); in-
creasing or decreasing f by a factor of 4 does not alter €
or P significantly. However, decreasing f to below
about three leads to negative ¢. Our handling of T is ad-
mittedly crude, but a more precise description from first
principles is a difficult task. The perturbation calcula-
tions are started when k/Ha =5 instead of the usual
value of 50 to minimize the effect of particle damping on
the quantum fluctuations within the horizon where the
damping expression is not valid.

Figure 13(b) shows the resulting fluctuation spectrum,
Pyk). Apart from the way the variable Planck mass
model alleviates the reheating problem found for the in-
duced gravity model, the models are quite similar. The
fiducial quantities displayed in Eq. (7.6) remain valid, ex-
cept that o is now an order of magnitude lower than o,
and that m 4 of (7.6) is now interpreted as the mass of the
gauge boson in the ¢— oo limit. In particular the esti-
mates of 7, made for case (1) still hold, and agree with
the numerical results to within 10%.

4. Relation to fluctuations in R? inflation

The R? inflation introduced by Starobinskii®® (see Sec.
VID) is actually mathematically equivalent to the in-
duced gravity model. Using a conformal transformation,
Whitt’® has shown that Lagrangians of form
Lg=(m}/16m)[R +R?/(6M?)] can be written as regu-
lar Einstein gravity interacting with an additional scalar
field (identified with R). If one defines a new field
3m32 172

167

x= In 1+311;2 , (7.25)

the transformed Lagrangian takes the form
2

[ = ﬂ B — 1guv, _
L 167rR 8" 0, x—U(x), (7.26)
where the potential is
3m,2)MZ 167 1/2 2
Uix)y=—7— 11— - | . .
(x) Ty [1 exp m3 X] ’ (7.27)

Note that this is formally similar to Eq. (7.3), and in the
large |£| limit it is identical if we identify M /m, with
[A/(24m)]1'%|€| 7. Applying the fluctuation formula
(7.5), we therefore obtain

172 M
— t) .
po Ny(t)

3

PY= (7.28)

This gives the level of fluctuations corresponding to
b,=1.44if M~1.2X10"mp.

With the large |£| coupling, we expect that R? and oth-
er terms will be generated through quantum corrections.
Since gravity is not renormalizable, this problem cannot
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FIG. 13. The late-time behavior of the scalar field ¢ in the
variable Planck mass model with the potential of Fig. 12(b) is
shown in (a). When the rate of roll down, 2m (), and the dissi-
pation rate I' grow larger than the Hubble expansion rate, 3H,
the radiation density, p grows to its maximum, yielding a
reheating temperature efficiency €=0.48. The damping is
chosen to be critical near the end of inflation to avoid ¢ reach-
ing negative values. U, and H; are the asymptotic values of the
potential and the Hubble parameter. Our calculated ?; spec-
trum is shown in (b) for the model with A=0.05 and
£=—2.0X10*% Variations of A and & yield similar scale-
invariant spectra [P, = A/£%, Eq. (7.5)].



1782

really be addressed. Nonetheless, we can estimate the R 2
term to have a coefficient® (§—1/6)%/(384x2). For the &
value required to give the observed 7, even larger per-
turbations might arise from the R? term, possibly giving
double inflation naturally.

B. Chaotic inflation incorporated in a GUT

The methods of Sec. VII A may be generalized to any
GUT model. For instance, in Appendix B, we consider
in detail the 24-dimensional adjoint Higgs field of SU(5)
and here we will only present the results. Because the
non-Abelian character of SU(S) is irrelevant when one
calculates the one-loop effective potential,” it is easy to
show that radiative corrections do not destroy the flat-
ness of the Higgs potential. If monopoles are not to be
produced but baryogenesis is to occur through gauge-
boson decays, then the symmetry-breaking parameter o
must now fall within the revised limits

3.0X10%e GeV <o <5.9X10% GeV .

However, if baryogenesis occurs via the Higgs particle,
then only the lower limit is necessary. These inequalities
could prove useful for GUT builders. The range is tan-

talizingly close to the quoted value of 1.2X 10" GeV if

we use the efficiency factor €=0.48 obtained in Sec.
VII A. We have not tried to refine the model further to
obtain exact agreement because this would require,
among other things, a more careful treatment of the
damping factor, I' (Sec. VII A). Moreover, the SU(5)
model is only illustrative of what would occur in more
realistic GUT’s, since it has been ruled out by the absence
of proton decay.

It is natural to consider the cosmological consequences
of the Higgs boson H having so many components. 20
degrees of freedom may be gauged away, leaving four
behind, one radial, ¢ =(TrH 2)172 "and the other three an-
gular components. ¢ corresponds to the field of Sec.
VIIA. The parameters may be chosen so that
SU(3)XSU(2)XU(1) is the absolute minimum of the an-
gular potential (fixed ¢), in which case SU(4) X U(1) is the
absolute maximum. Although the potential structure is
rich, containing, for example, many saddle points, it is
improbable that spectra with large-scale power will be
produced. The scalar field rolls down to the
SU((3)XSU(2) X U(1) trough along angular directions in
potential space in a very short time (less than 1% of the
Hubble time). Only then does it begin to inflate, slowly
rolling down the trough in the radial direction. Since
there is no structure in the trough, neither double-
inflation plateaus nor negative mass-squared mountains
will occur in this model. The general prediction of the
model is therefore a scale-invariant spectrum. This con-
clusion is modified if additional multiplets besides the 24
Higgs representation are added. Double inflation results
if the A parameter of the new field is much larger than
that of the adjoint Higgs representation, so it dominates
the energy density at the start of the chaotic era. It then
rolls down to its minimum and the adjoint Higgs repre-
sentation leads to a second inflation phase. Other cou-
plings might lead to mountain spectra, if moguls can be
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added in the trough.

Our mechanism for incorporating inflation in a GUT
assumes the potential ¥ (¢) of Eq. (3.1) is proportional to
¢* for large values of ¢, so that the effective potential
U(p)xV(p)/¢* is asymptotically flat. If V(4) is less
steep, say of form m?2$*/2, then U(¢)x¢ % hence the
scalar field would grow to very large values and, since the
couplings to fermions and other bosons becomes weaker
[Eq. (7.11) and sequel], reheating is very unlikely. We
would also lose one of our original motivations for con-
sidering €70, namely, to cancel infinities arising from
A¢* in curved space. Potentials steeper than ¢* would
lead to a picture similar to the original £=0 chaotic
inflation theory. For all non-¢* asymptotic cases, a fun-
damental mass scale would appear in the theory, which is
unattractive. We therefore view the case we have treated
as the most natural.

It may be argued that a large number of terms will
arise from quantum corrections from the ¢ graviton and
¢-¢ interaction, which could steepen the asymptotic ¢
dependence above ¢*. However, we could calculate quan-
tum corrections using the conformally transformed ac-
tion (3.6) instead of the action (3.1) with the —&R ¢?/2
explicitly appearing. The resulting residual graviton cou-
pling to the scalar field is small. Further, the self-
interactions are also small in the conformally
transformed system, leading to negligible quantum
corrections to U(x), at least at the one-loop level,
AU, ~m*In(m?)/(647*) where m*=9?U /3%*x. We do
not know if higher loops will steepen the potential, but
we suspect that the asymptotic decoupling of the scalar
from other fermions and gauge bosons will survive.
Nonetheless, confronted with the slippery ground of not
having a renormalizable theory of gravity, we should be
cautious about over-interpreting the results of our
simplified treatment.

VIII. CONCLUSIONS

In this paper, we have presented the appropriate equa-
tions along with their initial conditions which must be
solved to follow the evolution of density fluctuations
when there is more than one scalar field present. We
showed that special attention must be paid to the way the
initially uncorrelated zero-point oscillations of the fields
develop cross correlations as evolution proceeds through
cross couplings in the interaction potential and through
the metric perturbations. With N fields one must do alto-
gether 2N runs for each wave number to properly con-
struct 7, two for each of the N independent annihilation
operators, one being for the real part and the other for
the imaginary part of the mode function. We solve
2N +1 ordinary differential equations (ODE’s) to get the
background field evolution and must solve 4N (N +1)
real ODE’s for each wave vector to get the perturbations,
since there are 2N replications of the 2(N +1) coupled
mode equations. The replication runs differ only in their
initial conditions. For numerical purposes we have found
that working in either the longitudinal or synchronous
gauge gives accurate results, although some care must be
taken with the choice of variables to follow in the latter
case.
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We are in general agreement with the spirit of the Kof-
man and Linde'® and Kofman and Pogosyan'® papers:
practically any form for the fluctuations can be generated
in inflation provided we allow ourselves complete free-
dom in the structure of the potential surface and the ini-
tial conditions for the scalar fields. The issue is what
forms are probable. Although it is not yet possible to as-
sess the likelihood for required sets of initial conditions
that gave rise to our unique patch of the Universe, we
have a strong prejudice towards models that are not sen-
sitive to them.

We have shown that initial fluctuation spectra with the
ramp plus plateau shape can appear in inflation models
with more than one dynamically important scalar field.
However, the tuning of the initial condition ¢,(¢;) and
the potential parameters to be just right so that the ramp
in the power spectrum nearly coincides with cluster scale,
does not rise too high to violate the microwave anisotro-
py constraints, yet rises high enough to give the cluster
correlations, requires an unlikely set of circumstances.
Gaussian mountains may also be produced in multiple
scalar field models, but they share the same problems if
we restrict ourselves to potentials consisting of quadratic
and quartic interaction terms.

If the necessity for mountains of large-scale power
above the CDM density spectrum is really thrust upon us
by the observations, then we are confronted with a num-
ber of relatively unpalatable options. Large-scale power
can be obtained with scale-invariant initial conditions by
utilizing the natural scales defining the shape of the
transfer function. However, since mountains of extra
power cannot be obtained with flat initial conditions no
matter how the transfer function is modified (only pla-
teaus are possible), mountains could only arise by break-
ing scale invariance in the fluctuation generator, either to
give CDM+mt initial conditions, or power-law initial
conditions, as in the isocurvature baryon models. The
power laws that are attainable in power-law inflation for
isocurvature perturbations go in the wrong direction,
with more power at large scales than the scale-invariant
spectra which are already ruled out by excessive large-
angle CMB anisotropies. Although for the adiabatic
mode the power-law spectra (obtained with an exponen-
tial potential) do rise with increasing wavelengths com-
pared with Zeldovich spectra, more of the power would
reside at large scales, where the CMB constraints restrict
the amplitude of the rise, than at intermediate scales,
where the extra power could do some good.

Small mountains (moguls) on the potential surface
generically lead to mountain fluctuations that are in-
dependent of initial field conditions. We saw that these
could be Gaussian provided the difference between the
background field and the ridge line of the mountain
exceeds the level of the quantum fluctuations of the field.
An explicit construction of such a case was given in Sec.
VIC2 by adding a cubic interaction to our generic quar-
tic potential. On the other hand, if the quantum fluctua-
tions dominate, the density field will be non-Gaussian, as
we showed in Sec. VID. This subject certainly warrants
further investigation since it has such profound implica-
tions for the large-scale texture of the Universe.

Adiabatic perturbations will always arise from the
inflaton. If the potential is sufficiently flat in the isocon
direction, isocurvature perturbations could also rise,
perhaps being dominant. Placing a single mogul at just
the right location to solve our large-scale structure prob-
lems seems contrived: potential parameters defining the
position, the height, and the width of the mogul to place
extra power with the “observed” amplitude just beyond
the scale of clusters of galaxies adds much more fine-
tuning to the already unnatural tiny A requirement of sin-
gle field inflation.

However, as we emphasized in Fig. 4, current observa-
tions of structure in the Universe probe a surprisingly
small region of the potential surface. In standard chaotic
inflation, the range 3.7mp to 4.4mp model encompasses
scales from about 1 kpc, corresponding to the Jean’s mass
at recombination, to about 5000 h™! Mpc, our current
horizon scale. The extra large-scale power suggested by
the current state of the data would correspond to a mogul
covering the region from about 4.1 to 4.3mp. Rather
than specially placing one mogul, a more natural situa-
tion would be to consider many moguls, possibly of vary-
ing scales, littering the potential surface. How strong is
the case for scale-invariant spectra in our narrow observ-
able window of potential space? The RELICT CMB
bounds are only upper bounds, and cover about 4.3 to
4.4mp. The strongest evidence for a flat regime would be
the success of the CDM model is giving the galaxy-galaxy
correlation function, covering 4.0mp to 4.1mp. It is also
possible to argue that even this is a fortuitous coin-
cidence, and that the true fluctuations are steeper than
scale invariant.®® We certainty could have a spectrum
radically different than scale invariant from 3.7m, to
4.1mp with our current level of knowledge of subgalactic
masses. On very short distances, the constraints are quite
weak; for example, the degree of hilliness must not lead
to a prolonged cessation of inflation. Many moguls could
also lead to spectra with plateaus or even power laws
over the narrow window of observation. In all cases,
non-Gaussian fluctuations could arise. Thus the difficulty
does not lie in breaking scale invariance to generate any
prescribed fluctuation spectrum provided the potential
surface is treated phenomenologically, but in limiting the
possibilities of mogul structures that may arise naturally
in particle theories of the early Universe.

Within the standard chaotic inflation scenario, there
are three problems: a finely-tuned A, a constrained curva-
ture coupling constant £ <0.002, and inefficient reheat-
ing. By allowing £ to be negative and large, and recog-
nizing that grand unified models are more likely to under-
go chaotic rather than new inflation, we showed how
these three problems could be solved, although V'A/|£]
still has to be tuned to get the “observed” fluctuation lev-
el. If we expand the Higgs sector of the GUT to include
more than one Higgs multiplet, then all of the methods
we have used to generate broken scale spectra can be ap-
plied to these theories.
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APPENDIX A: COMMUTATION RELATIONS
FOR NONMINIMALLY COUPLED SCALAR FIELDS

In the presence of a f(¢,)R term in the La-
grangian (3.1), the wusual commutation relations,
[#(x,7),(d¢ /37)(x",7)]=ia ~28%*(x —x') are modified (7
is conformal time). Our development here will be nonri-
gorous. The rigorous and elegant method uses the
transformed action (3.6) and is given implicitly in (3.7c).
For simplicity then, choose N =1, Tij(¢k )=1, and write
the metric as ds’=a*(—dr*+dx*+dy>+dz?). Making
use of the conformal transformation (3.5) and then in-
tegrating by parts, the action becomes (note that all in-
dices are raised and lowered by 7,,,))

9
S=[d* 6fa‘”a’“+6a€£ay#¢’“——%azqﬁ’#q&*”
—a*V(¢)| , (Ala)
with corresponding momenta
__ 88 __ a0 9f 5o
P¢'5(ao¢) a8¢+6aa¢aa,
(A1lb)

__ 88 _ 3f0 0
PadS(aoa) 6aa¢6¢+12faa,

which satisfy the classical Poisson-brackets relations’’
{o(x,7),Py(x’,T)} ={a(x,7),P,(x',T)}

=8(x —x'), (Alc)
with all other Poisson brackets vanishing. Note that the
integration by parts eliminates second derivatives, pro-
duces the nondiagonal term 6a (3f /9¢)a , ¢ and, conse-
quently, the momenta now contain nonstandard terms
«gf /d¢. The Lagrangian (Ala) describes a minisuper-
space model since only the scale factor of the metric is
treated. Inverting (A 1b) in favor of 3% and 3%, we find
that

~2
‘qb(x,r),%é(x'n‘) }=——fi—753(x —x) . (A2)
of
r+3|55

Only if df /9¢=0 is the standard Poisson brackets ob-
tained. In particular, if f =m2 /167 —E$2/2 then

[¢(x,7'),%f_l(x’,7') ]
2
1—8me-2

m
=q r 5 8(x —x') .
1+87E(66—1)——

mp

(A3)
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In the quantum treatment, we would replace 8(x —x')
by i 8%x —x'), and the resulting effect on the normaliza-
tion of the mode functions is crucial if ¢ > mp /(87|£])!/2,
a case we treat in Sec. VII using a different method. The
right-hand side of (A3) is time dependent and it is there-
fore possible to arrange that it be small at the onset of
inflation. This forces the quantum fluctuations leaving
the horizon to be small and produces a suitable level of
metric fluctuations even if A=5X 1072 If at the end of
inflation, ¢ <|87&(6E6—1)|7'*mp, (A3) reduces to the
regular equation. The final result is a standard grand
unified theory (see Appendix B).

APPENDIX B: INDUCED GRAVITY
IN A GUT FRAMEWORK

In Sec. VII we claimed that if the curvature coupling
constant was chosen to be £= —2X 10%, inflation could be
incorporated within a grand unified theory. However,
the simplified analysis of that section utilized a single
complex scalar field coupled to a U(1) gauge field, and we
now wish to consider the physically more interesting case
of non-Abelian gauge fields. We concentrate on the well-
studied minimal SU(5) model, although any gauge group
could be incorporated. In SU(5), the Higgs field, H, and
the gauge field, 4,, both in the adjoint representation,
are described by the Lagrangian density

L=—1tr(3,H +igg[ A, HN"H +igg[ A*,H])

—V(H)—1trG,,G"" , (Bla)
with the potential chosen to be
V(H)=—m3}trH>+ A (trH?)*+ AtrH* . (B1b)

The conventions are those of Itzykson and Zuber,”®
Cheng and Li;,” and Brandenberger:’

H=V2¢,7, A,= Amfi, trrir/ =18V . (Blc)
We work with the variable Planck mass model of Sec.
VII, where f=m?*/(16m)—EtrH?/2, and m*~m}, so
that when H reaches the bottom of its potential,
trtH?><<mp2/(8w|&|]). The conformal transformation
(3.7a) leads to a new Lagrangian density:

2

m
" (3f WS+ f tr(3,H +iggl A, H])

I=-1_mr
2 167f

X(HH +igol A% HY)

, )2
mp
- V(H)—1trG,, G*¥ . (B2)
Tonf (H)—3trG,,
The gauge boson masses are generated through the term
2
LA P a4 HI[ AR H] . (B3)
2 | 167f # ’

If H is diagonalized, H =diag[h, . .., hs], then the mas-
sive gauge bosons may be labeled by two indices,
i,j,1<i,j <5,i%j, whose masses are given by



I&

mp
167 f

The formula, (7.16), for the gauge-boson contribution to
the effective potential generalizes to a sum over all gauge
bosons, and if H is in the SU(3)XSU(2)XU(1) trough,
H = ¢,diag[2,2,2, —3,—3]/V'30, the radiative potential

]'

(B5)

21

m,-j 2

g&th;—h;)?. (B4)

2
mpdi
167 f

mi_ #1|_1
16mf o2 2

The normalization scale ¢ of (7.16) and the cosmological
constant were chosen so that at ¢,=o, V4 reaches its
minimum of zero. Radiative corrections to the potential
are negligible if the coefficient of ¢} in Eq. (B2) exceeds
thatin V4

mp $i

1677 0'2

1

2

25g¢
At k2> lim 86
|\~ 25677

(B6)

In particular, if §——2><104 o=1. 2><1015 GeV, and
g6=0.5, we find that A;+ LA,>3.0X107>. This con-
straint is quite plausible and is easily achieved (see
below), whereas in the minimally coupled case it was de-
vastating.

To ensure the suppression of monopoles and yet have
baryogenesis proceed through the decay of gauge bosons,
we impose the condition

My <T,p <Ts . (B7)

Additional constraints beyond My < T, are required if
the theoretically calculated baryon asymmetry is to agree
with observations. In fact, minimal SU(5) does not give
the correct value,®? so we use the SU(5) model to illus-
trate what would have to been done in other models.
T,., depends primarily on the level of primordial metric

fluctuations and is given in Eq. (7.18): T, =2.0X 10%%
GeV; according to (B4), My=V'5/12g5;0, where

o=m,/[2(A;+71,/30)]'/? is where the minimum value
of the ¢, potential is achieved; 75 has been derived by
Guth and Tye,” and has the form

A+ A, 172
TS=40 5g + 104)L +1 A (B8)
G 2
The inequality (B7) then becomes
1 58(;+ 104}\’ + 188}\’2
4 E)"Z < U/Treh
<yzL | (B9)
£e]

which always has a solution if the following consistency
constraint is satisfied:

224 188

192 104 _
25g2

(B10)
56 3

Ay>5g% .
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Additional constraints on the Higgs parameters A;,A,
come from the requirement that the SU(3)XSU(2)
XU(1)-breaking pattern be the minimum of the poten-
tial:"*

A+ L4,>0, (B11a)

A, >0 (B11b)

We will also apply the constraint that A <1 in Ad*/4
which ensures that perturbation theory is valid:

A+ LA, <0.25 . (B12)

These inequalities imply that A; and A, must fall within a
triangular region bounded by (B10)-(B12) (see Fig. 14);
(Bl1a) is actually redundant and the constraint (B6) turns
out to be very weak.

Within the allowed region, the minimum value of the
left-hand side of (B9) is 1.575, which occurs at
A,=—1.247, and A,=6.415, and the resulting constraint
on o is

3.0X10%¢ GeV <o <5.9%X10% GeV , (B13)

where we use the efficiency factor determined in Sec. VII:
€=0.48. On the other hand, if the Higgs field produces
the baryon asymmetry, then only the left-hand side of
(B13) is necessary; we have already shown in Sec. VITA
that my < T, occurs quite naturally. The value normal-
ly quoted for o is 1.2X 10" GeV, which is based on the
extrapolation of running coupling constants over 13 or-
ders of magnitude. Although this number is outside the

8 T T T T —‘ T T T ' T T T T T T T T
R B
N
AN
N -
H Constraints on SU(5) Higgs Parameters -
6 |— . -
N
L N 4
~
- \\ —
N
L ~ 1
4 — Consistency - S —
N
< - Constraint AN -
L N
N 4
N
- N -
N
2 AN “A<1 —
N
- N -
N
N
L N B
N
- Az = 0 N B
[0 I e e e A >\ ..... —_—
N
L o4
N
TS S SN S N SO ST WO SO AN SN ST ST WA S T
-15 -1 -5 0 5

FIG. 14." The sort of constraints that arise in large —§ vari-
able Planck mass models are illustrated in this figure for an
SU(5) GUT model. The SU(5) Higgs parameters A, and A,
[defined by Eq. (B1b)] must fall within the triangle shown to (1)
give no monopole production and yet have baryogenesis occur
through gauge-boson decays [solid line, from Eq. (B10)], (2) en-
sure that symmetry breaking gives SU(3)XSU(2) X U(1) as the
absolute minimum (A, <0), and (3) allow perturbation theory to
be used [Eq. (B12)]. If Higgs bosons generate the baryon asym-
metry, the solid line is replaced by a line parallel to the long-
dashed line which passes through the origin, as given by Eq.
(Bl1a).
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allowed region (B13), we do not believe that this failure is
serious as further refinements and/or change of GUT
model could possibly give agreement.

We now consider the cosmological consequences of the
four fields that parametrize the diagonal Higgs field,
H =V2¢;7". It proves convenient to choose the diagonal
basis

r'=diag[2,2,2,—3,—3]/V60 ,
*=diag[0,0,0,1,—1]/2,
r=diag[1,—1,0,0,0]/2 ,
r*=diag[1,1,—2,0,0]/(2V3) ,

(B14)

and then express the ¢; in hyperspherical coordinates,
¢, 9 1> 62, 93:
$,=¢cosb, ,
¢,=¢sinfcosl, ,
(B15)
¢3=¢ sinf;sinf,cos0; ,
¢4=¢ sinf;sinf,sinb; .

We find that the scalar field part of the Lagrangian densi-
ty, (B2), is

242
z — 1 ,#_lM(G 0+ +si 269 0:
o XWX 2 16nf Ly ' +sin®0, 2,1 #
+Sin2915in20293,#6§u)
5 2
— |22y (B16a)
167f ’
where
V(H)=—m3$>+¢* A +A,8(6,)], (B16b)
| g(6;)= %+ 4sin’0, — 1¢sin*6, +sin0;sin0,
X | —1+sin%0,sin%0,
4V’5
+ . . .
5 cosB;sinf,sinb,sin(36,) | , (B16¢)

and x(¢) is defined in (7.2a). The angular potential,
g(8;), possesses an absolute minima at ;=0 correspond-
ing to SUB)XSUQ2)XU(1), H = diag[2,2,2, —3, —3], and
an absolute maximum at 6,=0, tan(6,)=(3)'"? where
H «diag[1,1,1,1, —4]. Permutations of the diagonal ele-
ments of the Higgs field would also lead to absolute extre-
ma. All other critical points are saddle points, so if the
conditions (B11a) and (B11b) are satisfied, it is inevitable
that the Higgs field will roll into the SU(3) X SU(2) X U(1)
trough. In fact, if the Universe begins chaotically, the
time to do so is extremely short, measured in fractions of
a Hubble time. To see this, we need to compare the
effective mass with the Hubble parameter. Since an
order-of-magnitude estimate is sufficient, we will restrict
ourselves to 6,=0, in which case g (6;) is a function only
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of 6,. If ¢>>mp/(8m|£|)!/?, the coefficient of —16, 6+
in (B16a) is essentially a constant, mﬁ /(8|£€|), and a re-
scaling of the field, y =[mp/(87|£])1/?16,, yields the
standard kinetic term. The mass of this degree of free-
dom is of order A,m}/(8x|£|), which is approximately
10|£|H2=~10°H?.

Therefore, the time scale for motion along the 6, direc-
tion is extremely rapid, hence the Higgs field will roll rap-
idly in the angular direction into the proper trough; only
then will the slow roll-down phase begin. This holds even
if the angular variables start very near the maxima of
their potential. Thus, although the potential (B16b) con-
tains a peak as well as saddle structures, double inflation
spectra do not arise in this model. Further, mountains
also do not occur, since the fields do not pass through a
region of negative mass squared during slow rollover.
Double inflation might arise with additional multiplets.
One would only require that this new chaotic field have a
value of the A parameter much larger than that of the 24,
Higgs field so that it may dominate the energy density in-
itially.

APPENDIX C: NUMERICAL SOLUTION
OF INFLATION EQUATIONS

The numerical computations of the background equa-
tions (4.6) and the perturbation equations, (4.7) for the
synchronous gauge and (4.8) for the longitudinal gauge,-
form the backbone of this paper. These ordinary
differential equations are integrated using a fourth-order
Runge-Kutta scheme. We express all quantities in units
of mp in the code and use x =Ina for the integration vari-
able. For the case of two scalar fields, the integration
variables are p, ¢,, ¢, ¢,, and ¢,. The equations we solve
for ¢, for example, are therefore

dé, .

dx =¢/H,

dé, 14

dx - (3H+F1)¢l+ a¢1 /H.

The initial conditions for the background fields ¢;(z;)
are always chosen to give at least 60 e-foldings of
inflation, and ¢;(¢;) and p(¢;) are determined by the

-slow-rollover condition (Sec. V). The timestep, Ax, is

chosen to be

Ax =¢eX ,
172

2
O | 3H/GH+T))

2wH /

X =min

The minimum of the kinetic and damping time scales is
taken over all fields. We typically choose the conserva-
tive value e~ ;5 to ensure our steps are small compared
with the characteristic times of the problem. For some
problems larger values € are quite sufficient. The back-
ground run is stopped when the Universe reheats:
Py <1077 pyyy.

Other model-dependent criteria must be used to sup-
plement the above choice of time step. For example, the
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Coleman-Weinberg potential has an inflection point;
hence, 27H /|3%V /3¢*|'/? is a poor time scale choice
near there; for ¢/0>0.4, we replace it by
2mH /1(8%V /34*)(0)|'/2. For multiple scalar fields, one
often encounters the problem of two disparate time
scales: say m, and m,. As ¢, rolls down first and damps
away in its trough, we are justified in killing this degree
of freedom once Py, < 10_5p¢2. For simple v=0 double

inflation models, we then set the background values ¢,
and ¢, to zero as well as the two perturbation values ¥,
and t,. For models with v <0, we set ¢, =d1,,, ;=1
¥, =0=1,,, but, in addition, we insist that this occurs
once ¢, <0.9(m? /v)!”2 to avoid turning off the field be-
fore it has reached a region of negative mass squared.

We use the y variable, Eq. (7.2a), to evolve the variable
Planck mass model. To calculate the potential U(¢) in
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terms of y, we invert (7.2a) by a four-point Lagrange po-
lynomial interpolation on a table of ordered pairs, (¢,Y),
with ¢ values ranging from 10”30 to 0.1mp.

To integrate the perturbation equations, we require the
values of the background fields, interpolated from our
computed values using once again a four-point Lagrange
polynomial technique. The values of the perturbation
variables are given as in Sec. V when k> fHa, with f
usually 50, although for some problems it can be smaller.
Once k/Ha < f, the integration begins, with the time
step choice

Ax =min(e2mHa /k,Axy,.) ,

where Ax,,. is the time step of the background calcula-
tion at that same time.
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