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A class of supersymmetric models is discussed in which radiative quark mass as well as
Kobayashi-Maskawa (KM) and neutral-current mixing hierarchies are obtained with all Yukawa
couplings of the same order and no horizontal symmetries. The presence of a single mirror family is
crucial. The respective KM mixing angles of the top quark and mirror top quark (t') are of the
same order (in particular, V,b —V, b

—1). The lighter of the two top quarks typically has a mass
100 GeV while the mirror bottom quark, considerably heavier than either top quark, typically has

a mass ~300 GeV. The main experimental consequence of the neutral-current mixing matrix is
B(Z~ct +et)-10 —10 (if m, & mz —m, ), with similar branching ratio for charm+mirror top
quark. These decays should be observable at CERN LEP given 10 Z's. The models provide a
promising framework for nonperturbative Maiani-Parisi-Petronzio unification. The field content
can, in principle, be obtained from the superstring and a search for two-generation string vacua is
advocated.

I. INTRODUCTION a~hi, q;Q'+qR hR, q,'Q,

In both the up- and down-quark sectors there exists a
mass hierarchy' with m„ /m, ——„'„m,/m, 5 —,'„
md /m, ——,'„and m, /mb ——,', . There is also a
Kobayashi-Maskawa (KM) mixing angle hierarchy with

V„,-0.22, V„-0.05, and V„b —V„,V,„. The qu~~k iso-
doublet mass splittings satisfy m, »mb, m, »m„and
md & m„. In the standard model there is no understand-
ing of these hierarchies as they are put in by hand at the
tree level via a Yukawa coupling hierarchy of order 10 .
Many authors have proposed that the masses of the first
and second generations may arise out of radiative correc-
tions whereas those of the third generation may be
present at the tree level, thereby reducing reliance on Yu-
kawa coupling hierarchies. In the context of such propo-
sals it would be natural to expect that quark mixing as
well as isodoublet mass splittings could also be under-
stood in terms of radiative corrections.

Recently, a radiative mechanism has been discussed in
Refs. 3 and 4 for obtaining quark mass and mixing
hierarchies without the need for a Yukawa coupling
hierarchy (they can all be —1). In contrast with previous
attempts along this direction, this approach does not re-
quire the existence of a horizontal symmetry distinguish-
ing among the three known families. The third-
generation quarks acquire mass at the tree level while the
second- and first-generation quarks acquire their mass at
one and two loops, respectively. The basic ingredients
are as follows.

(i) The addition of a single exotic family of quarks Q,Q'
with large tree-level masses, MU, MD, whose quantum
numbers diA'er from those of the ordinary quarks q;, q,
i=1,2,3. The exotic family mixes with the latter at the
tree level via mass terms

0 a~~h~)

Q aR(hRI

inducing a mass contribution for ordinary quarks of the
form

m"'/h, )(h, [ .

Only one ordinary quark family acquires mass at the tree
level (=m' ') because this contribution is of unit rank.
In the seesaw limit M »aLaz, m ' ' is given by—al aR /M. From (ii) a radiative structure emerges, see
Figs. 1(a) and 1(b), again leading to rank-one mass contri-
butions of the form

m'"H ~hL )(hR ~H +m' 'H ~hl )(hR~H

Because radiative contributions are also of unit rank only
one additional quark family picks up mass at each loop
order and a mass hierarchy emerges for the ordinary
quarks.

A purely radiative KM mixing hierarchy obtains if

where aL ~ are massive parameters and hL z are dimen-
sionless coupling vectors, normalized to unity.

(ii) An isosinglet, charged color-triplet scalar co with
Majorana-type rank-three couplings to ordinary quarks
of the form

L R c c
Hi~ Ngi g) +H]J. COQUE gi

From (i) the tree-level mass matrix is of the form
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FIG. 1. Diagram (a) is a unit-rank one loop graph contribut-
ing to second-generation masses and diagram (b) is a unit-rank
two-loop graph contributing to first-generation masses.

FIG. 3. Two-loop graphs contributing to 6M(2).

~hL )"=~hL ) since in this case the left-handed up and
down tree-level mass eigenstates are aligned in the three-
generation subspace spanned by q;, i=1,2,3. Subsequent
rotation between the two sets of mass eigenstates in this
subspace results from radiative corrections. The ob-
served quark isodoublet mass splittings obtain if
MD))MU. For the third family this is clear from the
seesaw expression for m ' '. For the erst and second fami-
lies the fact that co is charged is crucial for this result
since the one-loop graph [Fig. 1(a)] contributing to up-
(down-) quark masses contains the mass insertion MD
(MU) while for the two-loop graph [Fig. 1(b)] the situa-
tion is reversed. Radiative Aavor-changing Z couplings,
satisfying

Zqzq3 )&Zq&q3 &&Zq, q2,

emerge as well, cf. Sec. VI (Ref. 7).
The exotic family of quarks in Refs. 3 and 4 consists of

isosinglet up and down vectorlike quarks with masses in
the TeV range. Here we consider an alternative super-
symmetric implementation of the radiative mechanism in
which the exotic up -and down quarks belong to a single
mirror family. As it turns out, the graphs of Fig. 1 pro-
vide negligible mass contributions in this case (cf. Sec.
III 8) and, instead, the dominant one- and two-loop
graphs (Figs. 2 and 3, respectively) contain the fermionic
superpartner of the color-triplet scalar as well as squarks
in the loops. Hence supersymmetry is crucial for success
of these models. Gluino graphs (Fig. 4) can also be im-
portant for the light-quark mass spectrum.

The choice of a mirror family has several interesting
consequences which we enumerate below.

(1) Equality of ~ht )"'", required to obtain a radiative
KM hierarchy, follows directly from SU(2)L invariance.

(2) The inequality MD ))MU, required for obtaining
the observed quark isodoublet mass splittings, is associat-
ed with the SU(2)L -breaking vacuum alignment and can
be obtained without explicit isospin breaking in the su-
perpotential. Supersymmetry plays an important role
here as well.

(3) p parameter constraints on isodoublet mass split-
ting imply that the lighter of the two top quarks (ordi-
nary and mirror) will, for reasonable choices of parame-
ters, have a mass ~100 GeV, while the mirror bottom
quark, considerably heavier than either top quark, will
have a mass +300 GeV. Because V,I„V,b

—1, where t
and t' are the top and mirror top quarks, respectively,
these models have potentially rich implications for top-
quark searches at hadronic colliders.

(4) The Zct' ' coupling will be large, —10, implying
8(Z~ct ' '+ct' ')-10 —10 if m, (m —m .Z c.
These decays should be observable at CERN LEP, as-
suming 10 Z's. The Z db coupling may be large enough
to induce Bd-Bd mixing at the observed' level via tree-
level Z exchange. Finally, reductions in forward-
backward asymmetry from standard-model expectations
for e+e ~bb, tt can be as large as 10%, 30—100%, re-
spectively, due to mixing of ordinary and mirror quarks.

(5) Because of supersymmetry the field content of these
models provides a very promising framework for nonper-
turbative Maiani-Parisi-Petronzio (MPP) unification. "'

!t follows that observed low-energy gauge couplings may
be obtained from initial couplings of order unity. If this
is indeed the case then all dimensionless couplings, Yu-
kawa as well as gauge, could be —1 at M~.

(6) The field content required is standard from an
SO(10) or E6 point of view, with all matter and Higgs
fields (not including gauge singlets) obtainable from 16's,
16's, 10's of SO(10), or 27's, 27's of E6. Therefore this
class of models is, in principle, obtainable from the super-
string. Because there are three ordinary and one mirror
families one must search for two-generation vacua.

The organization of the paper is as follows. In Sec. II
the field content, interactions, and vacuum alignment are
presented for this class of models. Detailed discussion of
the tree-level and radiative mass structure follows in Sec.
III. Results of a perturbative calculation of quark masses
and eigenstates are given in Sec. IV. The KM and
neutral-current mixing matrices are studied in Secs. V
and VI, respectively, the latter including discussion of

FICx. 2. Squark-isosinglet quark graph contributing to 6MD. FIG. 4. Squark-gluino graph contributing to 5M-.
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phenomenological consequences. In Sec. VII we remark
on nonperturbative MPP unification within the context
of this class of models and in Sec. VIII we conclude with
a summary of our results.

O'= W~+ O'H,

with the matter-Higgs superpotential W~ given by

II. THK SUPKRSYMMETRIC MIRROR MODELS

A. The field content and interactions

WM =Hi~)QI i QlqD+H~~ QA, QI't JD'+ A i QI. QQ

+hl; p QI.; QL'+ h Jt (p Ql't; Q~ +pD DD ' (2.3)

G =SU(3), cg GEwZ3Z2 (2.1)

The role of the discrete group will be clarified later in this
section. For GL+ the superfield content of the matter and
Higgs sectors together with transformation properties
under G are given in Tables I and II, respectively. Tildes
indicate scalars. The mirror family, denoted by Q", Q',
is primed and charge conjugated with respect to the ordi-
nary families. The isosinglet down-quark superfields D,
D' together play the role of co (see Figs. 1 —3). For G,z
and G, ~ the matter sector remains the same, with the ap-
propriate gauge quantum numbers understood, while in
the Higgs sector the charged components e', e' of the
would-be SU(2)z Higgs doublets are omitted.

For GL& the most general superpotential W, consistent
with the transformation properties of Tables I and II, is

The class of models to be discussed is supersymmetric,
with soft supersymmetry breaking assumed, and requires
three ordinary generations and one mirror generation.
Supersymmetry is crucial for many of the models'
successes. The electroweak gauge groups (GEw) included
in the discussion are SU(2)I SU(2)„U(1)~ L (GL&),
SU(2)~e U(1)z tg U(1)~ I (G,z), and SU(2)L
IIU( l)z(G, i ). For reasons of economy the field content
as well as the Lagrangian will be presented in left-right-
symmetric notation.

The full symmetry group is

and the purely Higgs superpotential WH given by

WH A2HL pHg+Al pHLHL +A+ pH+Hg +A3p

+A,~P +A, sy +spy . (2.4)

The quantities H;, H;. , A, ;, hL;, hz; are dirnensionless
couplings and are taken to be —1. The massive parame-
ters p, pD are —1 —10 TeV and, of course, can be re-
placed by couplings of a gauge singlet, neutral with
respect to Z3(3Zz, which acquires a comparable vacuum
expectation value (VEV). The couplings of p lead to
ordinary-mirror mixing while those of y (Ref. 13) ensure
that all charged components of P will be massive. For fu-
ture reference some of the Yukawa couplings of interest
are written below in terms of components (generation in-
dices are dropped):

QL'PQ~ = u "u 'N~ +d "d'v~ +d" Eu~ + u "d'E +
QL Ql D =udD+

HL'PH~ =e "e'vz+ v"N'NF e "N'E~ —v"e'E +—

(2.5)

The soft supersymmetry-breaking scalar potential is
given by

LH matter
superfields

i =1,2, 3

TABLE I. Quark superfield content in left-right-symmetric notation.

G =3X21.X2~ X1~ L XZ3 XZ2

(3,2, 1, -', 0,0)

LH fermionic
components

C

i =1,2, 3 (3, 1,2, ——,', 0,0) C—

&C—

DC

(3, 1, 1, ——,0,0)'

(3, 1, 1+ 3,0,0) DC
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~soft ALij QLi QLj D + ARij Q Ri Q RjD + A 1 Q L NQ R + ALiPQLi Q L + ARiPQ Ri Q R + A 2H L0HR + A LPHLHL

+ ARpH RH R+ A3yg + A4pDDD '+ A5p + A6y + A7impy+H. c. +pm& ~P, ~ +pm g, ,
1

g. (2.6)

&vR &»&NR), (v"), (v&,

(p), (y) —10 —10 GeV .

(2.7)

SU(2)L is broken primarily via (vz ). A light neutrino

where the summation is over all scalar fields and gaugi-
nos, respectively. The mass parameters 3, m&, m are

i
'

Rf.

taken to be ~msUsY, where msUsY, the scale of soft su-

persymmetry breaking, is chosen to be —1 —10 TeV. For
G,z the most general superpotential 8'and scalar poten-
tial V„«are the same as above with terms involving e', e'
omitted and appropriate couplings understood in
(2.3)—(2.6). For G, r there will be additional terms in-

volving N', X' in 8~, and involving their scalar com-
ponents in V„«attributed to the fact that these fields are
gauge singlets in this case. However these terms do not
alter the physics significantly as far as we are concerned
and we do not include them here. In addition to V„«
there will be F terms in the scalar potential given by
Q~t)8'(P)/Bitt~, where the sum is over all scalar fields

and 8'(P) denotes W with superfields replaced by their
scalar components. There will also be quartic D terms
associated with the gauge interactions. Specific, terms in
the F and D sectors of the scalar potential will be given
when necessary.

The desired Higgs VEV pattern is given by

(N ), (N') —10'-10' GeV, (v, ) —~, ,

I

solution may require additional Higgs fields with large
intermediate-mass scale VEV's. For example, for GL& a
Majorana seesaw may require an SU(2)R Higgs doublet
with a VEV ) 10' —10" GeV. Therefore SU(2)R or
U(1)R as well as the discrete group may be broken at
scales considerably larger than (N'), (¹).The prob-
lem of neutrino masses will be discussed in detail else-
where.

B. Remarks on the vacuum alignment

The discrete symmetry does not distinguish between
the ordinary generations hence it is not a horizontal sym-
metry. Rather, it distinguishes between ordinary and
mirror matter, the latter transforming difFerently with
respect to the gauge interactions. Its role is to ensure
that ordinary quarks do not couple to p, HL, H„', HL,
HR at the tree level. As a result the first two generations
are massless at the tree level. (p) and (P) lead to tree-
level masses for the third and mirror families. The choice
of Z3Z2 is not unique. For example, a Z4 symmetry
can accomplish the, same result.

For left-right-symmetric models (which are isospin in-
variant) the observed intragenerational quark mass
hierarchies must result from spontaneous isospin break-
ing. In Sec. III we show that the crucial relation is
( vz ) ))( NF ), as in (2.7). Even for non-left-right-
symmetric models the inequality is desirable since it

TABLE II. Higgs superfield content in left-right-symmetric notation.

LH Higgs
superfields 6 =3X2L X 2R X 1~ L XZ3 XZ2

1,2, 2, 0, ,0

Scalar components

NE

+N

HL (1,2, 1, —1,0, ~) H
e

HR (1,1,2, 1,0, n) H' =
R —ce

Hfc
L 1,2, 1, 1,

2m HL= y fc

f ce

HR 1, 1,2, —1,
2'
3

' Ce

1, 1, 1,0,+,0
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reduces the degree of explicit isospin breaking required in
the Yukawa sector. This inequality follows naturally
from the presence of the VEV (N') [see (2.7)], without
the need for explicit isospin breaking in the superpoten-
tial. ' Briefly, this is because via F terms the scalars Xz,
v acquire additional large positive-mass contributions
-A,2(N') which vz does not since there is no trilinear
in the Higgs superpotential coupling vE and N' [see (2.4)
and (2.5)]. As a result, m~, m „can be large and posi-

E v

tive while m can remain small or negative, leading to
Vg

the desired hierarchy. Supersymmetry is crucial for this
result since global symmetries cannot ensure the absence
ofthe gauge-invariant terms lvzl IN'I, IvEI IN'I from
the scalar potential of a nonsupersymmetric model. On
the other hand, in supersymmetric models the scalar po-
tential, including quartic terms, is constrained by the
form of the superpotential which, in turn, is generally
constrained by local and global symmetries.

III. TREE-LEVEL AND RADIATIVE
CONTRIBUTIONS TO THE QUARK MASS MATRIX

The quark mass matrix (up or down) is given by

q

q,

0
(3.1)

qCQ

A. Tree-level quark masses

The mass matrix M is given by

, (h, l

M' (3.6)

( h~ and
I hi ) are three-component row and column

vectors. At the tree level the above entries are related to
the couplings and VEV's of (2.2) —(2.7) as

1/2
a, =&p& &lhL;I'

1/2.,=&p) ylh. , l'

(3.7)

fh, )=h,*;/ ylh„l'
M„' =A. ) ( NE ), Md =A, , ( v~ ) .

Note that Ihi ), IhR )"'" are normalized to unity. There
will also be radiative gaugino-squark graph contributions
to aI z, M', and these are absorbed into (3.6). SU(2)L in-
variance implies aL =aL, while SU(2)z invariance would
further imply aR =aR and X", = A, ", . Diagonalization of
M M yields four orthonormal left-handed eigenstates:

I 1L ), I21 ) are massless and correspond to the first and
second families, while I3I ), I4L ) are massive and corre-
spond to the third and mirror families, respectively. The
nonzero masses and corresponding eigenstates are given
by

m =—' I(a +a +M' )+ [(a +a +M' )

4 2 2 ]1/2
I

The quark masses and eigenstates are found by solving
the eigenvalue equations (N )1/2

c,k lhL &

1 ) XLg clA+1 (3.S)

MM
I pl. &=m'I pl. ), M Ml+~ ) =m'I'P~ &, (3.2)

where the bases for
I %1 ) and

I 4z ) are

(q, q') and (q,'*q"*), (3.3)

respectively. The eigenstates IVI ) and I+R ) are related
via

M
(3.4)

M is given by

M=M +M'. (3.5)

M, which originates at the tree level, leads to mirror and
third family quark masses, to be discussed presently. M'
consists of radiative contributions to the quark mass ma-
trix which generate the quark mixing hierarchy and
light-quark masses. Their origin is discussed in Sec.
III B.

mm =a a m m3 4 L R) 3 — 4 (3.9)

with equality in the second relation possible when M'=0.
The choice of

I lL ), I 21 ) depends on the form of the mass
contributions contained in M and is dictated by conveni-
ence in carrying out the associated perturbative calcula-
tion of light-quark masses, cf. Sec. IV. Using (3.4) the
corresponding orthonormal massive right-handed eigen-
states are found to be

k, )= cRk I h, &

(3.10)
aR

c~k= (mi, —aL ), k =34.
mk

The effects of M can be regarded as a perturbation to the
]

aL
elk — (mk —a~ ), k —3,4,

m~M'

where m 3, m4 correspond to subtraction, addition, re-
spectively, in (3.8). Note that m 3, m4 satisfy
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above results and one makes the following identification
of quark masses:

=m +m m —m +m mb 3 b ~ t3 3 t3 3 7

(3.1 1)
md+mrad md m mu+mrad mI'b' 4 b' 4 & t4 4 t4 4

where mb, mb. are the ordinary-bottom and mirror-
bottom-quark masses, respectively, while m, , m, are the

3 4

masses of the two top quarks. As indicated, radiative
contributions are of significance for mb, cf. Sec. III B 2.

In the limit M'»al, aR, which is referred to as the
seesaw limit, (3.8) reduces to

—~m, (1 GeV)~
m,

(1 GeV) 0.5 —0.6
mg

(3.15)

where the factors 0.5, 0.6 (obtained from extrapolation of
results of Ref. 1) account, approximately, for QCD run-
ning of quark masses from 1 GeV to 200—300, 30—50
GeV, respectively. The upper bound on m, is then ob-'3

tained by setting m, =m, in (3.15), see (3.9). Taking
4 3

~ mb (1 GeV)
~

=5.3 GeV, corresponding to A&cD = 100
MeV (Ref. 1) and neglecting mf,

' leads to the bound

mt phys 30—35 GeVt3 phys (3.16)

m 3

aLQR

M' rnid-M'

(3.12)

a /M'aL

/m, ,,„„,f —/m, „„„,/

S200-300 Gev, (3.13)

corresponding to 6p ~ 0.01—0.03. For the left-right-
symmetric case GL R or, more generally, for models
without explicit isospin breaking in the superpotential,
because ag =a~, Eq. (3.9) implies

m m —m m (3.14)

Equations (3.13) and (3.14) together imply an upper
bound for m, . From (3.11), (3.13), and (3.14) one obtains'3

The seesaw limit will be valid for the down quarks since
mb must be seesaw suppressed due to its small value [see
Table III(b) for explicit exainples]. However, m, ))mb

3,4
requires Mz))M„', or (vz &))(XE& if A, ,z-k, ,„as in
left-right-symmetric models. The seesaw limit is there-
fore not expected to be valid for the up-quark sector and
the full expressions (3.8) must be used to determine m,

3, 4

and the corresponding eigenstates. Because of the ab-
sence of seesaw suppression the two top quarks will have
similar masses and both will have large V —A as well as
V+ 3 couplings to the ordinary Z [see Table III(a) for
explicit examples]. The ordinary top is defined to be the
one with large V —3 coupling [satisfying
lcgk/(+g/&) I)1/(Xz&)' ] and is not necessarily the
lighter of the two. Absence of seesaw suppression leads
to large fiavor-changing neutral-current (FCNC) effects
in the up sector, cf. Sec. VI.

As remarked above, we require Md )&M„' or,
equivalently, mb ))m, . However, because mirror

3,4

quarks are isodoublets of SU(2)L this mass splitting is
bounded from above due to radiative corrections to the p
parameter. Contributions to the p parameter due to su-
perpartners can be neglected since we will be considering
the limit where their isodoublet mass splitting is much
smaller than their characteristic mass scale. ' Because
both tz and t4 are expected to have large admixtures of
u" [see Tables I and III(a)] we require

Radiative contributions to mb can increase the upper
bound slightly. For example, if ~mb' (1 GeV)~-3 GeV
(such a value is readily attainable, cf. Sec. III 82), and
sgn(mb' ) = —sgn(mb ) [see (3.11)],m

&
can be increased in

magnitude by the same amount and the upper bound is
raised to 37—43 GeV. Note, also, that QCD running of
fermion masses changes significantly as AQCD is varied.
Despite the large uncertainties involved, it is clear that
for the left-right-symmetric case p parameter constraints
force a light top-quark scenario. Although probably
ruled out experimentally by UA1, a numerical illustration
of this case is included in Table III (see example 1) for
completeness. Note that physical quark masses in Table
III are only approximate. Reliable estimates require a
careful calculation of QCD running of masses and should
also take into account possible variations in AQcD. Of
course, for non-left-right-symmetric choices of GEw,
since ag and aR need not be equal relation (3.14) will not
apply in general and is, in fact, replaced by
~m zm4 ~

= )am zm4 ~
where a= ~az /az ~. Consequently,

the above upper limit on m, can be evaded; however this'3
requires explicit isospin breaking in the Yukawa sector,
i.e., ~az ~

) ~a~ ~
or a & 1. For numerical illustrations of

this case, featuring mt phys 53, 79 GeV, see Table III,t3phys

examples 2 and 3, respectively. Again, radiative contri-
butions to mb allow accommodation of larger top-quark
mass. Approximate upper bounds on m, (only intended'3
as a guideline) can be obtained from the appropriate gen-
eralization of (3.15). For example, taking
~mb. ~i&, ~

—~m, zh„, ~
~200 GeV, mz =6 GeV, and

a=0.2, 0. 1 leads to mt phys 77, 117 GeV, respectivelyt3 phys

(the extrema obtain when m, =m, ) corresponding to

uPPer bounds on mb phys of order 300 GeV. Detailed nu-
merical work taking full account of QCD evolution is re-
quired in order to obtain more precise bounds.

For models without explicit isospin breaking in the su-
perpotential (this is an attractive feature which further
reduces reliance on Yukawa coupling hierarchies) of
which GLR is a special case, a large top-quark mass
-50—100 GeV, can be accommodated if the field content
inc1udes a light pair of isosinglet down quarks D, D'
which mixes exclusively with the mirror down quarks. (If
they also mixed with ordinary down quarks two ordinary
down quarks would pick up mass at the tree level, spoil-
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TABLE III. (a) and (b) contain numerical illustrations of third, mirror family up- and corresponding
down-quark masses and eigenstates, respectively. 6« =SU(2)LSU(2)~U(1)~ L, G&& =SU(2)L

U( 1 )g U( 1 )g g G
& y

=SU(2)L U(1) y. In examples 1, 2, and 3, mb' -0, 0, 0.7 GeV, respectively.
Physical top and mirror bottom mass entries, obtained from their values at 1 GeV by multiplying the
latter by 0.6 and 0.5, respectively, are approximate and only intended as a guideline.

Example 1 (GL~) Example 2 (G&& or G&y) Example 3 (G&& or G&y)

aL, (1 GeV)

ag(1 GeV)

M„'(1 GeV)

55 GeV

55 GeV

11 GeV

(a)

100 GeV

90 GeV

10 GeV

137 GeV

137 GeV

10 GeV

phys3
——30 GeV ——53 GeV ——79 GeV

mrqPhys -36 GeV -61 GeV —85 GeV

—o. 72lhL &

0.69

—0.42lh &

D. 91 0.69

0.69lh, &

0.72
0.91~hL )

0.42
0.69)hL )

0.72

—O. 72)h, &

0.69

—0.93~h; &

0.36

—0.72lh~ &

0.69

O. 36~h„&
0.72

0.36ihg )
0.93

0.69
I
h

0.72

aL(1 GeV)

a~(1 GeV)

Md(1 GeV)

m3 1 GeV)

55 GeV

55 GeV

545 GeV

—5.5 GeV

(b)

100 GeV

17 GeV

300 GeV

—5.4 GeV

137 GeV

23 GeV

500 GeV

—6.3 GeV

mb phys -275 GeV —160 GeV -259 GeV

—0 99IhL )
0. 1

—0.95lhL )
0.32

—0.96ihL )
0.26

ly4L &

O. 1ihL )
0.99

O. 3Z~hL &

0.95
0.26ih, &

0.96

0. 1

—0.99)h„")
0.05

—0.99lhg &

0.04

O. l~h„&
0.99

O. OSih," &

0.99
0.04ihg )

0.99
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B. The radiative scheme

The matrix M, which consists of radiative contribu-
tions to the quark mass matrix (3.5), is of the form

, 6M 0
M 0 0 (3.17)

6M is a 3X3 matrix. Recall that radiative entries along

ing the hierarchy. ) This will be reported on elsewhere. '

We only note here that the additional isosinglet quarks
alter relation (3.14) since in this case there would be three
massive down-quark eigenstates at the tree level. As a re-
sult, small upper bounds on m, obtained for the ordinary'3
left-right-symmetric case can again be evaded. The
desired vacuum alignment in this case, however, differs
from that of (2.7) with SU(2)I broken primarily via & v").

q; q

M

q; ML

x,'*&h, I

. p2L &hl. I

xglh, &

I2
foal R

pR*lhg &

t2+

0

pg &hgl

MR

x~ &h, l

p& lh& &

p&2

xg*lh~ &

I2
PlL

(3.18)

The above entries are given below in terms of the cou-
plings and VEV's of (2.3)—(2.7).

Down squarks (q =d):

the last row and column have been absorbed into M .
The dominant radiative contribution to 6M involve
squark propagation in the loops. It is therefore necessary
to begin with discussion of the tree-level squark mass ma-
trix M (q = u or d), given by

M~;, =m„-, + Ih~;I 6, +D terms, ML; =md, + IhL; I 5, +D terms,

mz =md, + IMd I
+ la+ I

+D terms, mL =I„-„+IMd I
+ IaL I

+D terms,

XL, (R) OL, (A jMd p ~ 1 & vF. & +~1~4~ &J & &NE &

= '

y I ~P „&P&+h„„(z,*&N')*&N '&'+X*&@)'*+p*&y)')I'' '"
(3.19a)

lh„„&,=[~/„,, & p)+h„„,(~,*&N')*&N')*+X,*&p)'*+p*&y &*)]'*'Zp', „,
Up squarks (q =u):

Mz; =m, + Ihz;I 5,~+D terms,

M,"=m, . +lh;I 5,"+D terms,

mg=m2, + IM„ I2+ la& I
+D terms,

mp=m'„+ IM„' I'+ laL I'+D' terms, (3.19b)

XL, (R) aL, (R)~ ~ u

p' ——W, &N~)+X, X,*&y )*& v~)*

+~ ~*&-"&*&N'&*

pI g lhL g ); same as above

Bras and kets are again normalized to unity. All terms
above containing 3 or m

&
parameters (where A is any

I

scalar trilinear coupling and P, is any scalar in the
theory) originate in V„«(2.6) while the remaining terms
shown explicitly originate in the I' sector of the scalar
potential. The largest D contributions, given in magni-
tude by (g~/8)II&X')I' —I &N'&I'I and (g~ L lgs
4)II&N''&I' —1&N'&I'I (gs, is the B Lcharge of the-
corresponding squark) occur in M,;,m~ and correspond
to SU(2)z or U(1)~ and U(1)s L, respectively. Remain-
ing D contributions are of similar form but involve
squares of SU(2)1 -breaking VEV's. Of course for G(r
there are no D terms involving &N'), &N'). The 3X3

I

submatrices MI,MR, expected to be diagonal and degen-
erate at the scale at which they are generated (M~ in
minimal supergravity) will not remain so, in general, at
low energy due to renormalization-group effects as well
as contributions of F terms [see (3.19)]. The extent of
this will be of relevance to our discussion and we return
to this point shortly.

The one-loop squark exchange graphs are of two types:
those with isosinglet down squarks D, D' and those with
gauginos in the loop. We begin with the former, which in
our scheme are expected to generate the bulk of m„m, .

One-loop squark, isosinglet quark graphs

The isosinglet quarks D,D' form a Dirac fermion with
mass pD [see (2.4)] which propagates inside these graphs.
There will be many such graphs contributing to 6M"'
corresponding to different numbers of occurrences of the
mass insertions pL R,yL R,p' along the internal squark
line. Diagrams with yL R mass insertions can be neglect-
ed since gr z ((pL z,p' for &N'), &N'), A( —10 —10
GeV [see (2.7), (3.19), and examples of Tables III]. The
simplest graphs to consider are Fig. 2 contributing to
5M" and its analogue contributing to 6M", in which the
mass insertions pLR, p' each appear only once. Al-
though we will be considering the limit where

pL R
—IL R, ML R;;, Fig. 2 provides an order-of-2 I2 2

magnitude estimate of the total contribution of this class
of graphs to 6M and is also useful for illustrating under
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what conditions the observed hierarchy between first- and
second-generation masses will obtain. The exact calcula-
tion of 5M due to this class of graphs, equivalent to sum-
ming over graphs with any number of mass insertions, is
tedious as one must first diagonalize M and then sum
over all graphs contributing to 5M, each with a dift'erent

squark mass eigenstate in the loop. Such a calculation is
presented in the Appendix in the limit where M is in-

variant under P (parity) and ML, MR are diagonal and de-

generate. M is straightforward to diagonalize in this
case. A comparison with results of the Appendix sug-
gests that the contribution of Fig. 2, although large is
within a factor of 2 —3 of the exact result. We begin by
showing that the contributions of Fig. 2 and its down-
quark analogue (and, therefore, the total contribution of
this class of graphs) can easily be at the level of m, and
m„respectively.

Before proceedings with discussion of Fig. 2 we set the
notation for the eigenstates and eigenvalues of ML R in
(3.18):

for ML, the eigenstates are lkL )

with mass m+L, k =1,2, 3,
(3.20)

for MR, the eigenstates are
l
j'R )

with mass m R,j=1,2, 3 .

The contribution of Fig. 2 and its d-quark analogue to

5M"'", denoted by 5MD', is then given by

5M"'"'= gH lkL )(kL l(lhL )(hR l)
j,k

XlJR &&jRlH aD'"'(m, 'R, mkL) (3.21)

1(mjR mkr. mL mR PD) are just the loop integrals and
F, is a color factor, F, =2. The subscript d (u) indicates
that down- (up-) squark mass matrix parameters (3.19)
should be understood in the brackets. Note that the ex-
act result can be cast in the same form as (3.21) although
expressions for the massive aD parameters will be
changed.

In general,

m2 m2 -m2 m2 m2 m2 m2 m2 m2
jR kL & L R SUSY

(3.23)

where msUsy is the scale of soft SUSY-breaking terms,
—1 —10 TeV. In the limit where m, R

=mkL =m,
mL =mR =m', I is given by

where

aD ™jRmkL )
Q, (d) 2 2

2e 2e r2 it 2 2 &2 i2 2F [I L PR P PD~™jRmkL mL mR I D )]d, (g)

(3.22)

1I=
16m (m —m' )

PD PD
2

'
2

2m &2

ln m' (m' —p ) (m —m' )(p —m' )

PD PD
2

' 2
2m 2

+ln
m2 (m2 2 )2 (m2 i2)( 2 2)

1 1
i2 2 2 2m' —

pD m —
pD

(3.24)

Taking pD -m, Eqs. (3.22), (3.23), and (3.24) together im-

ply

I

(3.26). Equations (3.25)—(3.27) in turn imply

aD 13 GeV . (3.28)
2 2 &2

u (d) Fc 2 PLPRP
aa'

16m m
(3.25)

d, (u)
I

A comparison with results of the Appendix suggests this
estimate is too large but within a factor of 2—3 of the ex-
act calculation (summing over all squark mass eigenstates
in the loop) of 5MD. An upper bound for a$ is obtained
from (3.25) via the squark mass inequalities given below,
which follow from requiring color conservation (the
second inequality is approximate):

m &2+ &2+ 2 tot ~ g 2 /3g2L R my 1 1& m m' )pL R . (3.26)

m -'" is the total scalar mass of the appropriate com-
ponent of P. From (3.19) and (2.7) it follows that the
second inequality can readily be saturated. Assuming va-

lidity of (3.23) and m -'" & m, one obtains

pd & (2.5 —3)mMd —m10 GeV (3.27)

from (3.19), (2.7), Table III(b), and the first inequality in

From results of the Appendix this bound is probably too
large but within a factor of 2—3 of the correct upper
bound. In the non-left-right case [see examples 2 and 3 of
Table III(b)] the upper limit will be suppressed by a fac-
tor j2R IpL -aR laL. Nevertheless, since Yukawa cou-
plings are —1 it is clear that m, can easily be generated
radiatively. We return to discussion of the couplings
shortly.

The inequality ( jVR ) « ( vz ) (or M„' «Md ) will lead
to p'2 «p, „'-2, provided 14(y ) « A „see (3.19). However,
for A, & (2.5—3Q, &m, (3.27), and m —1 —10 TeV, this re-
lation can readily be satisfied. As a result one expects
aD «aD or m, « m, as is observed [see (3.25)]. The fact
that D, D' are charged is crucial for this result. The
above VEV (or mirror quark mass) inequality, obtained
without the need for explicit isospin breaking in the su-
perpotential, can therefore account for both m, ))mb
and m, ))m, . We will see (cf. Secs. III82 and III83)
that it can lead to md ~ m„as well.
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In general 5MD'" will be rank-three matrices (3.21) and
a mass hierarchy between first- and second-generation
quarks will not obtain. To avoid this ML,MR must each
be degnerate (the validity of this assumption within the
context of supergravity models is briefiy discussed below)
at the 10% level or less. Their eigenvalues can then be
written as

2 = 2 2m 'L, R mL, R ™jL,R

where

(5m /m )z ii ~0. 1 .

(3.29}

(3.30)

Taylor expanding about mz „,5M/ can be written as

5Mu, (d) [o u, (d)(m 2 m 2 )Hz( lIi
~ ) (p ~

l

)eHR]

+6 M"'"'
3 D (3.31)

+ g [a„ /aD (mii, mz )]*l kz ) ( kz lhz ),
k

and

where 53M/ is a rank-three matrix which is suppressed by
a factor (5m, /m ) relative to the first term, which is a
rank-one matrix. In the first term

lf,') =lh, )

+ g [o,ii «D(mii, mz)]*Ij~ &(jR liiii &,
J

(3.32)

53M/ &&53MD so contributions of Fig. 2 to first-
generation quark masses are expected to be larger for the
up quark.

Lower bounds can be derived for m (the ordinary
squark mass scale), m, pD, and m- —,in various com-
binations from K-E box graphs' which contain these
particles in the loops. The dominant graphs contain both
left-handed (LH) and right-handed (RH) quarks along the
external legs. For example, from AM&, gluino-ordinary
squark graphs lead to the constraint

5m 5mJ
2

&10 9-10-10
max(m, m ) m z m

Comparing with the above, isosinglet-quark —ordinary-
squark graphs yield

IIL2II R2
1 ~ 10 —10

Iilax( m q p, D ) gqcD
2 2 4

A safe mass scale for all of these parameters turns out to
be —5—10 TeV, implying a large supersymmetry-
breaking scale. In making this determination„we have
assumed (5m /m )z ii —10 ', and taken H,
(which, for h z i„—I /&3, corresponds to nz ii —1).

Next we wish to comment on validity of the degenera-
cy assumption (3.30) within the context of supergravity
theories. Changes in ML R, initially diagonal and degen-
erate, due to renormalization-group evolution down to
low energies are schematically given by

o it z = 5m i (mii, mz )
Bm R, L

5m J az .
R,L

1
AML R

— ln
4n

M; [2m'(H'H )"+( W "'~")'"]

o ply,') (Hh,'l,
where

(3.34)

a g = a&(m~, mzi )Qnz Qn~,
nz =((h z

1)*HztHz(lb z &)~,

nii =((hill)*H H t(lh ' ))* .

(3.35)

Comparing with (3.28) and results of the Appendix one
requires nL, nR —1 to obtain m, at the observed level.
The inequality Md )&M„' will imply m, ))m, as well as

(3.33)

Validity of (3.30) ensures that if the rank-one piece in
(3.31) is at the level of second-generation quark masses
then the rank-three piece is less than or at the level of
first-generation quark masses. It is not dificult to see
that validity of (3.30) implies that the total contribution
of this class of graphs can also be written in the form
(3.31) [of course expressions for the various quantities in
(3.31) will differ] with the same order suppression be-
tween the first and second terms thus allowing for the ob-
served mass hierarchy between first- and second-
generation quarks.

The first term in (3.31) rewritten in terms of normal-
ized bra and ket is given by

1
ln

2m2

M,
m~g gcDI

mg 3

+electroweak interactions, (3.36)

where M; (-Mp in minimal supergravity) is the scale at
which soft SUSY-breaking terms arise, m is the initial
scalar mass scale, and m (-m in minimal supergravity)
is the gluino mass. [Eff'ects of I' terms are negligible in
this regard because az ii &(msUsY, see (3.19), Table III.]
Bearing in mind that within our scheme low-energy en-
tries in (H H } should typically be —

—,', corresponding
to nz ii

—1 (a requirement for radiative generation of m, ),
it is apparent from (3.36) that near degeneracy of Mz ii
(3.30) is unobtainable within the context of minimal su-

pergravity due to the Yukawa and scalar trilinear interac-
tions. However, if QCD is asymptotically divergent, as in
MPP unification" (cf. Sec. VII) then gauge interactions
(QCD in particular), which are fiavor diagonal and con-
tribute positively in (3.36), become very important and
can help our cause. Furthermore, in alternative formula-
tions of supergravity it is possible that initially
m,„;„,&)m, 2 . In fact in no-scale supergravity, ' be-
lieved to be the low-energy efFective theory resulting from
the superstring m and A would initially be -0. In this
case gauge interactions could dominate the
renormalization-group evolution, especially if QCD is
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- asymptotically divergent. Numerical investigation of
these issues is certainly of interest.

At the other extreme, if ML,MR are not degenerate at
low energies the desired mass hierarchy between first-
and second-generation quarks will obtain if first-
generation current quarks are decoupled from the
remaining quarks by an order of magnitude in 0 ', hz R,
i.e., if all Yukawa couplings involving q i are sup-
pressed by an order of magnitude. This will also lead to
decoupling for the corresponding squarks in ML R
at low energies, e g. , &q, jML(q, & —10 '(&q~ ~MLlqt &

& q; ~M~~ ~qk & ), i,j,k=2,3 due to decoupling in (3.36). It is
then easy to see, from (3.21), that 5ML, is primarily a
rank-two matrix contributing mass in the q2

—
q3 sub-

space, thus ensuring the desired hierarchy. Although in
this case one has to put in a hierarchy by hand the overall
quark Yukawa coupling hierarchy need not exceed an or-
der of magnitude, compared with 10 for the standard
model.

2. One-loop squark-gaugino graphs

For this class of graphs the dominant mass contribu-
tions are due to gluino exchange 5M'i with smaller contri-

g
butions (-aii, /a, ) due to the other gauginos. Again, in
order to obtain the exact expression one must sum over
all squark mass eigenstates propagating in the loop. For
an order-of-magnitude estimate it suSces to consider the
graph of Fig. 4, analogous to Fig. 2. The Yukawa ma-
trices H ' are replaced by the generation diagonal ma-
trix gQCD I3 + 3 Also notice that, because the gauginos
are neutral, it is the down squarks (up squarks) which
propagate in the graphs contributing to 5M '"' which is

g
opposite to what occurs in Fig. 2. One therefore expects
5M ))5M", given (vz & )) & Xz & (or 5MD « 5MD). It is
of course desirable to exploit this feature to help explain
the first-generation anomaly md )m„.

The mass contribution of Fig. 4 is given by

5M;= y[(k, &&K, )h, &&h, ~~, &&J, (a&(m,', , m„', )j, ,

3. Other contributions to 5M~

Among these are one-loop graphs with quarks and
D,D ' squarks in the loop, as in Fig. 5, leading to a mass
contribution of the form

a~H'[h, &'&h, )*H'.

aD is given approximately by

(3.40)

53M is a rank-three inatrix, suppressed by a factor

(5mj /m ) relative to the rank-one term, and
~hL'~~~ &

= ~hL ~~~&+O(5m~ /m ), in analogy with (3.32)
and (3.33). From (2.7) and (3.19) it is clear that ~hL ~z~ & is
essentially equal to ~hl z & [this would be true in super-
gravity theories even if the second term in expression
(3.19) for ~h & did not dominate since initially, in this con-
text, A; o-h; with deviation at low energy due to renor-
malization] so that (1—&h "~h &i ~)' -5m /m .
Therefore the rank-one term in (3.39) contributes mass
primarily to third-generation quarks. This can certainly
be of significance for the b quark, see (3.38). Hence our
claim (cf. Sec. III A) that radiative corrections can appre-
ciably increase (or decrease, depending on their sign)
upper bounds on m, obtained from p parameters con-
straints. The contribution of 5M to first- and second-s
generation quarks is greatly suppressed, but can certainly
be at the level of 10—20 MeV for the down quarks, with
md )m„a plausible consequence.

As for the isosinglet quark graph, if ML R are not de-
generate, Fig. 4 will preserve a mass hierarchy between
first- and second-generation masses if one generation is
decoupled by an order of magnitude in 0 ', hl R. For a
reasonable range of parameters, the contributions of Fig.
4 to s and d quarks will be of order m, (perhaps larger,
but excess can be offset by 5MD) and md, respectively.

To summarize, the dominance of the internal down-
squark line over the up-squark line in one-loop graphs
can explain both m, ))m, and md )m„. The origin of
this dominance, Md ))M„', accounts for m, ))m& at the
tree level as well.

where

(3.37) aL aRMd A4PDa- ln
16m m-

D

f

mD
& 10 GeV,

2 2 I2
2 &. PI.PRPa (m ~, mkL )-

5m
+8 GeV (3.38)

and we have taken m, mkL, m R,ml, mR -m . In ob-
taining the upper bound we have taken a, -0.1 and
made use of the same arguments leading up to (3.28). As
for Fig. 2 we expect estimates obtained from (3.37) and
(3.38) to be too large but within a factor of 2—3 of the ex-
act contribution of this class of graphs, as mell as
suppression of order aR /aL for non-left-right-symmetric
models. Again assuming near degeneracy of ML it, (3.37)
can be rewritten, in analogy with (3.31), in the form

(3.41)

where, in obtaining the upper bound we have taken
aL az -3X 10 GeV, Md -500 GeV (see Table III),
A~pD &mz (from color conservation), and mD-5 —10
TeV (from IC-K mixing, cf. Sec. III B 1). The contribu-

A~p. o

CDy ~ D

t
0]ddCI dU
H" a*,Ih,)* Md a*,(h„I* H

5M&=as)h,"& &h '„' ~+5,M~ . (3.39) FIG. 5. Quark —isosinglet-squark graph.
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tions of these graphs are, therefore, not important.
Clearly, supersymmetry plays a crucial role since,
without it, these graphs would provide the dominant ra-
diative contribution to light-quark masses. Other one-
loop graphs with gauge bosons and quarks in the loop
only provide mass to third-generation quarks since the
vertices are generation diagonal leading to contributions
of the form 5m IhL &(h„l. Similarly, one-loop graphs
containing p (or p) and mirror squarks (or mirror quarks)
in the loop will also contribute mass only to third-
generation quarks. As the gluino graphs these contribu-
tions should be taken into account when determining
upper bounds on m, from p parameter constraints.

Two-loop mass contributions 5M(z) exist [see Figs. 3(a)
and 3(b)] which, as the one-loop gluino graphs, can help
explain md & m„. This is similar to the situation in Ref.
4. For example, comparing Fig. 3(a), whose mass contri-
bution, not including a negligible rank-three part, is of
the form

a,', H'H" lh, &(h, IH"H' (3.42)

with Fig. 2, one naively expects a (2)
—m, /16m —10

MeV, at the level of md. The contribution of Fig. 3(b)
will be similar. Again, pd »p'„ implies 6M(2) »6M("2),
as described. Note that contributions of two-loop graphs
obtained from Fig. 3 by replacing D-quark lines with
gluinos, although roughly of same magnitude, will be
negligible for the first generation, since their matrix
structure will be the same as that of Fig. 2 [see (3.31)].
Two-loop graphs with quark mass insertions, as in Fig. 5
will, of course, be negligible.

IV. PERTURBATION THEORY DERIVATION
OF QUARK MASSES AND EIGENSTATES

V")=M'M",
V("=M'M "+M'M",
V"'=M'M" .

(4.2)

From (3.34) and (3.39) the perturbation M'(=5M) can be
written as

5M=aDIHh L &(Hh )(, I+azlhL'&(h g I+53M

The relevant mass eigenvalue equations are given in
(3.2). We summarize below the perturbation theory cal-
culation for the masses and left-handed mass eigenstates
I%'L &. The right-handed eigenstates can then be obtained
from (3.4) or by making the appropriate substitutions in
I%'L & corresponding to interchange of M, M, see (3.2).
From (3.5) MM is given by

MM'= V")+V")+V"), (4.1)

where

2 — 2(O) + 2(1)+ 2(2) +l l

I@;, &
—lg;, &(0)+ lg;, &(i)+ lg;, &(2)+

(4.4)

One makes the following identification of eigenstates with
physical up quarks: Ig, &=IuL &, I/2 &=let &, It(3
=

I t3 &, I g4 &
=

I t4 &, with obvious generalization to
the down-quark sector. Plugging these expressions into
(3.2) yields the following perturbation equations which
must be solved to obtain masses and eigenstates:

y (V(J' —m2(J')It&„. =0, n =0, 1, . . . ,
j=0

(4.5)

I 1, (, )
&—

0

I IL, (z) &

(4.6)

where
I lL z & are uniquely determined by orthonormality.

PL, Pt( are projection operators, defined by PL I hL &

=P, Ih, & =0.
The perturbation calculation as outlined above is tedi-

ous and we only quote results here. The reader is re-
ferred to Ref. 4 for details of a similar calculation. How-
ever, it is not dificult to see from the form of (4.3), and
Table III that in the combined basis (3.8) and (4.6), one is
basically diagonalizing a matrix M of the form

I
1 & I2 & I3

(1L I mi mi m)

M u, (d)

(3L I mi m~ mi

(4LI (()m, (&)m2 (&)m2

(()m,
(()m2

(()m~

(4.7)

where m,- is an entry at the level of ith generation masses
and the inequalities are for 6M". The masses of the first
and second families are found via degenerate perturba-
tion theory, solving the secular equation corresponding to
the matrix

where V(J)=0, j &2.
In carrying out the perturbative calculation one has to

choose a suitable unperturbed orthonormal basis. Two of
its elements are just the nonzero mass eigenstates of V' '

given in (3.8), i.e., I3L z &, I4L z & with masses m 3,m 4, re-
spectively. A convenient choice for the remaining basis
vectors I1L z &, I2L)( &, spanning the LH and RH tree-
level massless subspaces, dictated by the form of 6MD
(the dominant contribution to 5M), (3.31), is

PL, , (g)IHA L (g) &

(4.3)
where 63M, expected to be at the level of first-generation
masses, contains all contributions to 6M not otherwise
specified above, i.e., 63MD, 6M(2), . . . . The expansionsD gP
for the eigenvalues and eigenvectors of MM are written
as

ldLIgJmp imj]+m&2mj2 i J1,2

where

m, ),
= (jL IM'Ikz &, j,k =1,2, 3,4 .

In the limit

(4.8)

(4.9)
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(4.10)

the masses of the light families are given, to leading or-
der, by

k=1, . . . , 4
x,k'lk, & . (4.15)

The left-handed eigenstates, written in terms of the un-
perturbed basis vectors,

I jL &, are given by

m m2 m22

2 2(2)
md „-m1 —)m11m22 —m12m21[ /']m22[

The m; are given by

(4. 1 1) To determine the KM, and NC mixing matrices it is con-
venient to isolate their isosinglet components, so we
rewrite (4.15) in terms of a new basis where these appear
explicitly. I3I & and I4I & are replaced by

+a, fh,"&&h,"I+a,~)I2, &,

~(2=& I~I(~glh L &&h,"I+5,M)I2~ &,

~ii =& IL, I«glh I', &&4'I+&3M)ll~ & .

(4.12)
0

,~, [(NL, , )' 'l3L, & (NL, ,—)' 'I4L &],
(NL +NL )'

The contribution of a in (4.12) is expected to be at first-
generation levels, since Ihl z &

—IhI z & (cf. Sec. III B2),
thus ensuring validity of (4.10).

Radiative contributions to heavy-quark masses, of pos-
sible significance for mb, are given by

(4.16)

~k & kL I
V" '

I kL &
=mkk mk ™kk~k

k=3,4 .

Since [c3 /(N3' )'~ ]z —1, one finds
t

From (3.38) this can be as large as a few GeV.

(4.13)

(4.14)

„,[(N~ )'"I3L &+(NL )'"I4~ &),
(NL +NL )'

where the expressions on the extreme RH side (RHS) are
for aL,M' & 0. The other basis elements remain the same.
In terms of leading-order contributions to each of the
xL k one obtains

v'N, ly, &=II&+ ., „I2&+ 1 13+N3+x 1 14+N4
13 &+

QN3+N~

x, ,3+N4+x, ,4+N3
QN3+N4

QN, lq, & =x„,I
1 &+ I2&+

—x, ~3+N3+x, 24+N4
I3 &+

QN3+N~

x i,23&N~+x i, 24&N3

QN3+N~
(4.17)

v'N, lq, & =,,„I»+, , „12&+
—QN3+x, 3~+N4 QN4+x, 34+N3

l3 &+ 14'&,
QN3+ N4 QN3+N4

QNq —x ) 43+N3 x ) ~3+N4+ QN3

QN3+N~ QN3+Nq

where x; k
=

& k I(lg &~,
.~), i indicates the order in perturbation theory [see (4.4)], and the L subscripts are dropped. The

x; k are givenby

m12

m22

m 1k m 2k m 12+
mk mk m22

X1 23 X1 24 2X 10

X123 5X10
& X124 10

X1 13 ~X1 14~ 10 —10
1,2k 1, 12 d 10

—2 10
—3 d ( 10

—5
X1,13 ~ X1,14

X1,34—
m4m 34 m3m43 2(x] 34 10

& x~ 3g 10 )
m4 —m3

(4.18)
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where, in obtaining the first three relations, use is made
of (4.10). The remaining x;~k are found from the follow-
ing relations, obtained by imposing orthonormality of the
eigenstates at each order:

)fc

+0, 12 X0,21& +1,k2 +1,2k& +1,43 +1,34&

(4.19)

+1,kl ++1,k2+0, 12 ++ 1, 1k

The order-of-magnitude estimates in (4.18) are obtained
via the following relations, which are natural conse-
quences of (3.8), (4.3), and (4.6):

quarks by an order of magnitude in the Yukawa sector
(cf. Sec. III B 1), the perturbative calculation yields simi-
lar expressions for the masses and eigenstates.

V. THE RADIATIVE KM MATRIX

The results of the previous section are used to obtain
the charged-current mixing angles. As the RH quark
mass eigenstates have small admixture with isodoublet
mirror quarks there will be a RH (V+ A) KM matrix in
addition to the usual LH (V —A} KM matrix. The LH
and RH KM matrices are given by

m12 m1

m22 m2

C3 C4

m 2ck m12 ck

(4.20)

v„'„=&u,, iP,'id, , &,

where P0 and P0, given by

(5.1}

In general, the x; k are expected to be of same order, al-
though significant differences (e.g. , factors of 3) are possi-
ble for non-left-right-symmetric models.

In the nondegenerate squark limit, where the observed
mass hierarchy between first- and second-generation
quarks is obtained by decoupling one generation of

P =I—i4' )(4' i, P =i4' )(4' i, (5.2)

project onto the LH and RH isodoublet subspaces, re-
spectively. In general, entries in V are —10 ' or small-
er than the corresponding entries in V so we do not dis-
cuss them here. The LH KM matrix can be read off from
(4.17) and a few entries are given below, to leading order:

V'-x,'„&1"il"&+x"' &2"i2')+&I"i2')

VL -xd (2"i2d)+xuu (1"ild)+(2" ild)

x 1,23(N3N3 } x 1,24(N4N3 )

[(Nu +Nu )(Nd+Nd )]1/2

X 1 13(N3N3 ) X 1 14(N4N3 )'
VuQX131( 1 il )+X132(1"i2)+x132x11',2(2"i2)+

f(N4+N3 )(N4+N3 )]'

(N uNd )1/2 (NuNd )1/2

[(Nu+Nu )(Nd+Nd )]1/2 '
4 [(Nu+Nu )(Nd+Nd )]1/2

(5.3)

Note that the equality ihi") =ihI") (or i3'") =i3' )),
guaranteed by SU(2)I invariance, ensures absence of
tree-level contributions to V,b and V„b. It is also clear
from (3.30), (3.32), (4.6), and SU(2)I invariance that
(1"i2 ) ~0. 1. Our numerical estimates for the x, k

(2.18) then imply

iv'i iv' i-lo-'-lo-'

The LH (RH) KM matrix will not be unitary due to
admixture of isosinglet quarks in LH (RH) mass eigen-
states. In particular, from (5.1),

V'V"=(u, iP, iu, &, ,

V V,i) = ( d; i Po i dJ )L .

These are just the left-handed up and down NC mixing
matrices (not including the Q' -dependent part) dis-
cussed in the next section.

iv„', i, iv,' „i-lo-'-lo-', (5.4)

VI. THE NEUTRAL-CURRENT MIXING MATRIX

The neutral-current mixing matrix (neglecting possible
ZL -Zz mixing for Giz, z), is given by

certainly in general agreement with experiment.
Vf b Vt & can have rich consequences for top-quark

3 4

searches, especially if the top and mirror top are narrow-
ly separated in mass.

V = . [ —sin 811 Q' (Il +I~)
sln0 ~cosO p

+~3PO+~3PO ], (6.1)
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where Po, Po, defined in (5.2) project onto the LH, RH
isodoublet subspaces, respectively. The Aavor-changing
ZL couplings for the quark mass eigenstates (in units of
e/2sinO cos8 ) are

= —
&@; 14' &(4' Ip, &,

Zg(Rgb = &giR IPo I@IR &

=&q„I4,' &(4,'I1(„& .

(6.2)

ZV1LV2L--[XL1,»(NL )'"+xL1,~4(NL )'"]
X[x *3(NL )'

+x, *,4(NL )' ]I(NL +NL ) . (6.3)

One notices immediately that Z1(,$2, phenomenological-
ly the most constrained coupling, is naturally the. small-
est, being the only one which arises at the two-loop order
in the perturbation.

Some phenomenological consequences of the above
couplings are discussed, in turn, below, beginning with
the up-quark sector, where the effects are most dramatic.
The quantity N4/(N3+N4), appearing often in (6.3), in-
dicates the extent of seesaw suppression or lack thereof
and is -0.5 for both the LH and RH up quarks in the
left-right-symmetric case [see Table III(a), example 1 and
(3.8) and (3.10)]. The following numerical estimates are
then obtained from (6.3), where use is made of (4.18):

L, R —2(ZCt3 )L R (ZCt4 )7 R X
1 23 10

(zuc)L R -(x123x113)LR 10 —10 (6.4)

(zut3 )L R (zut4 )L R (x 1 13 )L R 10 —10

Estimates for the coupling s of the non-left-right-
symmetric examples of Table III(a) (see examples 2 and 3)
are of the same order. The Zct34 couplings imply very
large branching ratios for Z ~ t 3 4c+ t 3 4c, of order
10 —10 . This estimate is obtained via the following
approximation, ' suKciently reliable for our purposes for
m, -30—70 GeV:

B(z~t3 4c+t3 4c ) —2B(z ~t3 4c )

2[(zt 3 4c )L+ (zt3 4c )R ]
(6.5)

f
Nf is the number of final-quark states accessible to diago-
nal Z decay. These decays should certainly be observed if
LEP produces 10 Z's. Similarly, the (Zut)L R estimates
(6.4) imply B(z~t3 4u+t3 4u ) —10 . Finally, the
(Zuc)L R estimates imply D Dmixing, via tree-lev-el Z ex-

A few of these couplings are exhibited below, to leading
order in the perturbation,

, 23NL
—x1 24(NL NL )

1/2

Z 4 ' 3 4

L3 L4

—x, ,3NL —x, ,4(NL NL )
Le Le 1/2

Z 4 ' 3 4
41L P3L 7

3 4

change, at the level b,MD /MD —10 ' —10 ', which
could be an order of magnitude or more above standard-
model expectations. Current upper limits are at or
slightly below the 10 ' level. '

We now turn our attention to the down-quark sector,
where Aavor-changing effects vary significantly for the
left-right and non-left-right-symmetric examples of Table
III(b) due to large variation in (N4/N3+N4)L (-0.1,
0.1, 0.07 for examples 1, 2, and 3, respectively). Esti-
mates for flavor-changing Z couplings are given below:

(z db )L R
—10 (example 1),

(z db)L —10, (z bd)R (10 (examples 2 and 3),
(z ds )L R

—10 (example 1),
(6.6)

(z ds )L —10, (z ds)R & 10 (examples 2 and 3),
(zsb )L 1R1

—(z db )L 1R1/8, .

(Zsb)L —5X10 implies B(b~sp+p ) [=9(Zsb)L (Ref.
22)] —2X10 [the current upper bound for b~(d or
s)1M+1u, is 1.2X 10 (Ref. 23)]. Finally, KL ~@+A, im-

plies an upper bound of 2 X 10 for (Z ds)L R, which can
certainly be saturated in examples 2 and 3. At this bound
one obtains, from tree-level Z exchange,

B (K+~vr ev, ) (z ds)zB K ~ g vrvv;
i =1,2, 3

g2 2

-6X10-",
which is to be compared with the standard-model upper
bound of 1 —1.5X10 ', 3X10 ' for m, -50, 80 GeV,
respectively.

We end this section with a brief discussion of forward-
backward asymmetry (AFR) for e+e ~t34t34 bb. This
asymmetry is proportional to a, af, where

af =v'p[(Zff ), (Zff ),1— (6.7)

(af = 1 in the standard model) and f is the final-state fer-
mion. The relevant couplings are given by

NL
ZALAL N +NL3 L4

44L P4L
L3 L4

NR4
43R 03R

R3 R4
(6.8)

NR
Z 44R P4R

R3 R4

The down-quark sector of left-right-symmetric models is
not experimentally interesting due to large seesaw
suppression (see example 1). However, this is certainly
not the case for examples 2 and 3 which are not left-
right-symmetric (or for left-right-symmetric models pos-
sessing isosinglet quarks mixing with mirror down
quarks' ). For example, if (Z db)L —10 then Bd Bd-
mixing (b,MR/MR —10 ' from Ref. 10) can be attribut-
ed to tree-level Z exchange, for which

AM~ G' (zdb),' ,'f,' B, —
2 2 3 d d

d
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The forward-backward asymmetries for mass eigenstates
4 3 0 4 will always be equal in magnitude and opposite in
sign. For down quarks in examples 2 and 3
(N3/N3+N4)L -0.90, 0.93, {N4/N3+N4)~ (0.01 im-

plying 10% and 7% less forward-backward asymmetry,
respectively, for e+e ~bb than in the standard model.
This deviation might be observable at LEP. Clearly, for
the top system forward-backward asymmetry would be
considerably smaller in magnitude, e.g., 30—100% than
expected for the standard model.

VII. REMARKS ON NONPERTURBATIVE
UNIFICATION

In the nonperturbative scenario of Maiani, Parisi, and
Petronzio (MPP) (Ref. 11), QCD as well as the other in-
teractions are asymptotically divergent so that the low-
energy gauge couplings are not sensitive to their initial
values at the ultraviolet cutoff scale A [g;(A) ~ 1 with
equality among them not a necessity] but rather to the
choice of field content, which controls their evolution,
and the initial scale A. This would be the ideal scenario
for the class of models we have been discussing since then
al/ initial couplings, I'ukawa as well as gauge, could be
—1, with no special hierarchies required.

Searches have been carried out' within the context of
the supersymmetric standard model, to two-loop order,
for solutions corresponding to 10' ~A%10' . The field
content singled out as yielding satisfactory predictions
for a„ct, , and sin Oii is five (ng =5) generations and
less than four (nH (4) Higgs doublets. As an illustration,
for A=Mp, the n =5, n~=0 solution of Cabibbo and
Farrar' gives a, -0.08, aem' —13'7, sin 0~-0.222 at Az.
Given that two-loop contributions to sin 0~ are at the
15% level, higher-loop effects can be substantial and
these numbers should be regarded as acceptable. It
should also be pointed out that. this result has been ob-
tained neglecting two-loop Yukawa coupling e6'ects as
well as changes in evolution below msUsY, i.e., the au-
thors have taken msUsz -A~.

Above m, the one-loop renormalization coefficients 3;,
i = 1,2, 3 [at one loop dct; /d lnE={A, /2a)a, .] for ns =5,
nH =0 are given by A3 =1, A2 =4, and 3, =—', . Re-
markably, for the standard-model gauge group, the field
content of Tables I and II [without the charged com-
ponents of the would-be SU(2)z Higgs doublets] together
with four lepton families (three ordinary and one mirror)
and one more set of isosinglet down quarks D,D' (these
may have several crucial roles to play), yields the same
one loop renorm-alization coe~cients A, aboue msUsv.
This is readily seen for A 3 and A 2 as the number of color
triplets and SU(2)L doublets is the same in both cases (for
A, use 2, =Qgi, , /4). Certainly one has to do an expli-
cit calculation taking two-loop effects (these will differ in
our case), including Yukawa couplings, and the SUSY
mass gap, msUsY, into account, as in Maiani and Petron-
zio. ' However the exact result should not di6'er from
one-loop results (with SUSY mass gap neglected) by more
than 10—20%. Nonperturbative unification is therefore
extremely promising for this class of models, at least for

Giz. For Gi&,GL+ low-energy predictions for a, will al-
most certainly be acceptable since A3 remains unaltered.
However some modification in color-singlet, electroweak
field content is probably required both to obtain success-
ful predictions for a, ,sin 0~ as well as to obtain a light
neutrino seesaw, with the SU(2)~ - or U(1)„-breaking
scale becoming an important parameter in the evolution
of electroweak gauge couplings. Nevertheless, the field
content appears to be in the right ballpark.

Finally, we note that the additional isosinglet down
quarks D,D' required in order to obtain the desired value
of A 3 may have several other functions. As remarked in
Sec. III A {Ref. 16), a vectorlike down-quark mixing ex-
clusjvely with mirror down quarks can allow for
m, -50—100 GeV without having to break isospin explic-
itly in the superpotential, while simultaneously satisfying

p parameter constraints. Also, in order to prevent rapid
proton decay, a second vectorlike down quark coupling
leptons (but not quarks) to squarks would be required if
m„ is to be generated via a graph analogous to Fig. 2.
Presumably, the ~ would acquire its mass via an
ordinary-mirror lepton seesaw.

VIII. CONCI. USION

%"e review the main features of the models discussed,
summarize some of their phenomenological implications,
and end with a brief discussion of related issues some of
which are currently under investigation. The models are
supersymmetic, with soft SUSY breaking assumed. The
left-right-symmetric gauge group as well as its subgroups
have been considered. The quark content consists of
three ordinary families, a fourth mirror family, and a pair
of isosinglet down quarks D,D' (see Table I). The third
and mirror quark families obtain mass at the tree level
while the light quarks remain massless (cf. Sec. III A). A
Z3Z2 symmetry (this choice is not unique) helps ac-
complish this by preventing ordinary quark —Higgs-
doublet Yukawa couplings at the tree level (cf. Sec. II).
The light quarks acquire their mass radiatively (cf. Sec.
III 8) primarily via graphs with squarks and isosinglet
quarks (Figs. 2 and 3) as well as squarks and gluinos (Fig.
4) in the loops. Supersymmetry therefore plays a crucial
role. The KM matrix is generated radiatively as well (cf.
Sec. V).

The observed quark mass and KM mixing hierarchies
are obtained without any special Yukawa coupling
hierarchy among the different families (they can all be
—1) or horizontal symmetries if the ordinary 3 X 3 squark
submatrices ML,M~ [see (3.18)] are degenerate at the
10% level or less. At the other extreme, if these matrices
are not degenerate all Yukawa couplings involving one
generation of quarks must be suppressed by an order of
magnitude relative to the remaining couplings. The ob-
served isodoublet mass splittings m, )&m&, m, ))m„
md & m„receive a unified understanding, with all of them
attributed to the mirror quark mass inequality Md )&M„'.
This inequality, associated with SU(2)I breaking, can be
obtained without explicit isospin breaking in the superpo-
tential with SUSY again playing a crucial role (cf. Sec.
II B). Because of ordinary-mirror quark mixing radiative
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flavor-changing Z couplings with important phenomeno-
logical implications emerge (cf. Sec. VI) satisfying
Zq, q, «Zq

& q3 «Zq2q3. Because of SUSY if one adds
a second set of light isosinglet down quarks to the
superfield content these models provide a very promising
setting for nonperturbative MPP unification (cf. Sec.
VIII). Therefore the possibility exists that all dimension
less couplings, gauge as wel/ as I'ukawa, could be —l at
Mp.

The radiative FCNC's characteristic of these models
lead to interesting liavor-violating Z decays (cf. Sec. VI).
For example, if m, & mz —m, then the Zct coupling im-

plies 8 (Z ~ct +ct ) —10 —10,with similar branching
ratio for charm+ mirror top (t ') if m, & mz —m, . These
decays should be observable at LEP given 10 Z's. In the
down-quark sector the Z db coupling may be large
enough to induce Bd-Bd mixing at observed levels via
tree-level Z exchange. Because of ordinary-mirror quark
mixing forward-backward asymmetries for e e ~bb, tt
may be as much as 10%, 30—100 % smaller than
standard-model expectations, respectively. From various
box graphs contributing to b,Mx (cf. Sec. III 8 1) a safe
scale for soft SUSY breaking is -5—10 TeV.

The p parameter constraints on isodoublet mass split-
tings imply min(m„m, . ) 40 GeV in the left-right-
symmetric case (cf. Sec. III A). For the non-left-right-
symmetric models min(m„m, .)-50—100 GeV is possible
if isospin is explicitly broken in the superpotential. Simi-
lar mass for the lighter top is possible in the left-right-
symmetric case, and more generally, in models without
explicit isospin breaking in the superpotential, if there is
an additional pair of isosinglet quarks mixing exclusively
with mirror down quarks. ' The mirror bottom quark is
always considerably heavier than the top or mirror top
quarks with typical mass ~300 GeV. Respective KM
mixing angles of the top and mirror top are of the same
order. In particular, V» —V, b can have rich implications
for top-quark searches, especially if the top and mirror
top are narrowly separated in mass.

The combination of three ordinary families and one
mirror family is uniquely singled out by the observed
quark mass hierarchy. For example, if there were three
ordinary families and more than one mirror family then,
in general, ordinary-mirror quark mixing would induce a
rank-two or -three tree-level contribution to ordinary
quark masses spoiling the mass hierarchy. %'ith four or-
dinary families and one mirror family the top-quark mass
would have to be a radiative quantity which is unlikely.
Finally, with four ordinary families and two mirror fami-
lies although only two ordinary families would pick up
mass at the tree level the largest radiative contributions
would, in general, be of rank two spoiling the mass
hierarchy between the first and second families.

Many issues associated with this class of models
remain to be investigated. Currently work is in progress
on extension of the mechanisms discussed to the leptonic
sector. Presumably, the ~ acquires the bulk of its mass
via ordinary-mirror lepton mixing. The p and e can ac-
quire their masses radiatively via graphs analogous to
Figs. 2-5. Isosinglet quarks propagating in these loops
with Yukawa couplings to leptons and ordinary squarks

will have to be di8'erent than those appearing in Figs. 2
and 3 in order to prevent proton decay. This is interest-
ing because the presence of two sets of isosinglet down
quarks is favored by MPP unification. Generation of
charged lepton masses will, in turn, lead to neutrino
Dirac masses which must be seesaw suppressed to obtain
ultralight neutrinos.

A number of issues require detailed numerical investi-
gation of renormalization-group evolution. For example,
it is important to check whether, within the context of
no-scale supergravity, the ordinary squark mass matrices
at low energies can be degenerate at or below the 10%
level despite the presence of large Yukawa couplings. It
is also of interest to check explicitly whether, within the
context of MPP unification, acceptable low-energy gauge
couplings can be obtained, taking two-loop e6'ects includ-
ing Yukawa couphngs into account. A study of CI' viola-
tion including calculation of the neutron electric dipole
moment in these models is also worthwhile. Finally, the
field content, and discrete symmetries required by this
class of models can, in principle, be obtained from the
superstring. Because initial Yukawa and, possibly, gauge
couplings can be of the same order these models could re-
move a lot of the burden from the superstring and a
search for two-generation string vacua is, therefore,
strongly advocated.

Note added. After completion of this work it was
brought to my attention that supersymmetric models
with one mirror family have recently been considered in
Ref. 25 as well, although there the quark mass and mix-

ing hierarchies are put in by hand at the tree level. These
authors have found similar branching ratios for
Z~ct+ct. I would like to thank Jon Rosner for point-
ing this work out to me.

ACKNOWLEDGMENTS

I would like to thank my collaborators Rabi Mohapa-
tra and B. S. Balakrishna for numerous helpful discus-
sions throughout this work. I would also like to thank
Jon Rosner for encouraging me to investigate flavor-
changing neutral-current e6'ects as well as for a critical
reading of the original manuscript and his continued sup-
port. I have also had useful conversations with K. S.
Babu, Partha Majumdar, and Jogesh Pati. This work
was supported by a Grant from the National Science
Foundation, submitted in partial fulfillment of require-
ments for the Ph. D. in Physics at the University of Chi-
cago.

APPENDIX: 5M& FROM DIAGONALIZATION of M

In the limit where ML ~ (3.18) are diagonal and degen-
erate and M is invariant under I', the latter is easily di-
agonalized. It is then straightforward to obtain the exact
expression for 5MD. Note that for models which are ini-
tially left-right-symmetric and invariant under I', which
also satisfy 5m /m 50. 1 (3.30), the true squark mass
matrix is only a small perturbation about this limit. The
eigenvalue problem reduces to two simpler ones, each
yielding four eigenstates, given by
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(A 1)

where the mass eigenstates are given by V=(4z, 4z) and
the basis for 4L and 'Pz is (q;, q ') and (q ';*,'q "*),respec-
tively. The matrices 3 and 8 are given by

2
I(3x3) 0

6MD is, in turn, given by

where

(A4)

I2

where the p entries in (3.18) are omitted since they are
negligible, cf. Sec. III B l. Orthonormal solutions of (Al)
are given by

m =m
1

2+ i
I ( i2+ i2+ 2) (( i2+ I2 2)2+4 4] 1/2

I

m —=m2

k =3,4;+

+
C k

(~ + )1/2

X mk
—ln

+2
mk

(F, =2) .

1 PD

16~ pa2 mk
2

(A5)

+ + + 1
PkL PkR-

(Xk )

+(mk —+p' —m' )
Ck

p
k =3,4.

m~
—=

—,
' I(m' +p' +m ) —[(m' +p' —m ) +4@ )]' ],

(A3)

In obtaining (A5) we have summed contributions of all
graphs contributing to 6MD, each with a different squark
mass eigenstate propagating in the loop. As a numerical
example for 5MD, taking m ' =m =pD = 5 TeV, p' =5

TeV, @=4.5 TeV, (A5) implies aD =3.25 GeV. The esti-
mate (3.25) for Fig. 2 would yield aD =8.3 GeV which is
large but differs by less than a factor of 3. This is gen-
erally the case for all numerical examples we have con-
sidered.
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