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Renormalixation-group-improved unitarity bounds on the Higgs-boson and top-quark masses
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A renormalization-group-improved perturbative unitarity bound for elastic scattering ampli-

tudes is proposed. This prescription leads to upper bounds on the Higgs-boson and top-quark

masses as a function of the energy at which perturbative unitarity is violated and new physics

enters. Upper bounds on the scale of new physics in models with no Higgs boson are also dis-

cussed.

I. INTRODUCTION

Weak interactions are well described by a theory of
massive vector bosons: the W — and Z. However, it is
known that such a theory by itself is nonrenormalizable.
In the standard SU (2)I, x U (1) model, ' this problem is
overcome by appending a scalar particle, dubbed the
Higgs boson, which couples to the massive vector bosons
in a manner which renders the theory renormalizable.
The condition of renormalizability does not determine the
Higgs-boson mass, however; it remains a free parameter
of the theory.

Similarly, the standard model accommodates but does
not predict fermion masses. The top quark is required in
the standard model to cancel triangle anomalies, whose
presence would otherwise ruin the renormalizability of the
theory. This requirement does not determine the top-
quark mass, however.

In this paper we present a prescription to determine
upper bounds on the Higgs-boson and top-quark masses

by combining the ideas of perturbative unitarity and trivi-
ality. For clarity we develop and discuss this prescription
in the context of the Higgs-boson mass in Sec. II. %e
then apply the same ideas to the top-quark mass in Sec.
III. Section IV summarizes our results.

II. UPPER SOUND ON THE HIGGS-BOSON MASS

There have been various attempts to find an upper
bound on the Higgs-boson mass. The simplest approaches
in the sense that they require rather minimal assumptions
are based on perturbative unitarity and triviality. The
perturbative unitarity bound is derived by requiring that
the Born amplitude for elastic longitudinal vector-boson
scattering not exceed the unitarity limit. Although this
bound is usually interpreted as the onset of strong cou-
pling, it may also be regarded as a hound on the Higgs-
boson mass, as we discuss below. The triviality bound on
the Higgs-boson mass is based on the assertion that scalar
field theories are trivial, i.e., noninteracting, unless they
are regarded as effective, low-energy theories. The trivi-
ality bound is then derived by demanding that the Higgs-
boson mass not exceed the scale at which the effective-
field-theory description breaks down and new physics
enters. The triviality bound is generally obtained by using

lattice regularization, with the inverse lattice spacing
playing the role of the scale of new physics.

In this paper we combine the notions of perturbative
unitarity and triviality to obtain a bound on the Higgs-
boson mass as a function of the scale at which new physics
enters. The basic prescription is to apply the condition of
perturbative unitarity to longitudinal vector-boson scat-
tering amplitudes in which the coupling is allowed to run
with energy. The Goldstone-boson equivalence theo-
rem ' ' tells us that these amplitudes are identical to
Goldstone-boson scattering amplitudes. Since the Gold-
stone bosons are scalars and the coupling of a scalar field
theory grows with increasing energy, we will find that for
any Higgs-boson mass there is an energy at which pertur-
bative unitarity is violated, and we identify this energy as
the scale at which new physics enters. This prescription is
linked with the notion of triviality in the sense that the
growth of the coupling with increasing energy is related to
the triviality of the theory.

The unitarity bound on the Higgs-boson mass has been
obtained previously by applying the condition I ao i 1 to
the zeroth partial-wave amplitude for longitudinal vec-
tor-boson scattering in the limit s»mH, while ignoring
the running of the coupling. Since the Born approxima-
tion to ao is proportional to GFmH, one obtains an upper
bound on the Higgs-boson mass, which is mH ~ 8m/2/
3GF = (1 TeV) .

Recently, Liischer and Weisz' have pointed out that
the unitarity bound on the Higgs-boson mass may be im-

proved by applying the stronger condition ) Reap( ~
Since ao is real in Born approximation, this lowers the un-

itarity bound on the Higgs-boson mass by a factor of
I/J2. Since this stronger condition is important for our
later discussion, we give a brief outline of its derivation.

Unitarity of the 5 matrix implies that the Jth partial-
wave amplitude of an elastic scalar scattering process,
defined by

r 1

aJ(s) „dzPJ(z)T(s, z),
32Ã —l

where T(s,z) is the amplitude and z is the cosine of the
scattering angle, satisfies

Imaj~ )aJ I'
for the scattering of massless particles. ' Since Imaj
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(Reaj) ~ Imaj(1 —Imaj) . (4)

Since the right-hand side of this equation is bounded by
4, it implies

eQJ (5)

as noted in Ref. 13. This inequality is obvious if one en-
visions the unitarity circle. '

The zeroth-partial-wave amplitudes for longitudinal-
vector-boson scattering are given in Ref. 4. The unitarity
bound on the Higgs-boson mass is obtained by considering
the limit s))mH. In this limit we have'

a, (W, W, -W, W;)-—+ — +
4x '

Qp
1 1 3X

ZL ZL ZL ZL
16m

' (6b)

1a o WL+ WL ZLZL
2 8x 2

(6c)

where )t GFmH/J2 The c.ombination of WL+WL and
ZLZL which has the largest zeroth-partial-wave ampli-
tude and hence yields the tightest bound on the Higgs-
boson mass is the (normalized) state (2'.+ WL
+Zr ZL)&6, which is the zero-isospin state (Ref. 13). It
has a zeroth-partial-wave amplitude of

ao(1-0) -—5X,

16m

Applying the unitarity condition
~
Reao )

~ —, gives

mH ~ = (780 GeV)8~iX 2

56F

(7)

which is the bound quoted in Ref. 13.
The longitudinal-vector-boson scattering amplitudes

may be obtained via the Goldstone-boson equivalence
theorem, ' ' which instructs us to replace the external
longitudinal vector bosons with the corresponding Gold-
stone bosons of the R~ gauge. The resulting amplitude is
equivalent to that of the longitudinal vector bosons up to
terms of 0(Mi22/s) which, for our purposes, are negligible.
This theorem explains why the amplitudes given in Eqs.
(6a)-(6c) are proportional to X, the scalar field self-
coupling in the Higgs sector of the standard model.

The running of the scalar field self-coupling A, is given
by the usual renormalization-group equation. At one loop
it gives, for p & mH,

&(p)-
1 —(3k/2x )In(p/mH )

(9)

where A, X(mH) GFmH/J2. It is well known that ) (p)
becomes infinite at a finite-energy scale p =IH exp(2x /

~ ~aJ [ (Schwartz inequality), Eq. (2) iinplies (aj ~

~ 1,
which is the usual condition used to obtain the unitarity
bound on the Higgs-boson mass. However, if we rewrite
Eq. (2) as

Imaj ~ (Reaj) +(Imaj)

we obtain

This equation gives the renormalization-group-improved
unitarity bound on the Higgs-boson mass for a given value
of A/rnH. Although Eq. (11) is strictly valid only for
A»mH, the high-energy approximation to the amplitudes
[(6a)-(6c)l is rather good even for energies just above the
Higgs-boson mass, so we may apply Eq. (11) for modest
values of A/mH.

The solid curve in Fig. 1 shows the bound on the
Higgs-boson mass as a function of the ratio of the scale of
new physics, A, to the Higgs-boson mass. For compar-
ison, the dashed curve shows the results of a nonperturba-
tive study by Liischer and Weisz' using lattice regulari-
zation. In their calculation the scale A is the inverse of
the lattice spacing, which provides an effective cutoff.
Unfortunately, it is difficult to determine the quantitative
relationship between our definition of A and theirs. Thus
the remarkable agreement between their results and ours
should not be taken too seriously. We can only say that
there is qualitative agreement.

It has been suggested that one may estimate the scale of
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FIG. 1. Upper bound on the Higgs-boson mass as a function
of A/mH, where A is the scale of new physics. The solid curve is
the renormalization-group-improved unitarity bound, given by
Eq. (11). The dashed curve is the result of a lattice calculation
of Ref. 13. The dotted curve is obtained by identifying A with
the Landau pole, and is given by Eq. (12).

3)j,), the Landau pole. This singularity may be avoided if
0; i.e., the theory is trivial. It is in this sense that the

running of the coupling is related to the triviality of scalar
field theories.

Triviality may be avoided if we regard the running cou-
pling k(p) as describing an effective theory at energies
below the scale at which it is subsumed by some deeper
theory. We propose to identify this scale of new physics as
the energy at which perturbative unitarity is violated. If
we call this scale A, we then find from Eqs. (5) and (7)
that

SX(A)
16m 2

'

for A»mH. Using Eq. (9), this yields

2~'iX, A 5~



I ~ ~ It 1 I II 1 I I lf
'

I I ~ ( I I Q (f

RENORMALIZATION-GROUP-IMPROVED UNITARITY BOUNDS. . . 1727

new physics A as the energy at which the running coupling
X(p) becomes infinite. Using Eq. (9), we find

2~'W2
3GF ln(A/mH)

' (i2)

&(p) -p(x(p)) .
d inp

The two-loop P function is given by 5

(i 3)

This inequality yields the dotted curve in Fig. 1. For
A»mH, e.g., A Mp~ OI' MoUT (Refs. 22 and 23) the re-
sult of this prescription is indistinguishable from ours,
while for small values of A/mH, the bound on mH is weak-
er than ours. However, this approach may be criticized on
the grounds that it entails evolving the running coupling to
infinity, thus entering the strong-coupling regime where
the use of the one-loop approximation to the running cou-
pling, Eq. (9), is unjustified. Our approach has the advan-
tage that the running coupling is evolved to only a finite
value, X.(p)/x 8/5x. Perturbative unitarity is violated
for this value of A, (p), so it presumably corresponds to
strong coupling. However, throughout most of the range
of integration of the renormalization-group equation,
X,(p ) is much smaller than this value, and the one-loop ap-
proximation is valid.

A separate measure of the validity of the one-loop ap-
proximation to the running coupling, Eq. (9), for a given
value of X(p) is the relative size of the one- and two-loop
terms in a perturbative expansion of the P function,
defined by

15). We find

GFs
ap(1 -0)- (is)

Using Eq. (5), we obtain

A2~ = (1.2 TeV)—
GF

(i6)

Thus, in the absence of any specific model of the sym-
metry-breaking sector of the electroweak interaction, new
physics should enter before about 1.2 TeV. A specific
model may require new physics at a lower scale, such as
the standard Higgs model, which requires mH ~ 780 GeV.

III. UPPER BOUND ON THE TOP-QUARK MASS

We may also apply our prescription to the top-quark
mass. At high energies, the zeroth-partial-wave ampli-
tude for elastic tt scattering is proportional to GFm, ,
i.e., the square of the Yukawa coupling of the top quark. 2

For large m„ the renormalization-group equation tells us
that the top-quark Yukawa coupling becomes infinite at a
finite energy, which leads us to speculate that new physics
must enter prior to this energy scale. Nonperturbative
studies of the Higgs-boson-top-quark system support this
conjecture.

The zeroth-partial-wave amplitude for color-singlet,
elastic, same-helicity tt scattering in the limit s &&an&, m&
1S

28

P(g) 3A
1

1 3A

2x 16m
(i4)

ap(rr —rr) -—3K'

4z ' (i7)

so the ratio of the magnitude of the two-loop term to the
one-loop term is 13K(p)/16m . For k(p)/x 8/5x, the
value at which perturbative unitarity is violated, this ratio
is 13/10m =0.4 which, although non-negligible, suggests
that the one-loop approximation is not unreasonable even
for this value of A, (p), which is the maximum value con-
sidered. The improved unitarity condition, ( Reap (

~
halves the maximum value of A. (p) compared with the
usual condition, ( ap ( 1. This improved condition thus
helps justify our use of the one-loop P function.

We conclude that if the standard Higgs model is
correct, the Higgs-boson mass must be less than the uni-
tarity bound, mH ~ 780 GeV. Furthermore, there is
necessarily another threshold in the weak interaction, the
scale of new physics, A. For a given Higgs-boson mass,
the maximum value of this threshold may be deduced
from the solid curve in Fig. 1. If we consider the W-boson
and Higgs-boson masses as the first and second thresholds
of the weak interaction, this represents a third threshold.

It is also possible that the standard Higgs model is not
correct. Without the Higgs boson, the amplitudes for
longitudinal-vector-boson scattering are proportional to
GFs. %'e may use unitarity to estimate the scale A at
which this description of the weak interaction breaks
down. The largest zeroth-partial-wave amplitude is again
the zero-isospin combination of 8'L Wl. and ZLZL (Ref.

where x. GFm, /W2. Applying the unitarity condition
(Reap( ~ —,

' yields the bound

m = (5006eV)
3GF

which improves the bound on m, of Ref. 28 by I/J2.
The one-loop renormalization-group equation for x (p)

S22

x(p)-,x (p. ) ——a, (p) x(p) .9 2 4
d in@ 4x

(19)

m ~ a, = (270 GeV)
9GF

(20)

where we have used a, =0.1.
To properly treat the running of x, we must also include

the running of a, . For six flavors, the one-loop renor-
malization-group equation for a, is

a, (p) -— a2(p) .d 7
lnp 2' (2i)

Note that we have included one-loop @CD effects, which
are qualitatively important. If x(p) ~ 16m/9a, (p), the
right-hand side of Eq. (19) is positive, and the Yukawa
coupling grows with increasing energy. Ignoring the run-
ning of a„we find that x(p) grows without bound unless
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The solution to the coupled equations (19) and (21) is '

2+a+'(p)
x(p) =

9a,'~'(p)+ C
' (22)

where C is a constant of integration, and

a, (p) = a, (po)
I+ (7/2')a, (po)ln(p/po)

' (23)

The constant C is fixed by the initial condition Ic(m, )
=GFm, /J2. For the initial condition on a, we use
a, (po =Mw) =0.11.

Since a, is asymptotically free, Eq. (22) tells us that
K(p) is asymptotically free if C ~ 0. For C (0, however,
x(p) becomes infinite at the scale p given by 9a,'~ (p)

~ C~. Thus the requirement that x.(p) vanish asymp-
totically implies '

m, ~ a, (m, ) = (95 GeV)
9GF

(24)

This is significantly smaller than the value obtained in Eq.
(20) where we ignored the running of a, .

As in Sec. II, we propose that the scale of new physics,
A, be identified with the energy at which unitarity is
violated. Using the running Yukawa coupling, Eq. (22),
in the zeroth-partial-wave amplitude for elastic tt scatter-
ing, Eq. (17), and imposing

~
Reao

~

~ —,', we generate a
bound on the top-quark mass as a function of A/m, . This
bound is given by the solid line in Fig. 2. For m& ~95
GeV, the Yukawa coupling is asymptotically free, and it is
not necessary to postulate new physics. For 95 GeV
~ m& ~ 170 GeV, the Yukawa coupling runs very slowly,
and although it eventually becomes large enough that per-
turbative unitarity is violated, this violation occurs at an
energy in excess of the Planck scale.

The preceding analysis assumes the standard Higgs
model is responsible for the generation of the top-quark
mass. In the absence of the Higgs boson, the amplitude
for same-helicity tt annihilation into longitudinal vector
bosons is proportional to GFm, &s, and will therefore

GF my Ws

s~iX
(25)

where the subscripts on r, r indicate the helicity. The
combination of states which yields the largest zeroth-
partial-wave amplitude is the color-singlet, spin-zero com-
bination of tt and the zero-isospin combination of
8'~+ WL and ZLZL, for which

3Gpmr Js
ao I=0

8~Jr
(26)

It is this amplitude to which we will apply the unitarity
condition.

Since the amplitude under consideration, Eq. (26), is
inelastic, we must generalize our previous derivation of
the unitarity condition, which was for elastic amplitudes
only. Unitarity of the S matrix implies

Ima J ~
J
aJ [

'+
[ a)" f',

where aJ is the Jth partial-wave amplitude of an elastic
scattering process, and aJ" is the Jth partial-wave ampli-
tude for an inelastic process ~here the initial state is the
same as that of aj, and the final state is any two-body
state different from that of aj. Following the same steps
as before, we arrive at

a ln (28)

which implies ~ReaJ"
~

~ —,'. Thus the conditions on the
real part of the elastic and inelastic amplitudes are identi-
cal.

Applying the unitarity condition, Eq. (28), to the am-
plitude in Eq. (26) and denoting the energy at which uni-
tarity is violated by A, we arrive at

4~&2
3GFA

(29)

violate unitarity at suf5ciently high energy. The
zeroth-partial-wave amplitudes are

ao(t+t+ ~ WL+WL ) =ao(t ~t+ ~ ZLZL)
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As before, we identify A as the scale at which new physics
enters. The dotted line in Fig. 2 gives the bound on m, as
a function of A/m, . This bound is stronger than the corre-
sponding bound derived from the standard model with a
Higgs boson.

The bounds we have obtained on the top-quark mass,
given in Fig. 2, are weaker than bounds which have been
obtained via other considerations. Data from neutral-
current phenomenology and vector-boson masses imply
m, ~ 200 GeV (for mH S 1 TeV), from top-quark loop
effects. Stability of the vacuum state in the standard
model yields m, ~ 95 GeV+0.6mH since heavy fermions
make a negative contribution to the effective potential.
However, both of these bounds may be circumvented in
extensions of the standard model.

FIG. 2. Upper bound on the top-quark mass as a function of
A/mH, where A is the scale of new physics. The solid curve is
the renormalization-group-improved unitarity bound. The dot-
ted curve is the bound in the absence of the Higgs boson, and is
given by Eq. (29).

IV. CONCLUSION

In this paper we used renormalization-group-improved
perturbative unitarity to obtain upper bounds on the
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Higgs-boson and top-quark masses. The bound on mH is
given as a function of the scale A at which perturbative
unitarity is violated and new physics enters. If we require
A~ mH, this leads to the bound mH «780 GeV. For
larger values of A/mH, the bound on mH is tightened. In
the absence of the Higgs boson, unitarity yields a bound
on the scale at which new physics enters of A ~ 1.2 TeV.

Similarly, there is a bound on the top mass as a function
of the scale of new physics. If we require A ~ m„we find
m, «500 GeV. For m, «170 GeV, the scale of new
physics exceeds the Planck mass. If m, «95 GeV, the
Yukawa coupling is asymptotically free, and no new phys-
ics is required. In the absence of the Higgs boson, we ob-
tain a bound on the scale of new physics as a function of
m, . For m, = 100 GeV, this bound is A «5 TeV.

Since the bounds quoted above are based on the as-
sumption that the violation of tree-level unitarity signals
the onset of new physics, they cannot be considered
rigorous. Nevertheless, they strengthen our conviction
that both the Higgs boson and the top quark are within
the reach of the proposed Superconducting Super Collid-
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