PHYSICAL REVIEW D

VOLUME 40, NUMBER 5

Two-photon decay width of the Higgs boson in left-right-symmetric theories

R. Martínez,* M. A. Pérez, and J. J. Toscano

Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico National,

Apartado Postal 14-740, 07000 México, Distrito Federal, México

(Received 15 June 1989)

We calculate the W_R contribution to the two-photon decay width of the light neutral Higgs boson H^0 in left-right-symmetric models. We find that this contribution is suppressed relative to the standard-model (SM) W_L contribution by a factor $(M_L/M_R)^4$. This result arises because the W_R coupling to H^0_1 is not proportional to its own mass M_R , as a SM-like coupling would suggest, but rather to the lighter mass M_L . As a consequence, $\Gamma(H^0_1 \to \gamma \gamma)$ in left-right-symmetric theories has essentially the same value as in the standard model.

It has been pointed out¹ that an intermediate-mass Higgs boson $(0.5M_Z < m_H < 2M_Z)$ could be detected through the rare decay modes $H^0 \rightarrow \gamma\gamma$, $\gamma l^+ l^-$, $\tau^+ \tau^-$, etc. In particular, the two-photon mode will be a spectacular one to detect. It was also¹ found that if $m_H < 2m_t$, this mode seems to be viable at the Superconducting Super Collider for $m_t > 80$ GeV.

The purpose of the present Rapid Communication is to report a calculation of the decay width for $H_1^0 \rightarrow \gamma \gamma$ within the framework of left-right-symmetric (*L-R*) models.² In these models with a minimal Higgs potential,

when the mass of the W_R boson is much greater than the standard W_L boson, one of the neutral physical Higgs bosons H_1^0 is the *L*-*R* analogue of the neutral Higgs boson of the standard model (SM). The decay $H_1^0 \rightarrow \gamma\gamma$ can occur through scalar, fermion, and gauge-boson loops. Since the W_L loop dominates $\Gamma(H^0 \rightarrow \gamma\gamma)$ in the SM,³ an immediate question arises as far as the W_R contribution in *L*-*R* models is concerned. In Ref. 1 it was found that $B(H^0 \rightarrow \gamma\gamma)$ is enhanced by about one order of magnitude if there is a new *W* gauge boson with SM coupling to H^0 . However, the main conclusion of the present note is

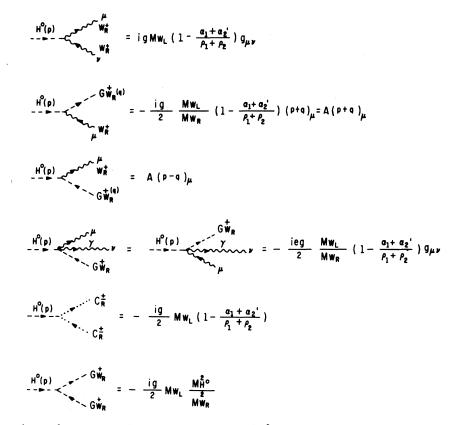


FIG. 1. Feynman rules used to compute the W_R contribution to $\Gamma(H^0 \to \gamma \gamma)$. Dashed lines denote unphysical (Goldstone) scalar mesons and dotted lines ghost fields.

<u>40</u> 1722

<u>40</u>

that this expectation is not satisfied in L-R models because the W_R coupling to H_1^0 is not proportional to its own mass M_R , as a SM-like coupling would suggest, but rather to the lighter mass M_L .

The two-photon decay width of the SM neutral Higgs boson of mass m_H is given by⁴

$$\Gamma(H^0 \to \gamma \gamma) = \frac{\alpha^2 G_F m_H^3}{64\sqrt{2}\pi^3} \left| \sum_i F_i Q_i^2 \right|^2, \qquad (1)$$

where i = scalar(s), fermion (f), gauge boson (L), Q_i is the electric charge in units of e, and

$$F_{s} = \tau_{s}(1 - \tau_{s}I^{2}),$$

$$F_{f} = -2\tau_{f}[1 + (1 - \tau_{f})I^{2}],$$

$$F_{L} = 2 + 3\tau_{L} + 3\tau_{L}(2 - \tau_{L})I^{2},$$
(2)

with $\tau_i = 4m_i^2/m_H^2$ and

$$I = \begin{cases} \arctan \frac{1}{\sqrt{\tau - 1}}, & \tau > 1, \\ \frac{1}{2} \left(\pi + i \ln \frac{1 + \sqrt{1 - \tau}}{1 - \sqrt{1 - \tau}} \right), & \tau < 1 \end{cases}$$

We shall consider the W_R contribution to $\Gamma(H_1^0 \rightarrow \gamma \gamma)$ in a class of *L*-*R* models where the W_L - W_R mixing angle ζ is small:^{5,6}

$$\zeta \simeq \pm \frac{g_L}{g_R} \frac{2|\kappa\kappa'|}{|\nu_R|^2}, \qquad (3)$$

with g_L and g_R the SU(2)_L and SU(2)_R gauge coupling constants, κ, κ' and ν_R the vacuum expectation values of the two Higgs doublets and one of the Higgs triplets. In order to have $M_R \gg M_L$, these parameters satisfy ν_R $\gg \kappa, \kappa'$.

We work in the 't Hooft-Feynman gauge. The Feynman rules necessary to compute the W_R contribution to $\Gamma(H_1^0 \rightarrow \gamma \gamma)$ are shown in Fig. 1. In Fig. 2 we show the Feynman diagrams involved in this computation. Since our result is quite sensitive to the $H_1^0 W_R W_R$ coupling, it deserves a special discussion. This coupling is originally given by

$$\frac{ig^2}{2}(\cos\theta^0\kappa + 2\sin\theta^0 v_R), \qquad (4)$$

where θ^0 is the mixing angle which defines the neutral-Higgs-boson mass eigenstates and is given by⁵

$$\tan 2\theta^0 = -\frac{\alpha_H \kappa v_R}{\rho_H v_R^2 - \lambda_H \kappa^2},$$
 (5)

where α_H , ρ_H , and λ_H are linear combinations of the scalar-boson self-couplings. If we consider the natural vacuum-expectation scenarios outlined in Ref. 7, then we do not expect highly correlated values among these self-couplings, and in the limit $v_R \gg \kappa$ Eq. (5) reduces to

$$\sin\theta^0 \simeq -\frac{a_H}{2\rho_H} \frac{\kappa}{v_R} \,. \tag{6}$$

Therefore, the $H_1^0 W_R W_R$ coupling (4) turns out to be pro-

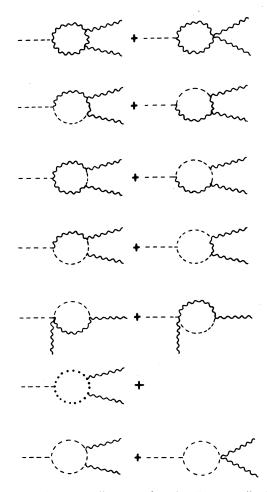


FIG. 2. Feynman diagrams for the W_R contribution to $\Gamma(H_t \rightarrow \gamma \gamma)$ in the 't Hooft-Feynman gauge.

portional to $g^2 \kappa$ or gM_L as shown in Fig. 1.

The calculation of the diagrams shown in Fig. 2 reproduces the SM W_L contribution, except for the coupling constant associated with the $H_1^0 W_R W_R$ vertex. In fact, we have checked that in the appropriated limit our result reduces to the SM result given in Eqs. (1) and (2). The W_R contribution to $\Gamma(H_1^0 \to \gamma \gamma)$ can be expressed as the SM result (1) with a F_R function given by

$$F_{R} = \frac{1}{\tau_{R}} [2 + 3\tau_{R} + 3\tau_{R} (2 - \tau_{R}) I^{2}], \qquad (7)$$

where $\tau_R = 4M_R^2/m_H^2$. Since the functions f_i depend weakly on τ_i , we thus obtain that, if $g_L = g_R$, the W_L and W_R contributions to $\Gamma(H_1^0 \to \gamma \gamma)$ are scaled by a factor $F_R = (M_L/M_R)^2 F_L$. According to the known constraints^{6,8} for M_R , even for the weakest bound $M_R > 300$ GeV, we get that the W_R contribution to $\Gamma(H_1^0 \to \gamma \gamma)$ is suppressed by at least an order of magnitude with respect to the SM W_L contribution. It should be mentioned that had the $H_1^0 W_R W_R$ coupling been proportional to gM_R , as expected in the SM, then both W_L and W_R contributions would have been of the same order of magnitude, and one **RAPID COMMUNICATIONS**

1724

should expect an enhancement of this decay width as observed in Ref. 1.

In conclusion, in L-R models we expect to have for the two-photon decay width of H_1^0 essentially the same value as in the SM. A possible enhancement of this decay width should be associated therefore to supersymmetric or two-Higgs-doublet models in general.⁹

- *Permanent address: Departamento de Física, Universidad Nacional, Apartado Aéreo 3840, Medellín, Columbia.
- ¹J. F. Gunion, G. L. Kane, and J. Wudka, Nucl. Phys. **B299**, 231 (1988).
- ²R. Mohapatra, Unification and Supersymmetries (Springer-Verlag, New York, 1986).
- ³J. Ellis, M. K. Gillard, and O. Nanopoulos, Nucl. Phys. B106, 292 (1987).
- ⁴A. J. Vainstein, M. B. Voloshin, V. I. Zakharov, and M. A. Shifman, Yad. Fiz. **30**, 1368 (1979) [Sov. J. Nucl. Phys. **30**, 711 (1979)].
- ⁵J. Gunion, B. Kayser, R. N. Mohapatra, N. G. Deshpande, J.

We benefited from discussions with A. García, J. L. Lucio, M. H. Reno, and M. Yannick. One of us (M.A.P.) thanks the Physics Department of the Universidad Autónoma Metropolitana-Iztapalapa, where part of this work was done, for their warm hospitality. J.J.T. acknowledges support from Consejo Nacional de Ciéncia y Tecnología.

Grifols, A. Méndez, F. Olness, and P. B. Pal, in *Physics of the Superconducting Super Collider, Snowmass, 1986, proceedings of the Summer Study, Snowmass, Colorado, edited by R. Donaldson and J. Marx (Division of Particles and Fields of the APS, New York, 1988), p. 197.*

- ⁶P. Langacker and S. Uma Sankar, University of Pennsylvania Report No. UPR-0385T (unpublished).
- ⁷J. F. Gunion, J. Grifols, A. Méndez, B. Kayser, and F. Olness, this issue, Phys. Rev. D 40, 1546 (1989).
- ⁸M. Aquino, A. Fernández, and A. García, CINVESTAV Report No. FIS-04/89-1 (unpublished).
- ⁹R. Bates and J. N. Ng, Phys. Rev. D 34, 172 (1988).