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Large N„ the I, =J, selection rule, anti meson-baryon reactions

J. T. Donohue
Laboratoi re de Physique Theorique, Universite de Bordeaux I, 33170 Gradignan, France

{Received 17 April 1989)

Mattis and Braaten have derived a linear relation among partial-wave amplitudes for meson-
baryon reactions which is valid in the limit X,~ 00, where X, is the number of quark colors. From
this they establish the selection rule I, =J, found previously by Mattis and Mukerjee. Using the
new relation, I present a simplified derivation of earlier results for the spin-projection amplitudes in
meson-baryon reactions. Consequently, the I, =J, selection rule may be confronted with experi-
mental data even when a partial-wave analysis is unavailable.

In a recent paper, Mattis and Braaten' have derived a
linear relation among the partial-wave amplitudes for
two-Aavor meson-baryon scattering, which is valid in the
large-N, limit, where N, is the number of quark colors.
The reaction considered is
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where P and g represent arbitrary, nonstrange mesons,
and where 8 and 8' are nonstrange baryons whose spins
and isospins are identical and are denoted by R and R',
respectively. The relation holds among the partial-wave
amplitudes T of fixed orbital angular moment L (initial
state) and L' (final state), and Mattis and Braaten write it
as

where S and S' are the initial-state and final-state spins,
I, and J, are the (conserved) s-channel isospin and total
angular momentum, respectively, and the matrix II is, to
within numerical factors, essentially an 18-j symbol of
the second kind. The sum over the tilde variables is unre-
stricted, except for requiring that the matrix elements be
nonvanishing. Following the notation of Yutsis, Levin-
son, and Vanagas, Mattis and Braaten express the ma-
trix H in the form

II(L L') ' '
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where the quantity g is defined by

/=I, +J,+S+S' I, —J,—S—S—' .

In Eq. (2), S& and I& are the spin and isospin of the
meson P, S& and I& are those of the meson g, and the no-
tation [R] means (2R+ 1). The quantity in large brack-
ets is an 18-j symbol of the second kind, which is sym-
metric under exchange of top and bottom rows, as well as
cyclic advance of the columns. The coupling schemes
correspond to triangles whose base is in the bottom row,
such as (RS&S), and similar, but inverted, triangles for
the top rom. The quantity k is determined by the condi-

I

I

tion that the matrix 0 be a projection operator, i.e.,
II = II, and it is represented by the infinite sum

k= g [R]2. (&)
R

The meaning of Eq. (l) is clear. The projection opera-
tor 0 has eigenvalues zero and unity, and the equation
simply says that the partial-wave amplitude T must be an
arbitrary linear combination of eigenvectors whose eigen-
value is unity. Mattis and Braaten then proceed to solve
the equation by making a change of variables. Introduc-
ing I„ the t-channel isospin, and three new quantities
which they call J„J&,and J&, they define

I,J SS'

R I~ I, R J~ J, J, J~ R J,
x

I~ R' I, J~ R' J, S~ S L S~

J~ R'
TI J SS'LL'RR'
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and find, upon substitution into Eq. (1), that their new partial-wave amplitudes T~ J J z LL,~z. vanish unless the variable

J, =I„the t-channel isospin. Furthermore the R and R dependence of these amplitudes is entirely contained in a fac-
tor ([R ][R'])' . The J, =I, rule was first obtained by Mattis and Mukerjee, using an expression for the partial-wave
amplitudes derived earlier by Mattis in the context of the Skyrmion model of nonstrange. baryons.

In a previous work, I had shown, after considerable algebra, that the Skyrmion-based formula of Mattis for the
partial-wave amplitudes permits one to express the spin-projection amplitudes, for fixed t-channel isospin, in terms of a
set of unknown reduced amplitudes. The advantage gained thereby is that the number of independent reduced ampli-
tudes is generally less than the number of independent spin-projection amplitudes, and one obtains a number of predic-
tions which may be compared with experimental results even when a partial-wave analysis is not feasible. The aim of
this paper is to show that the same result follows immediately from the linear relation derived by Mattis and Braaten.
Once again, the necessary formulas are to be found in the extraordinarily rich monograph of Yutsis, Levinson, and Va-
nagas, in particular Eqs. (A.6.45) and (A.6.46). Using these expressions one may rewrite the projection operator II as a
sum of products of 6-j and 9-j symbols, such that each term factors into one piece which depends on the variables
I„J„S,S', R and R ', and another which depends on the tilde counterparts. The result is

11«L ')s,'g', ssg~ =k '[Js][Jsl([R][R'][Sl[S'l[R][R'][Sl[S 'l)'"
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where the summation variables A, B, and C are limited only by the triangle inequalities occurring in the 6-j and 9-j
symbols. The substitutions

A=I, +J, +S'—R', A=I, +J,+S'—R '

have been used in writing this expression. If in Eq. (1) one then replaces II by Eq. (6), one finds the result

Tq 1 Ss LL, ii~ =([R ][R'][S][S'])' ( —1)
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X g [ A ][B][C]

A, B,C
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where the reduced amplitudes TABcLL. are defined by

T~acLL, =k ' g [~.][~s l([R ][R '1[S][S'1)'"(
I,J,S

S',R, R '
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S'I' JS S
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Sg '~X J Ss'L,L, 'RR' (9)

The essential result is Eq. (8), which shows that the partial-wave amplitudes may be written as sums of products of
known coe%cients with unknown reduced partial-wave amplitudes. The entire dependence on the six variables
I„J„S,S', R, and R' is carried by the numerical factors and the 6-j and 9-j symbols appearing therein.

In order to show clearly what sort of reduction in the number of partial-wave amplitudes is entailed by Eq. (8), I in-
troduce a fully general way of writing the amplitudes for fixed values of L, L', R, and R'. The starting point is the
resolution of the identity

B A C
S

X g [A][B][C]' S' R' S~ .
' — ', S' R' Sg . ,

S R S~ S R S~

(10)
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which is a consequence of the standard orthogonality properties of the 6-j and 9-j symbols. ' Using this identity one
may then write

S' L' J B A C

Tt J ss LL tttt ([S][S'])' ( —1) * g [A ][B][C] L S B .S' R' Sq tt A. BcLL Rit
A, B,C S R S~

where the quantities tI ABcLL RR. are defined by
S

I ABCLL'RR'

= g [J,]([S][S'])'"(—1) '
J, , S,S'
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They may be considered as just a convenient way of cod-
ing the information contained in the usual partial-wave
amplitudes. It should be noted that in contrast with Eq.
(8), the sum over the variable A in Eq. (11) is not con-
strained by the meson isospins. Following Rebbi and
Slansky, I then form the linear combinations which cor-
respond to definite t-channel isospin I, :

amplitudes: T10,LL, T»1LL, T121LL T121LL+2, and
In this way the results originally obtained by

Mattis and cast into t-channel isospin language by me
are easily reproduced.

The relation between the partial-wave amplitudes in-
troduced by Mattis and Bratten and my partial-wave am-
plitudes tI ABcLL RR may be obtained by substituting Eq.

t

(11) on the right-hand side of Eq. (5), and using some
identities among the 12-j symbols: namely, Eqs. (19.3)
and (A.6.47) of Ref. 2. One finds that the variable which
I call A is identical to the variable J, of Mattis and
Braaten, and the relation between the two sets of partial-
wave am. plitudes is

I,JtJ~J~LL 'RR '

J, B C

=([Jp][J,i])'"g [B][C](—1)

J~ L' S@

R
= g [I,](—1)

I,

I~ I,
~I ABCLL'RR'

(13)

X tI J BCLL'RR'

where the quantity g is defined by

g=R —R'+ J~+J~ —L+I~ .

(15)

If one then evaluates this expression, using Eqs. (12) and
(8), one finds the result

It A R+R'+I, 1/2W
tt ~acLL, 'int' (

—1) '([R ][R'])[~]
(14)

which succinctly summarizes the result of Mattis and
Braaten. One sees that if the quantity A is not equal to
the t-channel isospin I„then the amplitude tI ABcLL'RR' »
zero. Furthermore, the dependence on the baryon spins
is explicit.

As an illustration I examine in detail the predictions of
the model for the reaction originally considered by
Mattis, mX ~pX. Here one has S& =0, hence
C=S~=1, and ~L L'~ =0 or 2. If I, =O, —then A =0,
which implies B= 1 [through the 9-j symbol in Eq. (12)],
and the unique reduced amplitude is To11LL. Those am-
plitudes with

~
L —L '

~

=2 are zero because of the 6-j sym-
bol in Eq. (12). In contrast, if I, = 1, then one has B=0, 1

(both of which imply ~L L'~ =0), and 2 (wh—ich permits
~L L'~=0 or 2). Ther—e are thus five allowed reduced

One sees from Eq. (15) that my partial-wave amplitudes
and those of Mattis and Braaten are essentially related by
a 9-j symbol, which, for fixed values of J„L,L', S&,
and S&, may be considered as forming an orthogonal ma-
trix between the pairs of variables (J&,J&) and (B,C).
Thus my Eq. (14) simply confirms the two major results
of Mat tis and Braaten, the J, =I, and ( [R ][R '] ) p«-
portionality rules. If one is interested in testing these
predictions of the model at the level of partial-wave am-
plitudes, there is no reason to prefer one set to the other.
However, there is a second aspect of Eq. (8) which does
not have its equivalent in the approach of Mattis and
Braaten. The J, dependence of my partial-wave ampli-
tudes tI „BcLLRR. is such that the J, sum which relates
the partial-wave amplitudes to the spin-projection ampli-
tudes can be carried out explicitly. Therefore my rela-
tions may be extended from the partial-wave amplitudes
to a particular form of the spin-projection amplitudes.

Let the spin-projection amplitudes of definite I, for the
reaction be denoted by 8' (O, q&, 8', y'), where c

c d a b

and d (a and b) denote final (initial) meson and baryon, re-
spectively, and where the choice of axes in the center-of-
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momentum frame is such that (8,y) are the angles of the
incident meson and (8', y') are those of the final meson.
The spin projections m refer to axes in the rest frames of
the various particles obtained by pure Lorentz transfor-
mations (boosts) along the particle directions from the
axis system in the c.m. frame. Following the derivation
given in Ref. 5, and using Eq. (10), one may write this

amplitude as

(8,y, 8', y')

X C ~ACBNRR'(8 9
A, B,C, N

(17)

where the numerical coefficients C are defined in terms of
3-j and 9-j symbols by

C, „., =([Cl[&l[R][R'1)'"(—llR+R

S S g S& R S
lSlfS'1 —1 (18)

ACBNRR'(8&'P& 8 &f
%at&3
R R'

and the functions V may be expressed in terms of my partial-wave amplitudes as
' 1/2

1)A+C+R' —R

L' I. 8
( 1) M M ~ ~L' (8 &V' )~L (8& P)rI, ABcLL'RR' &

I., M
L', M'

(19)

ere the yL denote the usual spherical harmonics. The quantity X is equal to the net amount of spin Hip
rpi +rn —rri —rrid, the sum upon + in Eq. (17) being formal. The sum over the variables A, 8, and C is then con-
strained by p ~&~, as well as by the triangle inequalities implicit in the 9-j symbol. At this point I have merely written
the spin-projection amplitudes in an unconventional way, since there are just as many ( ABCN) combinations as there

(m rrzdm rn&). If one introduces Eq. (14), one derives the consequences at the amplitude level of Mattis and
Braaten's result:

~~CBNRR (8&F 8'&%')=&I, A(fC jl& l)'

I

X g ( —1) M —M —& 1'L (8 f )I'L (8 f)~ABCLL'
L,M

L',I'
(20)

which implies that the functions V vanish unless A =I„and that they are independent of the baryon spins R and R'.
Except for some obvious changes of notation, this result is identical to Eq. (29) of Ref. 5, which was derived from the
formula found by Mattis in the Skyrmion approach. The relative simplicity of the present derivation is evident.

The I, =J, selection rule of Mattis and Mukerjee has been extended to the level of spin-projection amplitudes. All of
the fairly successful phenomenological consequences discussed in Ref. 5 may then be seen in retrospect as evidence in
favor of this rule.
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