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Finite-size and dynamical effects in pair production by an external field
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We evaluate the rate of pair production in a uniform electric field confined to a bounded region in

space. Using the Balian-Bloch expansion of Green s functions we obtain explicit expressions for
finite-size corrections to Schwinger's formula. The case of a time-dependent boundary, relevant to
describe energy deposition by quark-antiquark pair production in ultrarelativistic collisions, is also

investigated. We find that finite-size e6'ects are important in nuclear collisions. They decrease when

the strength of the chromoelectric field between the nuclei is large. As a result, the rate of energy

deposition increases sharply with the mass number 2 of the colliding nuclei.

I. INTRODUCTION

The production of fermion-antifermion pairs by a clas-
sical external field via the so-called Schwinger mecha-
nism' is a very general phenomenon. It occurs in a rath-
er wide variety of problems and has been the subject of a
large number of studies (cf. the comprehensive review pa-
per by Soffel, Miiller, and Greiner ).

One example, originally discussed by Schwinger, is the
problem of electron-positron pair creation out of the
Dirac vacuum due to a strong electric field. In this case
the pair-production rate is expected to be significant
whenever the strength eE of the electric field becomes
comparable to the square of the electron mass. This con-
dition requires very strong fields. For instance the
strength of the electric field on a Bohr orbit around a
charge Ze is of order eE-m (Za), i.e., only
4X 10 m for hydrogen. However, by performing col-
lisions of heavy nuclei with charges Z& and Zz such that
Z& +Z2 ) 1/a = 137 it has been possible to observe
electron-positron pair production. This has been carried
out for the first time at the Unilac facility at GSI
Darmstadt which has been able to reach bombarding en-
ergies above the Coulomb barrier for reactions such as
U+Pb, U+U, or U+ Cm (about 6 MeV per nucleon for
the U+Cm system). ' A second example is the instabili-
ty of the Dirac vacuum in the presence of a strong gravi-
tational field, which is also discussed in Ref. 2. This in-
stability leads to a quantum evaporation of black holes by
pair creation, which has been investigated in different
physical situations, e.g. , a nonrotating uncharged black
hole described by a Schwarzschild metric or a rotating
electrically charged black hole described by a Kerr-
Newman metric. '

A last example, which will be discussed at some length
below, is the mechanism of energy deposition by quark-
antiquark production in ultrarelativistic collisions. Here
the external field is the strong chromoelectric field which
develops at the early stage of the collision as a result of
gluon exchanges. The problem in this case is to per-
form a reliable calculation of the pair-production rate in
order to determine the energy density reached during the
reaction and the possible formation of a quark-gluon

plasma. In the calculations of Ref. 7 the pair-production
rate was evaluated from Schwinger's formula, which is
valid for an infinite and uniform electric field. However,
the actual configuration of the field is somewhat different,
since the chromoelectric field in a collision is enclosed in
the Aux tube joining in two receding nuclei. Further-
more, the boundary of the field changes with time and
one may thus expect corrections to arise for both finite-
size and dynamical effects. The purpose of this paper is
to show that these corrections are conveniently evaluated
by means of the Balian-Bloch multiple-reflection expan-
sion of the Green's functions. ' '" A preliminary account
of the method was presented in a recent Rapid Communi-
cation.

In a series of papers' Balian and Bloch have con-
structed approximation schemes of Green's functions in
terms of classical paths. They have first investigated the
density of modes for the wave equation in a cavity of ar-
bitrary shape. In this case they were able to express the
density as a sum over all closed trajectories involving
multiple reAections at the boundary. Each closed classi-
cal trajectory of length L provides an oscillating contri-
bution sin(kL) to the density of states p(k). When the
surface is smooth the successive terms decrease rapidly.
Sharp peaks result out of the interference between
difterent paths. An interesting feature of the expansion is
that its first term represents a volume contribution while
the next two terms correspond, respectively, to surface
and curvature corrections. In a subsequent paper Balian
and Bloch have generalized their method in order to
build an expansion of the Green's function G(r, r') for a
Schrodinger particle in a smooth potential. " In this case
dominant contributions to 6 arise from multiple
reAections of the wave emitted at r' upon the caustic
which is the three-dimensional analog of the turning
point. Closed paths of zero length yield the familiar
Thomas-Fermi expression for the density of states, to-
gether with a smooth correction, while higher-order
terms provide an oscillating contribution which rejects
the shell structure in the spectrum.

In the following we shall show how the Balian-Bloch
expansion can be combined with Schwinger's proper time
method to investigate pair production by an external
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field. Our paper is organized as follows. In Sec. II we
derive a general expression for the pair-production rate
up to one reflection in the Balian-Bloch expansion. In
Sec. III we consider the specific case of a boundary paral-
lel to the direction of the electric field while Sec. IV
discusses the case of a moving boundary perpendicular to
the field. A discussion of these formulas in the context of
ultrarelativistic collisions is presented in Sec. V while Sec.
VI contains a summary of our main conclusions.

II. THE PRODUCTION RATE
UP TO ONE REFI.ECTION

Let us consider a quantized Dirac field coupled to a
classical external Abelian potential A„(x) described by
the interaction Lagrangian

. eTr exp i —so g"' =4 cosh(seE) .
2

U(x, x', s) = (xl exp(iHos) lx'),
where H0 is the operator

Ho=(p —eA)

(9)

The matrix element (9) can be represented in terms of the
Feynman path integral' '

U(x, x', s) = f X)[x (r)]exp[iS [x (r)]],
x(0)=x'

We are thus left with the evaluation of matrix elements of
the form

X~(x)= —eg(x)yp'g(x) A„(x) .

The probability to remain in the ground state, i.e., the
probability of emitting no pairs, is given by

where the action S is defined by

S[x(r)]=f L [x(r)]dr .
0

(12)

p =
I & olslo& I',

where S is the S matrix

In Eq. (12) the Lagrangian density L is
(2)

L = ——'x x "—e A "x =p x "—H4 p P ~P 0 (13)

S=Texp i f d xX i( x) (3)
A first approximation to the functional integral (11) can
be obtained by performing a stationary phase evaluation
which gives

P =exp —f d x w(x) (4)

and T the time-ordering operator. The probability P can
also be written as

2
1

u ( ,x'xs) = . det'~ (D" )exp(iS, ) .
27Tl

(14)

where

w(x)=21m%, s(x) .

In Eq. (5) X,s(x) is the one-loop effective Lagrangian den-
sity, ' which includes all orders in the external field (but
neglects self-interactions of the matter fields). The quan-
tity w (x) can be interpreted as the pair-production rate
per unit time and unit volume at the space-time point
x =(xo,x„xz,x3). This interpretation, however, is valid
only in the case of a large volume and a uniform system.
In other cases only integrated rates are meaningful.

A convenient integral representation of the one-loop
e6'ective Lagrangian is that of Schwinger

X,yx)= —' f " 'e ™'Tr(xle'H'lx) .
2 0 s

In this equation the mass m of the fermions is supposed
to contain a small negative imaginary part and H is the
4X4 matrix

In this equation S, is the classical action S,(x', x;s) cor-
responding to a trajectory starting at x' at time zero and
ending at x at time ~=s. The quantity D" is the 4X4
matrix'

U&(x, x', s) = (2~e ™/2)exp[i (S„+S2,)]
4

X det' (D)D2D3 '),
27Tl

(16)

where D i, D2, and D3 are the following 4 X4 matrices:

D" =B S, /Bx„Bx,'

Note that Eq. (14) does not involve an infinite-
dimensional matrix but rather a 4 X4 determinant.

Equation (14) actually corresponds to the lowest-order
term in the Balian-Bloch expansion of U(x, x', s) which
involves no reflection at the field boundary. In Ref. 12
we showed that the next term involves a single reflection
on the field boundary at a point y and a time s, such that
the total action S, +S2 ~S,(x',y;s, )+S,(y, x;s —s, ) is
stationary. The corresponding contribution to the matrix
element U(x, x', s) is

H =(p —eA) +—o. g"
2

(7)

with the usual notation o.„=i[y„,y, ]/2. Since the first
term in 0 is a multiple of the 4X4 unit matrix the trace
in Eq. (6) is easily carried out. In the case of an external
electric field of strength E along the third axis the only
nonvanishing components of the field-strength tensor E„
are —E30=+E03=E and we find that

D~i =B S&,(x',y;s& )/By Bx'

D~~ =B S2, (y, x;s —s, )/Bx By

D~3 =B (S„+S2,)/By By

The previous determinants satisfy the relation

det(D&D2D3 '
) =det( D4), —

(17)
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where
I m( Y')

Equations (14) and (16) require the knowledge of the clas-
sical action defined by Eq. (12). For a constant electric
field in the x3 direction, this action is given by

S,(x,x', s) = coth(eEs)[ —(xQ —x Q ) +(x3+x 3 ) ]

eE+ (XQX3 X3XQ)
2

+ [(x,—x,')'+(x, —x&)'] .
4s

(20)

~l 2 +n Re(r)
III. SURFACE EFFECTS FOR A BOUNDARY

PARALLEL TO THE FIELD
FIG. 1. Contours of integration for evaluating the surface

term in the effective Lagrangian X,'z given by Eq. (22).

1S =S = (R —x )1c 2c 2s 1 (21)

The one-reAection correction to the effective Lagrangian
is thus

From now on we shall consider only contributions in-
volving no reQection or terms with one reAection. These
contributions are indeed proportional to the volume and
to the surface of the system, respectively. Two (or more)
refiection terms would correspond to curvature (or
higher-order) corrections. In Ref. 12 we considered the
case of an electric field parallel to the third axis localized
in the half-space x1 & R. In this case the optimization of
the total action with respect to the reAection point leads
to the values

IQ= eE —f exp[ —e ' (R —x, ) /e]d8 . (24)

The imaginary part of this integral is given by an integral
sine function

ImIQ= —(e E /3)si[(R —x, ) /e] (25)

e E 1 numw(x)=, g exp
4m „1n eE

which vanishes when e goes to zero. We are thus left
with the sum of residues at the poles. This gives the fol-
lowing formula for the pair-production rate per unit time
and unit volume in the region x, ~ R:

1 ~ds 1
3 eE coth(eEs) ——

8n. o s s

2 i(R —xl ) /sXe ™e (22)

X 1 —exp n~ (R —x, ) (26)

To calculate the imaginary part of the integral in Eq.
(22), we first perform the change of integration variable
~=is. This gives

2 f eE cot(eEr)
8m' 7

—m r—(R —x )/~
Xe (23)

where the integration is along the contour C1 in Fig. 1.
However, since the integral along the contour C2 goes to
zero when its radius becomes large, integrations along the
contours C, and C3 in this figure give equal contribu-
tions. Furthermore, since the integrand along the real
axis is real, the only nonvanishing contributions to Imk, s
arise from the essential singularity at the origin and the
simple poles occurring at r„=nn/eE for n =1,2., . . . .
Let us first show that the contribution I, arising from the
singularity at the origin vanishes. Indeed by performing
the change of variable r=e exp(i8) we find

The first term in the large square brackets corresponds to
Schwinger's formula which gives a production rate wo
proportional to the volume. The second term gives a
contribution w1 which is important only near the bound-
ary at x, =R where it cancels the first one.

In Figs. 2 and 3 we display the ratio ( w, +wQ)/wQ as a
function of the distance d =R —x, from the boundary,
for various values of the electric field strength. Figure 2
corresponds to a fermion mass m =10 MeV, while Fig. 3
corresponds to m =200 MeV. From these figures we see
that surface effects lead to a significant reduction of the
Schwinger pair-production rate near the boundary of the
field. As an illustrative example (to be discussed later in
Sec. V) for a distance d = 1 fm from the surface and for a
field strength eE =1 fm, the reduction is 80% for a
mass m =10 MeV and 70% for m =200 MeV. The cor-
responding figures becomes 35% and 25/o for a field
strength eE =5 fm

Equation (26) can be applied to the case of an infinite
Aux tube in the x 3 direction with a radius R in the trans-
verse direction. By integrating Eq. (26) over the trans-
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FIG. 2. Ratio r of the total production rate (volume plus sur-
face contributions) to the volume contribution, for a boundary
parallel to the Geld as a function of the distance d to the bound-
ary. The fermion mass is m =10 MeV and the various curves
correspond to different strengths of the electric field eE (fm ').

verse coordinates x j and x2 we find the following expres-
sion for the probability of pair creation per unit time and
unit length:

e 2E2
w(x)dx, dx2= mR

4m

FEG. 4. Ratio r of surface to volume contributions for pair
production in a cylinder of radius R as a function of the dimen-
sionless variable u =8&eE/m.

term in the limit of a small tube. On the contrary, if we
have a large tube, then erf( u ) = 1, P = +&m /u and sur-
face effects thus become negligible as soon as
R ))&mleE. The ratio of surface-to-volume contribu-
tions is graphed as a function of the dimensionless vari-
able u =R VeE/m. in the case I =0 in Fig. 4.

00

X g exp
n=i n

nm. m 2

eE
1/2

X1—CR no.

where the function 4 is related to the error function

(27)

IV. SURFACE EFFECTS FOR A BOUNDARY
PERPENDICULAR TO THE FIELD

Schwinger's proper-time method is explicitly Lorentz
invariant as it treats all space-time coordinates
xp x

~
x 2 x 3 on the same footing. It is thus equally well

adapted to handle boundaries in space, time, or in both
space and time. In this section we will apply this method
to study pair production in an electric field of the form

4(u) = — [1—exp( —u )]+ erf(u) .
Q u

(28)

l.25

Since near the origin erf(u)=2u/&m. we find P(0)=1
and the surface term P thus cancels exactly the volume

E„=O, E» =0, E, =Eg(vxo —x3) . (29)

Unlike the previous section we now have to consider
rejections occurring at the moving boundary x3 Uxp.
This leads to a modification in the argument of the last
exponential in Eq. (22) arising from the total action
S& +S2. It is straightforward to check that the reAection
still occurs at r=s!2 and that the determinants in Eq.
(16) remain unchanged. The result for the one-refiection
correction to the e6'ective Lagrangian is found to be

l.oo—

0.7 5

0.50

1 ds 1X,e(x) = — eE coth(eEs) ——
Sn o s s

X exp —im s+ie—d coth. E 2 eEs
2 2

=200 MeV
where

(30)

0.00
0 d (rm)

FIG. 3. Same as Fig. 2 for a fermion mass rn =200 MeV.

d =y'(vxo —x3)' (31)

with the usual notation y = 1/(1 —v /c )'» . In the stat-
ic case v =0 Eq. (30) still holds and in this case d is mere-



FINITE-SIZE AND DYNAMICAL EFFECTS IN PAIR. . . 1671

ly the distance to the boundary. The evaluation of the
imaginary part of X,'s given by Eq. (30) is more difficult
than in the case of a boundary parallel to the field.
Indeed an important difference is that the singularities
occurring at r=2n m. /eE are now essential singularities so
that the method used in the previous section is no longer
applicable.

To simplify let us consider the case rn =0. In order to
evaluate the integral (30}numerically we first perform the
change of integration variable t =coth(eEs/2) which
yields

Imj,'z= — e E P(t)sin d t dt,1 2 2 ~ . eE
(32)

where the function P(t) is

1 1
-2 t+ ——

(t 1) ln-
t —1

2

t+I
ln1

(33}

The function Im(X'+L )/ImL is plotted in Fig. 5 as
a function of the dimensionless variable dleE. For
large values of the dimensionless parameter d&eE the
asymptotic behavior of Imk,'rr is found to be

1 2 i sin(eEd /2)
O

1

8m ln(eEd /2) ln (eEd /2)

(34)

while at short distances it is given by
r

e E eE eEd
48~ 8~' 2

(3&)

I I I I I ~ I

I

I

I I I I I I I 1 I I I I I I I

2 4 8

FIG. 5. Ratio r of the total production rate (volume plus sur-
face contributions) to the volume contribution for a moving
boundary (x3 =vxo) perpendicular to the field, as a function of
the dimensionless variable u =d (eE) ' . The fermion mass is
m =0. The ratio r is small and negative near u =0 [cf. Eq. (36)j.
This may result from our semiclassical approximation.

(37)

while in the second case Eq. (21) gives

S),+S2,=
(R —xi)

(38)

Large values of s, associated with the long trajectories
which produce sharp oscillations in the Balian-Bloch
method, are thus suppressed in the second case and not in
the first. Indeed, these large values contribute a factor
exp(iS„+iS2, ) =exp(ieEd /2) in the first case and 1 in
the second case.

In the special case v =0 finite-size effects in the
Schwinger pair-production mechanism have been calcu-
lated exactly by Wang and Wong' who solved the Dirac
equation in a linear potential in terms of hypergeometric
functions. This calculation provides directly a quantity
of physical interest, namely, the production rate P per
unit time, transverse area, transverse momentum, and en-
ergy interval, whereas our method yields only the rate
w (x) per unit time and unit volume. A detailed compar-
ison between the two results is possible but requires cal-
culations of integrated rates as functions of the volume V
of the system in both cases. A rough comparison, howev-
er, can be performed with the approximate rate w(x)
build by Wang and Wong. Keeping in mind the approxi-
mations involved, and the fact that a finite value of the
mass is used in Ref. 16, we only conclude that there is a
qualitative agreement between our results and those of
Wang and Wong. In particular we also find large devia-
tions from Schwinger's result for finite systems especially
at the field boundary where surface contributions cancel

with

c =-,' —J [tp(r) ,'—]d—r= —0. 10 . (36)

Note that the first term in Eq. (35) is simply —ImL so
that the surface term cancels the volume term on the
boundary exactly.

From Eq. (34) surface corrections away from the
boundary of the field vanish only 1ogarithmically. Al-
though the corresponding decrease is weaker than it was
in Eq. (26) one should remember that in the present case
the relevant variable d is the distance to the boundary di-
lated by a Lorentz factor y. As a consequence surface
corrections vanish for a boundary moving at the speed of
light. This result can easily be understood as a conse-
quence of causality. Indeed classical trajectories starting
from an arbitrary point x in space-time will never be able
to reach such a boundary. As a result the contribution of
the term with one reAection vanishes in this case.

By comparing Figs. 2, 3, and 5 it may be noted that the
pair-production rate exhibits oscillations as a function of
the distance to the boundary when this boundary is per-
pendicular to the field. No such oscillations occur for a
boundary parallel to the field. This difference can be un-
derstood by considering the value of the optimal action
Si, +Sz, occurring in Eq. (16). Indeed one finds, for the
first case,
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the volume term. Away from the boundary we obtain
sharper oscillations than in Ref. 16.

V. ENERGY DEPOSITION
IN ULTRARELATIVISTIC COLLISIONS

Ultrarelativistic heavy-ion collisions have been success-
fully described ' by means of the Aux-tube model intro-
duced by Low and Nussinov for hadron-hadron col-
lisions (except for the target and projectile mass depen-
dence mentioned below). In this model the two Lorentz-
contracted nuclei are described as two color charged
capacitor plates and the strong color field between them
polarizes the vacuum by production quark-antiquark
pairs. The energy deposition in the associated Aux tube is
subsequently determined by calculating the pair-
production rate using Schwinger's formula, which is valid
for a uniform infinite electric field. With the results of
the previous sections it is interesting to study how the
boundaries in the longitudinal and transverse directions
of the tube modify the energy deposition. The correc-
tions to Schwinger's formula depend on the radius R of
the tube, on the strength eE of the chromoelectric field,
and on the speed v of the nuclei in their center-of-mass
frame (i.e., on the incident energy).

The NA38 experiment at CERN used 200 GeV per nu-
cleon ' 0 and S beams. In these collisions the Lorentz
factor y to be used in Eq. (31) is about 6. For lead-lead
collisions at the same energy y is about 10. According to
the results of the previous section, surface effects due to
the presence of the boundary in the longitudinal direction
become sma11 beyond 0.2 fm from the nuclei for @=10
and a field strength eE = 1 fm . Longitudinal surface
effects would be even smaller for the value eE =5 fm
adopted in Ref. 16.

Finite-size effects in the transverse direction lead to
more important corrections. Indeed, in the fIux-tube
model of heavy-ion collisions the radius of the tube is
typically of the size of 1 fm rather than the size of the nu-
cleus. This is because the spatial variations in color
orientation which occur during the color-charging pro-
cess have a coherence length in the radial direction which
is approximately the size of a nucleon. ' The collision
thus leads to the formation of a configuration of neigh-
boring tubes with multiple colors whose transverse size is
about 1 fm (which has been called a color rope by Biro,
Nielson, and Knoll' ). Evidence for a transverse size of
about 1 fm is substantiated by the values of the average
transverse momenta observed in the Helios and NA35 ex-
periments. ' '

From the results in Fig. 4 surface effects in the case of
a Aux tube with a radius A = 1 fm reduce significantly the
pair-production rate per unit time and unit length.

Indeed the corresponding reducton is 90% for a field
strength eE =1 fm and is still 25% for a field strength
eE = 15 fm . Such corrections may explain why ob-
served multiplicities in the central rapidity region vary
like A„' At (where Ap and AT denote the projectile
and target mass, respectively) ' while the fiux-tube model
with Schwinger's formula predicts an AT 3& depen-
dence [see Eq. (17) of Ref. 17)]. If this is the case it would
be important to use heavy nuclei in order to reach large
energy densities in ultrarelativistic collisions. Indeed for
Ap= AT= A the field eE scales like 3 ' (Refs. 7, 17,
and 18). Therefore, if we assume that a typical field
strength eE = 5 fm is reached in S+ S collisions, we
find from Fig. 4 that the rate of pair production (which is
related to the rate of energy deposition) will be multiplied
by a factor of about 5 for Pb+ Pb collisions. This
makes the perspective of developing 200 GeV per nu-
cleon lead beams at CERN especially attractive.

VI. CONCLUSION

The Schwinger proper-time method combined with the
Balian-Bloch multiple-reAection expansion of Green's
functions has been demonstrated to be a powerful and
elegant too1 to investigate corrections to the Schwinger
pair-production formula. Indeed it allows one to work
out analytically the case of static boundaries parallel to
the field or perpendicular to the field, as well as boun-
daries which evolve with time. We have shown that
finite-size corrections are large and almost cancel the
volume term within a distance of order I/(eE)'~ from
the boundary, where E is the field strength. Finite-size
corrections are reduced when the field boundary moves
with a velocity v and vanish as a consequence of causality
when v =c. In the case of ultrarelativistic nuclear col-
lisions we argued that energy deposition by pair produc-
tion was significantly reduced as compared to
Schwinger's formula because of the transverse dimension
of the chromelectric Aux tube. We have pointed out that
in order to reach high energy densities in ultrarelativistic
collisions it is of great interest to develop beams of heavy
nuclei since the large field involved imply a reduction of
surface corrections too.
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