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Incorporating dynamical Kogut-Susskind fermions into a Monte Carlo simulation of QCD, we
have analyzed the masses of low-lying hadrons, chiral-symmetry breaking, and the interquark po-
tential. We used a 24X12' lattice for two couplings g, where f3=6/g =5.20 and 5.35. The quark
masses were ma =0.075, 0.050, and 0.025 {a being the lattice spacing). We find that the pattern of
hadron masses of the m. , p, and X is qualitatively as seen experimentally. The pion mass squared is
proportional to the quark mass and thus behaves as expected from chiral symmetry. Values for the
quark condensate extrapolated to ma =0, the renormalization-group-invariant quark mass, and the
pion decay constant are in reasonable agreement with values derived from experiment or from
current algebra. If we fix the lattice spacing from the p mass, we see evidence for the screening
effect of light-quark-antiquark pairs in the potential between two massive quarks. At f3=5 20 and.
ma =0.050 we find good agreement between the results from our pseudofermion method and those
from a hybrid simulation.

I. INTRODUCTION

Numerical simulations of quantum chromodynamics
have achieved several semiquantitative successes —for ex-
ample, a reasonable spectrum of low-1ying hadrons, spon-
taneous chiral-symmetry breaking (implying the existence
of an almost massless pion) and a rising potential between
heavy quarks. These calculations were based on integra-
tion of QCD over space-time lattices, mostly without in-
cluding the e6ect of the creation and annihilation of vir-
tual quark-antiquark pairs (the "valence quark" or
"quenched" approximation). It is a reasonable first step
towards a more exact treatment to ask whether or not the
inclusion of virtual quark pairs or dynamical fermions
dramatically changes these known quenched approxima-
tion results. It is also important to demonstrate that
different technical approaches to exact QCD can produce
comparable results. While only a few attempts in this
direction have been reported, the field is expanding rapid-
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In this paper we report on our investigation of the
low-lying meson and baryon masses, the quark conden-
sate in the QCD vacuum, and the potential between
heavy quarks. We thereby extend previous work on this
problem in two-color SU(2) (Ref. 2), which anticipated
many of the patterns now observed in the technically

more demanding three-color SU(3) with dynamical fer-
mions.

Our calculation is carried out on a 24X12 lattice and
includes four degenerate Kogut-Susskind fermions. The
fermionic degrees of freedom are incorporated using the
pseudofermion technique.

We have taken data at two values of the coupling,
6/g =P=5.20 and 5.35, and three quark mass values
ma =0.075, 0.050, and 0.025, where a is the lattice spac-
ing. We expect to approach approximate asymptotic
scaling in this P range and yet stay below the
deconfinement phase transition for the above lattice
size. '

For these parameters, our lattice spacing is -0.2 fm
and the entire spatial lattice volume is roughly (2.4 fm) .
This provides a reasonable number of computational
points and links inside a hadron of approximately 1-fm
diameter, together with a spatial box about twice the ex-
pected proton size. We estimate that this situation would
correspond to a physical quark mass parameter
ma -0.005, requiring an extrapolation from our present
measured values before contact with experiment can be
made. Nevertheless, the results obtained down to
na =0.025 are quite encouraging on several points.

The systematic errors inherent in any computer experi-
ment can be controlled by comparing the results with
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those that have been obtained by very different numerical
methods. Luckily enough, an independent analysis based
on a hybrid method has been carried out at P=5.20,
ma =0.050 in the confinement region on a (2 16)X 8 lat-
tice. The agreement is very satisfactory, providing a
mutual cross-check of different systematic errors.

The paper is organized as follows. After a short
description of the method and the technique we used, we
present the results on the low-lying hadron masses, the
chiral sector, and the interquark potential.

II. COMPUTATIONAL METHOD

[D ( U) +ma] „=—,
' g I „(m )[U„(m )5

+ma6

—Ut(n)5 „„]
(2)

The sum in (1) runs over the (ordered) plaquettes
U~; U„(n ) denote the link variables and I"„(m )

m&+rn2+ . +m

To generate the equilibrium gauge-field configurations
we used the Metropolis algorithm. If we allow only a
small variation 5U in the tentative upgrade U~ U +5U,
then the change in the fermionic part of the action can be
linearized,

5S~= RetrJ—„(n)5U„(n)+O([5U] ),
and 5U„(n) interacts only locally with the current:

J„(n ) = —,
' I „(n ) I [D ( U) +m a ]

' —H. c. I „+„„.

(3)

For small 5U„(n), all the required elements of the propa-
gator [D(U)+ma] ' can be computed before perform-
ing the link upgrade. This leaves us with an error of or-
der [5U], consistent with the linearization of 5S+. We
calculate the propagators using the pseudofermion
method. Since the propagator is not a positive-definite
matrix, we generate complex boson fields P(n) with a dis-
tribution having weight

exp( —Sp„)=exp[ P(D +ma)(D+ma)P—] .

The fermion propagator is then given in terms of the
correlation function of the complex boson fields:

[D ( U)+ ma]„+„„=g ( P„+„Pk ) (D +ma)I, „. (6)
k

Including four degenerate Kogut-Susskind quarks with
mass m, the pure gauge action is supplemented by the
logarithm of the Dirac determinant,

S,a =P g [1—
—,
' tr( U~+ Uz )]—tr ln[D ( U)+ ma]

0

once the quark fields are integrated out. In this expres-
sion,

TABLE I. The number of thermalization plus measurement
sweeps at the P and m values investigated in this experiment.

0.075 0.050 0.025

After updating all gauge links once, the pseudofermions
are allowed to adjust to the gauge-field configuration for
75—100 sweeps. Following this, 50—100 pseudofermion
sweeps are used to measure the currents J„(n). The en-
tire process is then repeated, starting with a new gauge-
field update. Every sweep we generate a new table of 800
SU(3) matrices b, U, plus their Hermitian conjugates, via
b, U =exp(ia'A, '), where the A, 's represent the eight Gell-
Mann matrices. The U's are kept close to the unit matrix
by taking each a' from a Gaussian distribution which is
cut between 0.075 to 0.04, and varying the cut over the
quark mass and 13 range that we investigated. The ex-
ponential is expanded to the fourth power and then reun-
itarized. Constructing U"' = U" XAU with AU chosen
randomly from the 1600 entries in the table, we settle at
gauge-field acceptance rates between 85% and 92%. On
the other hand, we have checked that we traverse the
group space approximately within 300 steps for a single
isolated link variable. %'ith this choice it still requires
4000—5000 gauge field sweeps to reach equilibrium for the
combined gauge and pseudofermion field system. Exper-
imentation within the limits set by our computer
resources has shown us that the chosen acceptance rates
and pseudofermion updates lead to measured quantities
which do not exhibit marked changes when further in-
creasing either the number of pseudofermion sweeps per
gauge field sweep or the gauge-field acceptance rate. It is
for this reason that we vary these quantities slightly with
quark mass and P. We continuously monitor the time de-
velopment of the plaquette and other observables. After
this long equilibration of the combined system of gauge
and pseudofermion fields, we took data for an additional
5000—8000 gauge-field sweeps for each value of the cou-
pling and each of the three quark-masses; see Table I.
Data were recorded every 50th gauge field sweep of the
lattice. We thus record typically 100—150 configurations
at each pair of /3, m values.

Computer experiments, not unlike real experiments„
have unavoidable statistical and systematic errors which
have to be investigated. The pseudofermion method can
in principle be made arbitrarily accurate, given enough
computer time. However, practical application of it—as
of any of the known algorithms including exact ones—
necessarily involves compromises. The linearization in
6 U may systematically underestimate the influence of vir-
tual quarks as a consequence of Jensen "s inequality
(slightly shifting the P value). The pseudofermion fields
can be subject to statistical biases when the number of
updates is small. The effect of these errors on the numer-

Et is most e%cient to update the boson fields P by means
of the heat-bath algorithm.

Except for the first runs, in which we thermalized pure
gauge systems, we begin each run with a configuration
that is equilibrated at the previous quark mass value.

5.20
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5000
+3000

5000
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2500
+3000

4000
+4000

5000
+7000
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ical results is not known a priori but has to be studied
with care.

During the measurements we found sweep-to-sweep
correlations over several hundred sweeps. They increase
with decreasing quark masses. But we did not observe
any long-term drifts, either in local observables such as
the plaquette and vacuum condensate or in the particle
propagation over long distances. The stability is demon-
strated in Figs. 1(a) and l(b) and Figs. 2(a) and 2(b) for
the most critical quark mass value 0.025. This is in con-
trast with Ref. 8, where the algorithmic and physical pa-
rameters were substantially different from ours. The
analysis there has been carried out with three fermionic
degrees of freedom on a 32X 10 lattice at a high 13 value
of 5.70. The pseudofermionic current has been averaged
over 25 measurements (compared to 50—100 here). The
gauge fields were updated with eight Metropolis hits per
link at an acceptance rate of 81% (90% at ma =0.02).
First, if the multihit approach is to be of practical use,
this must translate into a one-hit acceptance rate lower
than our 85—92%%uo, corresponding to larger 5U's. Second,
only 1000 randomly chosen sites out of 32000 were up-
dated between each of 300 pseudofermion s~eeps carried

out before a gauge-field sweep. According to our experi-
ment this is not sufficient to let the (pseudo)fermions fol-
low the time development of the gauge fields properly.

Another point of interest is that the data of Ref. 8 seem
to indicate a restoration of chiral symmetry, at least for
ma =0.02; this does not seem implausible at f3 as high as
5.7 (see also Ref. 1). Based on the experience gathered in
unquenched finite temperature analyses for four dynami-
cal Kogut-Susskind fermions, ' we estimate the
deconfinement transition to be located at @=5.35 for a
lattice time extension NT = 12 at ma =0. The slope of P,
vs ma does not appear to depend much on NT for NT ~ 8.
In order to be sure that we are not affected by finite-
temperature effects, we checked the values of the Po-
lyakov loops, in addition to the chiral condensate, at our
most critical values of the parameters, P=5.35 and
ma =0.025, Fig. 3. %'e see no evidence for an onset of
deconfinement.

III. HADRON MASSES

In the Kogut-Susskind version of the fermion theory,
quark fields are smeared out over the unit cells of the lat-

E = ( 1 —1/3 R tr U )
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FIG. 1. Time evolution of the plaquette (a) and the chiral
condensate (b) at P= 5.20 for the quark mass ma =0.025. The
dotted lines represent the mean value and the upper (lower)
bound on the mean error of a single measurement. 8000 sweeps
are plotted after 5000 thermalization sweeps.

Screeps

FIG. 2. (a) The time evolution of the midpoint of the pion

propagator at P= 5.20 and ma =0.025. Dotted 1ines and statis-

tics as in Fig. 1. (b) The same for the nucleon propagator at
t =5.
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FIG. 3. Distribution of the Polyakov loops in the complex
plane for the most critical parameter set [p, ma] = [5.35,0.025].
Note that the plot closely resembles the distribution in the
confined phase of the quenched analysis (Ref. 9)—differing
strongly from the deconfined phase.

tice with sites occupied by one-component staggered
fields y. Local meson and baryon operators with the ap-
propriate continuum quantum numbers are constructed
from the quark fields in the standard way. ' The props-
gators of those fields which determine the hadron masses
can be expressed in terms of suitable linear combinations
of correlation functions of the y fields.

Here we have

(G(n, t)G(n, t)G(n, t))As
n even

ge ™t+()tg 'e —m't+

where the color indices are antisymmetrized and I, nz'

correspond to the masses of the even-parity proton and a
state of opposite parity. Periodicity requires the substitu-ion�™e™+(~te(T—t)

We calculated the propagators by the conjugate-
gradient method. The iterations were stopped when the
total length of the rest vector fell below 10 —10 . The
smaller value was chosen for smaller quark masses. For
these numbers the relation (D+ma)& (D+ma) „'=5&„
was numerically satisfied within six to seven digits, and
we did not observe any modification in the propagators
when the stopping condition, was tightened further. The
number of conjugate-gradient iterations necessary to
reach this accuracy was between 120 and 400, depending
on the quark mass. For each [p, m] pair we analyzed
50—170 configurations separated by 50—100 gauge sweeps.
Within each configuration eight propagator source points
were selected, evaluated for each of the three colors. As
a typical example, we display the time dependence of the
n, p, X propagators for P=5.35 and ma =0.050 in Fig. 4.
The inAuence of the parity partners is indicated by the
double lines. The error bars shown follow from a simple

Meso ns 100 =

The propagators are given in terms of the meson
masses by

g o(n)( ~G(n, t)~ ) = Ae ™+(—)'A'e '+, (7)

10-2 =-

where o(n) collects the right combinations of quark
propagators G (n, t) to project out the appropriate contin-
uum states, Table II.

There are opposite parity states in (7) that oscillate in
discrete time t, . a feature of the Kogut-Susskind formula-
tion of lattice fermions. Possible additional contributions
from higher-mass states are indicated by ellipsis. In or-

204 F

10-6 ==

10-8

TABLE II. Phase factors projecting the appropriate spin-

parity quantum numbers out of the correlation functions.

Particles

]0-10

1

( —1)
n&+n&+n3

( —1) '+( —1) +( —1)

( 1) 1 2+( 1) 2 3+( 1) 1 3

77+ 7

7T +6
p+B
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10 24

I . . I
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FIG. 4. The time development of the m.,p, N propagators for
p=5. 35 and ma =0.050. The influence of the parity partners 8
to p and X' to N is indicated by the double lines.
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statistical analysis. However, chopping the data into
blocks of 1—12 measurements and treating each block as
one independent entry in the statistics program did not
change the errors significantly.

It is important to realize that our data for low t and for
t near T are independent. In fact, fits separately to the
small-t and large-t data provide us a check on possible
systematic errors.

The mean values of the hadron masses are based on
symmetric fits to the propagators over the range from
t;„ to T —t;„,where t;„as well as the number of con-
tributing particles were varied. The generally adopted
fitting procedure started with single-particle fits over the
entire t range, followed by successive increases of t
The mass estimates must become independent of t
once a high enough value has been reached so that short-
time contributions from heavier particles have died out.
Consequently, the difference between the plateau value
and the results from fits with lower t;„were attributed
to the presence of opposite-parity states and/or higher re-
currences. These contributions were then evaluated by
including additional states in the fit ansatz. First we try
to isolate the opposite-parity partner. Starting with
t;„=1 we followed the behavior of the masses as t;„
was raised until the previously obtained lowest-mass
value was reproduced and the value for the new state ap-
peared stable. The narrowing of the fitted t interval was
stopped when only the lowest state effectively contributed
to the propagator. When we had succeeded in establish-
ing the mass of an opposite-parity state we started the
whole procedure again in order to separate higher re-
currences of both states. In fact, we will quote the mass
of an opposite-parity particle only if we were able to
reproduce both masses in a three-state-fit ansatz. We do-
cument this procedure in Fig. 5, for a few examples, at
@=5.35 and ma =0.075. We show the resuts for the p
and N. The results of one-, two-, and three-state fits con-
verge very well, leading to excellent mass measurements.

In Table III we present the results of this procedure.
The mean values result from fits which show supposedly
asymptotic behavior (in the sense discussed above) to-
gether with a good y value. The quoted statistical errors
(upper line) are taken from the same MtNUIT run. The er-
ror in the lower line, which we cautiously call "systemat-
ic," is a measure of the variance of fit results over the
highest possible t;„values. In addition we analyzed
correlation functions for mesons which are defined on
even time distances only. Of course, the raw data is the
same as before, but the suppression of the parity partner
~tanh(m'a/2) can help to disentangle both states. The
admixture of the parity partner is going to zero in the
continuum limit, but the suppression is not always strong
in our simulation since the lattice spacing is not very
small. The masses these fits return are in the case of
strong mixing most reliable for the lower mass state and
for weak mixing for the dominant one. Again, using t
values as high as possible, we account for this additional
information in the estimate of the systematic errors. As a
further check on our error analysis, we applied the jack-
knife method to several of our propagator data sets. The
resulting statistical error was very close to the MINUIT er-
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FIG. 5. The fit procedure demonstrated for the p and % at
[P,ma] = [5.35,0.075), see text.

ror and only a bit larger than this error value for big
data-block sizes. We are thus safe in quoting the MINUIT
error as our statistical error on the masses. The
difference between the two methods of obtaining statisti-
cal errors is significantly smaller than the systematic er-
ror which we, estimated by varying the t;„values and the
number of states in the fits.

Some specific channels are noteworthy. No exotic 0+
parity partner is visible in the pion propagator. The p/B
channel is dominated by the p. Even though an oscillat-
ing behavior due to a B contribution is visible, an accu-
rate determination of the B mass is difFicult. Inspecting
the t-even B propagator, we still find a dominant p signal.
In the p'/2& correlation function the A& admixture is
considerably larger allowing the separation of both states
through their different oscillatory behavior. Fitting the
t-even A i propagator we face the problem that for large
distances the lighter p' is not sufficiently suppressed while
for small t we cannot be sure that higher mass contribu-
tions have died out. In the a'/c channel both states con-
tribute with roughly the same strength. The ~' can be



=5.20 with

40

=5.35
38+0 08

n the light of thes
i experiment

p
s is not neces

g
t e modified

1658 BORN LAERMA» » PIRRCH ~A ~ A»D ZER As

obt ained from 1arge tmm g
reen s fun t'

e at s . For somee of the m
n propagatoor submer

uar mass valu

olle t cl T
d 1

1'
quark masses t b . w
inear fit to th

a, , masses
P values. If w

s versus the
e choose

ass depe
n the value

ence of the

th' 1"t
s given in Table IV

p yI
'ng t e values at

TABLE III. Results
gs or our set of [

s jn units of theo,m] values.

E
O ~ ~

~ * 4
~ \

~ ~

P

ma =0.025

0.435+0.004
1.04 +0.03

1.58 +0.04

1.40 +0.07

1.16 +0.09

0.91 +0.02

0.86 +0.06

1.14 +0.06

1.74 +0.08

ma =0.050

p=5. 20
0.620+0.004
1.12 +0.02

1.76 +0.02
+0.15

1.45 +0.03
+0.05

1.33 +0.04
+0.06

1.06 +0.01
+0.02

1.00 +0.03
+0.10

1.30 +0.06
+0.06

2.09 +0.03
+0.11

ma =0.075

0.725+0.024
1.24 +0.02

+0.05
1.90 +0.02

+0.10
1.54 +0.02

+0.07
1.40 +0.03

+0.10
1.22 +0.02

+0.02
1.13 +0.17

1.40 +0.05
+0.03

2.34 +0.06
+0.10

O

O
O

~ 0

~ ~

~ ~

g ~

..-X'
0

~ ~

0.02 0.04

(b)

O amH

0 06

p = 5.20

0.08

P

N'

0.438+0.003
0.83 +0.02

+0.05
1.36 +0.01

+0.08
1.13 +0.02

1.02 +0.03

0.79 +0.01

0.68 +0.04

0.86 +0.02

1.51 +0.02
+0.10

13=5.35
O.6OO+0.OO2

0.97 +0.06
+0.05

1.60 +0.01
+0.08

1.24 +0.03
+0.05

1.10 +0.10
+0.10

0.94 +0.01
+0.01

0.80 +0.10
+0.10

0.97 +0.03
+0.05

1.95 +0.01
+O. 10

0.725+0.025
1.12 +0.02

+0.02
1.73 +0.02

+0.08
1.40 +0.02

+0.05
1.30 .+0.02

+0.10
1.10 +0.01

+0.02
0.95 +0.07

+0.05
1.16 +0.05

+0.06
2.10 +0.05

+0.10

O

O
O

~ ~

Qa
~ ~

0.02 0.04 0.06

p = 555

0.08

e spectrum of mese s ec mesons and the nuc

s

) =5 20 d(j)
o

the
e m meson

quark mass is
x rapo-

d t fit d
s.

te to the s
e

e square root of



HADRON PROPERTIES IN LATTICE @CD WITH DYNAMICAL. . .

TABLE IV. p masses, corrected for lattice artifacts, in the
limit of vanishing quark masses and the lattice spacings a calcu-
lated from the physical p mass value.

5.20
5.35

mpa

0.960+0.028
0.695+0.035

a (fm}

0.25+0.01
0.18+0.01

minimal subtraction scheme) by means of the asymptotic
scaling formula, we get 60—70 MeV (see also Ref. 1).
These values, including those from quenched calcula-
tions, are considerably smaller than most of the fits in
high-energy scale-breaking analyses. ' '

In our view, the appropriate way to make contact with
continuum physics is by using the p mass to set the lattice
spacing. In this way, we expect to minimize the effect of
any small ( —10%%uo) violation of scaling in our data. We
follow this procedure in what follows.

(ii) We find that the general pattern of mass ratios coin-
cides roughly with that obtained from quenched calcula-
tions and, more importantly, with the values observed ex-
perimentally. Of course, our input parameters lead to a
m-to-p mass ratio above the experimental value, and sirni-

larly for the proton-to-p mass ratio. Our results are corn-
pared to a compilation' of other unquenched calculations
in an "Edinburgh plot, " Fig. 8. The consistency of the
various results is significant because they were obtained
by very different computational methods.

(iii) Flavor symmetry is restored in the p sector to
better than -5%. In the m sector the discrepancy is still
large but an improvement is indicated at small quark
masses. The situation here appears somewhat worse than
in quenched simulations at comparable P values. This
seems to be a common feature of mass calculations in-
cluding dynamical fermions as noted also in Ref. 18.

(iv) We have one set of parameters P= 5.20 and
ma =0.050, which permits us to make numerical com-
parisons with Ref. S at the same values in the
confinement region. Those simulations were carried out
by means of a hybrid method on a 16X 8 lattice, doubled
in the time direction for calculating the hadron propaga-
tors. %Shen we compare the results for the hadron
masses (Table V), we find very satisfactory agreement,
especially in view of the fact that the two methods are
rather different and are subject to systematic errors of
different origin. Because the lattice sizes are different in
the two calculations we conclude that finite-size effects do
not disrupt our analysis. This observation is corroborat-
ed in a companion paper on two-color SU(2) (Ref. 11).

IV. CHIRAL-SYMMETRY BREAKING

The Kogut-Susskind action is invariant under a con-
tinuous Aavor nonsinglet chiral transformation. Conse-
quently, we can examine whether or not the lattice under-
goes a spontaneous breakdown of chiral symmetry. This
is signaled by a finite value of the vacuum quark conden-
sate in the zero-quark-mass limit, associated with the ex-
istence of a zero-mass Goldstone particle, the pion.

%within errors, we find that the pion mass squared is
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FIG. 7. The scaling behavior of the p mass extrapolated to
zero quark mass and corrected for lattice artifacts. The solid
line is the asymptotic scaling prediction for the slope.

FIG. 8. The ratio m~/mp vs m /mp {Edinburgh plot). Our
data (0) are shown on the background of a recent compilation,
Ref. 1. The shaded area represents the region of quenched data.
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TABLE V. Comparison of the particle masses at P=5.20 and
am =0.050 with results reported in Ref. 5 that are based on a
hybrid algorithm.

ization-group-invariant mass defined in Ref. 22, we ob-
tain

P

p
X'

Hybrid method
16X8', Ref. 5

0.613+0.002
1.16 +0.02
1.79 +0. 14
1.51 +0.10
1.08 +0.04
1.25 +0.08
2.06 +0.40

Pseudofermions
24X12'

0.620+0.004
1.12 +0.02
1.76 +0.17
1.45 +0.09
1.06 +0.03
1.30 +0.06
2.09 +0. 14

3.05m ( a ( 5.20) ) =9.3+1.0 MeV,
3.09m(a (5.35))=7.3+1.0 MeV .

These numbers (MS scheme) are consistent with the
mean value of 10+3 MeV from current algebra and QCD
sum rules.

A nonzero value of the quark condensate

& qq &2 s...,.=-,' X &X;X; &

I

for vanishing quark mass signals the spontaneous break-
ing of chiral symmetry. This parameter is evaluated by
taking the trace of the inverse Dirac operator

consistent with a linear dependence on the quark mass,
extrapolating to a vanishing value for massless quarks.
This is shown in Fig. 9 and is consistent with the square-
root dependence plotted in Figs. 6. (The pion data points
in Figs. 6 do not fit a simple straight line. ) While the 5.35
data fit a straight line through the origin quite well, the
high mass 5.20 point lies slightly lower. We would expect
that the slope of the curves would scale like the lattice
spacing a. If we fit the 5.20 data with a straight line
through the origin, the slopes of the 5.20 and 5.35 data
are in the ratio 7.6/7. 1—less than the value 1.25 from
scaling, but in the right direction. It appears that for the
pion the scaling law sets in at higher 13 values only. [This
problem has been investigated in detail in quenched color
SU(2) (Ref. 19) and also quenched SU(3) (Ref. 20).]

Fixing the lattice spacing from the p mass, we extract-
ed the quark mass value from the slope (m a) /(ma). By
relating ' the quark mass m (a) with the renormal-

(m„gj

& qq &, „,„.„= & tr(D +ma) (9)

&qq && s,„„,= —,'m g 6 (n, t),
n, t

(10)

where G is the pion propagator. Even though this cal-
culation of the condensate is based on the same matrix in-
version, it involves all elements of a column of the propa-
gator. Again, we see nice agreement between the
methods. We show the measured values of the quark
condensate in Fig. 10(a). Extrapolating these values

where V is the lattice volume. We calculated the diago-
nal elements of the inverse Dirac matrix as a byproduct
of our pseudofermion inversion. Evaluating the same
quantity during the computation of the quark propaga-
tors by means of the conjugate-gradient algorithm pro-
vides a consistency check on the pseudofermion method.
Because of the limited number of source points within
each configuration, the error bars in the latter case are
somewhat bigger than in the former case. However, the
mean values lie on top of each other. In addition we ex-
ploited the Ward identity

( g1( ) Extrapolation ( $1t ) Scaling

(a) (b)

O
I

0
+0

0 00 0.02 0.04 0.06 0.08

FICx. 9. Linear fits of (m a) vs ma for P=5.20 (dashed line)
and f3=5.35 (solid line). The data points at 0.025 and 0.075
coincide for both )33 values. (The dashed line is a fit to the first
two points only. )

000 002 004 006 QQS
l7l 0

C)

t
5, 1 5.4

FIG. 10. (a) The mass dependence of the quark condensate at
13=5.20 and 5.35. (b) The quark condensate extrapolated to
zero quark mass; the solid line is the asymptotic scaling curve.
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linearly down to a zero quark mass, we find a nonzero
value or the condensate, consistent 'th thwi e spontaneous

rea own of chiral symmetry. It is clear from Fi . 10(b)
a ese extrapolated data are close to the predicted

slope from asymptotic scaling. In the same manner as be-
fore, we may thus extract the renormalization-group-
invariant value of the quark condensate:

(qq ), os,'„,„=(208+22 MeV)

which is quite close to the current-algebra value of
190+20 MeV derived from Ref. 22.

Encouraged by this result, we exploit the current-
algebra relation

.025

the
to calculate the leptonic pion decay const t Ian . nserting

e numbers already determined, we find that

92+9 MeV for P= 5.20,
86+9 MeV for P=5.35,

which is in reasonable agreement with the ex
value of 93 MeV.

wi e experimental

V. THE HEAVY-QUARK POTENTIAL

R/a = 4

R/o = 5
o = not used

Y/a

FIG. 11. T. The logarithms of Wilson loops in@'(R, T) as linear
functions of T at [P,ma] = [5.35,0.025].

ot
' ar

There is now compelling theoretical evidence th t tha e

theor r'
p ential between heavy static quark

'
thar s in e pure gauge

eory rises linearly with separation R (Ref. 23).'
n e . . Includ-

g ig dynamical quarks in the theory h ld hy s ou c ange
is. pontaneous quark pair creation in the stretched

field between heavy separated quarks will screen the
quar color charge at distances greater than about a fm.

his turns the potential into one 'th hwi a s ort range be-
tween the bound state of a heavy quark and a li han a ig t anti-

q an its charge conjugate. To investigate this, we
have extracted the potential from the Wilson 1

standard way:
e i son oops in a

V(R)= ——lnW(R, T) for large T,1

(i) We first fi tted the zero-quark-mass potential by a

The ra '
Coulomb plus linear ansatz for both p 1o va ues separately.

en o tained ase rat&'o of the two o.a values is th b
, in agreement with the ratio resulting from the

masses. Hoowever, if we compare the absolute scale deter-
rom e p

mined from the p mass measurement to that extracted

a pot)/a (p) =0.45+0.03. Even though a deviation of
this ratio from 1 cannot be rul d tru e out as a consequence of

W(R, T)= —trQ U for R XT loop
1

The logarithms of the Wilson loops are shown in Fig. 11
for [P,ma] = [5.35,0.025]. Weakening, as usual, the

R =,2, 3. For R =
data remarkably well, down to the 1e argest T extent for

, 2, 3. For R =4, the slope can be proved to be
linear only down to T =10, beyond that value the data is
too noisy. At R =5'sy. = and 6 only one or two points satisfy
the condition T~R before the d t de a a ips into noise, so we

not attempt to extract a value for the potential there.
In an unquenched calculation such as this the

tial depends on the
as is, t e poten-

p s on the quark mass. We approximate this
dependence by a linear function to extrapolate Va to zero
quark mass, as shown in Fig. 12 for P=5.35. The mass
dependence is slightly steeper for smaller P.

In order to calculate the potential in physical units we
pursued two different strategies.

O

p = 5.55
O
O I

0.00 0.04 ma 0.08

FIG. 12. The ve values of the interquark potential Va for dis-
tances R = 1, . . . , 4 in lattice units at P= 5. 35.
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lattice artifacts, such a small value can be considered as
very unlikely, and we reject this procedure as an incon-
sistent interpretation of the data.

(ii) Adopting instead the lattice spacing from the p
mass measurement we find the potential in physical units
(CxeV vs fm) as shown in Fig. 13. While the two sets of
data for the di8'erent P values have been mapped onto
each other by using the measured p mass ratio in lattice
units, the P-dependent heavy-quark self-energies are re-
moved by adjusting one point of the potential. We
parametrize the data in terms of a screening length p

a ] e PR
V(R) = ——+crR

R pR

which has the correct Coulombic behavior at small dis-
tances and approaches a constant at large distances. We
can think of the constant 5=a /p as the splitting energy
of the heavy-quark pair. If we choose to keep
sr=(400 MeV) fixed, then a fit returns +=0.21+0.01;
this is close to the value in the quenched case. We then

I ~ I w I ~O

also find the screening length

p '=0.9+0.2 fm .

This scale lies in the range we expect. The splitting en-
ergy is 6=800 MeV, which is in reasonable agreement
with what we would expect from quarkonium models.
For comparison we show the world's average of
quenched potential values, in which the strength of the
Coulomb interaction is of n =0.26 and the string tension
is set to &o =400 MeV. The deviation of the data from
the unscreened form of the potential is evident in this pic-
ture and it indicates the breaking of the Aux tube between
the heavy static quarks.

It should be stressed again, however, that these con-
clusions depend on the fact that we measure the p mass in
the same computer experiment in which we measure the
potential. Had we not done this and let the scale vary
freely, the data points could have migrated along the ar-
row onto the solid line in the figure. As discussed in the
preceding paragraphs, the price to be paid would have
been a value of the lattice spacing inconsistent with that
from our simultaneous p mass measurement.

0
I

C) ~ )
I

0 0.2 O. b 0.8

FICx. 13. The interquark potential in physical units as in-
ferred from the p mass measurements. The dotted line through
the data points describes the fit to a screened form of the poten-
tial (the neighboring dotted lines indicate the change of the po-
tential if the lattice spacing a is altered by + 10%%uo). The stan-
dard (unscreened) QCD potential is shown by the solid line for a
string tension o.=(400 MeV) and a fixed coefficient of the
Coulomb term +=0.26.

VI. SUMMARY

We have shown that lattice gauge theories with light
quarks provide a reasonably consistent picture for some
of the basic properties of the low-lying hadron states.

(1) While the pattern of hadron masses in the simula-
tion is qualitatively as seen experimentally it is not yet
quantitatively satisfactory. The pion-to-p as well as the
nucleon-to-p mass ratios are expected to be smaller. Ad-
ditional data —especially at lower quark masses —are
needed to test this aspect of the theory.

(2) There is a clear indication for spontaneous breaking
of chiral symmetry. Our data are consistent with a pion
mass which extrapolates to zero for zero quark mass, as-
sociated with a finite quark condensate. Physical quanti-
ties such as the renormalization-group-invariant quark
mass and the quark condensate match current-algebra
values. The pion decay constant comes out numerically
correct.

(3) At large distances, we have found indications for a
breaking of the color fIux tubes between heavy static
quarks. This is expected from the spontaneous creation
of quark pairs in the color force field. In order to deduce
this, we have to rely on our simultaneous measurements
of the p mass and the potential so that we can fix the lat-
tice spacing.

Our analysis is not disrupted by finite-size effects or by
systematic errors. We have demonstrated this by exten-
sive internal consistency checks, by comparison to SU(2)
and particularly by comparisons with Ref. 5, which is
work based on a hybrid method applied to a (2 16)X 8
lattice. Thus, even in view of the first point mentioned
above —which is, of course, a critical one—we find
reasonable physics emerging from this size lattice. Im-
provements are expected from ongoing computations at
quark masses of ma =0.010 and smaller.
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