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Special points in three-generation moduli space
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We focus on some special points in the moduli space of the three-generation compactification
which give rise to a four-dimensional effective Lagrangian at the compactification scale differing
markedly from that found in previous studies. In particular, we consider manifolds possessing R
symmetries as we11 as manifolds arising from blowing up an alternative construction of the three-
generation class. In addition to the natural matter parities found in previous models, some of these
constructions offer the substantial improvements of having fewer or no mirror quarks and exact flat
directjons (modulo an incomplete understanding of certain singlet modes) leading to three-
generation models with SO(10},SU(5), or the standard-model gauge group at the compactification
scale.

I. INTRODUCTION

The attractive uniqueness of string theory is swamped
by the large vacuum degeneracy; predictability therefore
suffers a similar fate. Lacking a dynamical prescription
for choosing a vacuum state, it is worthwhile to examine
physical restrictions which might help in reducing the set
of viable vacuum candidates. A seemingly mild yet
surprisingly powerful criterion is to demand that the re-
sulting four-dimensional theory which follows from a
particular choice of the vacuum state have three genera-
tions of elementary particles. This criterion was applied
to (2,2) Calabi-Yau compactifications in Ref. 1 and it was
shown that of the a priori thousands of topologically dis-
tinct complete intersection Calabi-Yau manifolds mod-
ded out by free group actions, apparently only one can fit
the bill. This manifold is the one initially constructed by
Tian and Yau ' and mathematically and phenomenologi-
cally analyzed in Ref. 4. (See also Refs. 5 —7.) The result-
ing low-energy phenomenology, as shown in Ref. 4 is
surprisingly consistent with observation. Of course, the
point of any such phenomenologicaal study is not to build
the model; our understanding of string theory is, at
present, far too limited for such a task. Rather, the phi-
losophy is to push as far as we can within the context of
such concrete and well-motivated choices for the vacuum
state in order to possibly extract relevant physics as well
as to guide further study by exposing both the phenome-
nological virtues and deficiencies in our present formula-
tion of string theory.

One of the most attractive aspects of such superstring
models is that one bypasses many of the ad hoc assump-
tions of conventional model building. After selecting a
manifold for compactification, (quasi)topological calcula-
tions yield the low-energy particle content, renormaliz-
able Yukawa couplings, discrete symmetries, and even
some aspects of gauge symmetry breaking. A number of
nonrenormalization theorems ensure that many of these
lowest-order computations are not corrected by higher-
order effects. Nevertheless, our present level of under-

standing does require that we make certain arbitrary
choices in order to extract low-energy physics. Two
prominent choices are the supersymmetry-breaking
scenario and the selection of the precise form of the vacu-
um manifold. In particular, supersymmetry breaking in
Ref. 4 was assumed to trigger vacuum expectation values
along certain phenomenologically viable directions in
field space, and the complex structure of the vacuum
manifold was chosen so as to give rjse to the maximal
discrete symmetry group (for the covering space). An im-
portant question to ask is whether by modifying either of
these choices we yield phenomenologically viable low-
energy models. In this way we can gain an understanding
of how special (or generic) acceptable three-generation
models are and in the process possibly improve upon ex-
isting models. For example, one might hope to reduce
the large number of extra generation-antigeneration pairs
present at the compactification scale in Ref. 4 which have
to be given large mass in order to avoid many phenome-
nological catastrophes. Although this can be accom-
plished, these excess states make the model unnecessarily
cumbersome and rather delicate. Furthermore, one
might hope to go beyond the intricate Aat-direction
analysis of Ref. 4 by finding exactly Qat directions in field
space. In fact, one motivation for the present work is to
find such exactly Bat directions which allow us to deform
our theory to a three-generation SO(10) or SU(5) (2,0)
model [as opposed to the viable but far less attractive E6
which arises in (2.2) theories].

The question of modifying the symmetry-breaking pat-
tern was addressed in Ref. 5 where it was shown that a
variety of different symmetry-breaking scenarios all give
rise to unacceptable physics. It may be possible, of
course, that there are some unexplored symmetry-
breaking patterns which do give rise to viable phenome-
nology, but as yet none has been found. We shall not dis-
cuss this method of generating new models further. Some
work has been done on choosing alternative complex
structures. The qualitative features of many such mod-
els, though, are readily discerned from the analysis of
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Ref. 4. That is, since the covering space in Ref. 4 was
chosen to give rise to a maximal set of discrete sym-
metries D, modifications of the complex structure generi-
cally (but not always) give rise to smaller groups which
are often contained in D. The prospects for such a
modified compactification are then, qualitatively speak-
ing, determined by whether any of the new terms allowed
by the reduced symmetry group can mediate phenomeno-
logically disastrous interactions. Although it is impor-
tant and interesting to study such examples (to shed light,
for instance, on how stable the model of Ref. 4 is under
small perturbations), in this paper we shall consider
points in the rnoduli space of the three-generation
compactification which can give rise to low-energy
effective Lagrangians which differ radically from that
studied in Ref. 4. We do this in two ways.

First, we seek complex structures on the first real-
ization of the three-generation manifold R (as a
codimension-three variety in CP XCP ) which give rise
to discrete R symmetries. (All of the symmetries which
arise in Ref. 4 are non-R symmetries. ) As discussed in
Ref. 9, R symmetries place powerful constraints on re-
normalizable and nonrenormaliz able terms in the
effective Lagrangian. Whereas nonzero couplings in the
Lagrangian must be invariant under ordinary sym-
metries, they must transform in a specific nontrivial
manner under R symmetries (we will make this precise
later). At first sight it seems unlikely that one could find
a complex structure on the first realization of the three-
generation manifold which respects R symmetries. This
is because symmetries on the two CP spaces are tied to-
gether by a hyperplane which, as shall be clear in the next
section, generically forces them to be non-R symmetries.
However, we shall find, surprisingly, that there are
smooth complex structures giving rise to R symmetries
and that, as anticipated, the pattern of allowed couplings
is markedly different from that found in Ref. 4. One in-
teresting consequence of these symmetries is the existence
of exactly fiat directions in the superpotential [up to an
incomplete understanding of singlets from H'(EndT)]
which allow us to holomorphically deform our initial E6
(2,2) theory to a three-generation SO(10) or SU(5) (2,0)
compactification. With Aux breaking, the latter can give
rise to the standard-model gauge group at the
compactification scale. We will also see that the discrete
symmetries of such models can also give rise to phenome-
nologically essential matter parities.

Second, we shall study string compactification on the
second realization of the three-generation manifold IC (as
a codimension-one variety in CP XCP ) presented in
Ref. 3. (The equivalence of this construction with the
first realization was proven in Ref. 10.) Model building
on this manifold has been hampered by the increased
complexity of the construction which involves resolving
quotient singularities and hence requires an understand-
ing of the resulting blow-up modes. We shall see that it is
not at all hard to overcome this obstacle. It is not known
whether this manifold is continuously connected to R,
and in any event, the structure of the effective Lagrang-
ian for the massless modes is very different from that
found on R. We shall see that these examples also admit

R symmetries and that such symmetries ensure Oat direc-
tions [again, up to an incomplete understanding of
H'(EndT) modesj leading to SU(5) or SO(10) (2,0) mod-
els. Furthermore, we shall also mention some examples
with novel Wilson loop symmetry breaking that have the
potential to eliminate the phenornenologically trouble-
some mirror quarks and antiquarks that arise in these
models.

In Secs. II and III we shall describe each of these con-
structions in turn and derive all of the necessary inforrna-
tion for detailed model building. In Sec. IV we shall use
this information to comment on some of the phenomeno-
logical characteristics of these models.

II. THE FIRST RKAI.IZATION

H: x0y0+ gc,~x;y~ =0 . (2.3)

For R p to be smooth we further require the transversality
constraint: dC& hdC2 A, dH to be nonvanishing on Rp.
This manifold is simply connected and has h '=23 and
h "=14, where hi"q=dimH(''i(R0). The number of gen-
erations obtained by cornpactifying on Ro is thus seen to
be 9, and hence we seek a freely acting Z3 group of holo-
morphic automorphisms so that R =R0/Z3 is a smooth
three-generation manifold. The Z3 action G generated by

2 2 2
g h+P P3 I E+P + +] (X+2 (X+3 PP ~y„~ y„a y3 )

where a is a nontrivial cube root of unity, is a freely act-
ing automorphism so long as a3 =a4 =b3 =b4 =0, and
the only nonzero c;J's in addition to cpp are c», c22, c33,
c23 and c32 (for ease of notation we shall call these
c0 . ~ ~ c~ ). Furthermore, these nonzero c's must satisfy

c2+c3 55'+ c45'+ C,5%0, (2.4)

where 6 and 6' are cube roots of —1. These conditions
ensure that R is a smooth three-generation Calabi-Yau
manifold, so long as Ro is smooth.

In Ref. 4 we made the specific "standard" choice
a2=6i =b2=0' cp ci 1, c2=c3—=c, and c4=c5

=0. This highly symmetric form of Rp gives rise to a
large group of holomorphic automorphisms. These con-
sist of (x, ,y, )—+(X~1;1,y~1;1) where p is an element
of the permutation group on four objects: (x;,y; )

n,. —n,.—+(a 'x;, a 'y; ) and (x;,y; )~(y;,x; ).

The covering space for the first realization of the
three-generation manifold, Ro, is the vanishing locus of
a bidegree (3,0), (3,0), and (1,1) homogeneous polynomials
in CP XCP . Modulo projective general linear transfor-
mations in each of the CP factors, Rp can be written as
the intersection of

3

C, : g x; +a,x0xix2+a2x0x, x3+a3x0x2x33

i =0

+a4X, X2X3 =0, (2.1)
3

C2'. g y' +b ly0yly2+52yOyiy3+b3yOy2y3
3

i=0

+b4y, y2y3=0, (2.2)
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As shown in Ref. 4, though, none of these symmetries
are R symmetries. A simple way to see this is to recall, as
pointed out in Ref. 11, that an R symmetry necessarily
acts nontrivially on the holomorphic (3,0) form co. Fol-
lowing Candelas' we can write co as

E; kix;dx Adki, Adxi&„y„dy Ady Ady

C) C2H

(2.5)

where the contour integrals are about C&, C2, and H.
Now, it is easy to verify that a11 of the symmetries above
leave co invariant. The reason for this is clear: the hyper-
plane H is such that any group action leaving it invariant
necessarily also leaves co invariant.

The question then arises: are there other choices for H
which give rise to smooth manifolds respecting discrete R
symmetries? At first sight it might appear that the
answer to this question is no as smoothness often requires
all coordinates to appear in the defining equations; this in
turn implies that symmetries of Rp (which, in particular,
preserve H) will always pair off symmetries in the x coor-
dinates with their inverse action on the y coordinates—
thus preserving ~. As we now see, though, for the case
at hand, we can choose H so that R p (and R ) respects R
symmetries.

To this end, we first note the fact that if in addition to
cp and c, at least one of the c's in (2.4) is nonzero, say ex-
actly one, then Rp is nonsingular almost everywhere in
this one-dimensional subspace of the moduli space. This
follows directly from an examination of the transversality
condition. Namely, for dC, h, dC2 h, dH to vanish at
some point, either dH =0 at some point (dCi and dC2
never vanish) or i (dH) is proportional to dCi and
i (dH) is proportional to dC2 where i„» are the evalua-
tion maps on g, (BIBx;)Iedx; and g; (Blowy;)Sdy;, re-
spectively. Now, without loss of generality, take cp, c, , c2
to be the only nonzero coefficients. This implies that
dH=O only if x3 and y3 are the only nonzero coordi-
nates. Such points do not lie on C, and C2. Further-
more, i (dH) ~ dCi and i (dH) ~ dC2 imply that y; =ax;,
x; =~'y, for i =0, 1,2 and x3 =y3 =0, for some constants
~ and ~'. However, none of these points lie on C, and

C2, for almost all values of the coefficient c2, and hence
the manifold is nonsingular. We also point out that we
need at least one nonzero c; in addition to cp and c, for if
not, it is straightforward to see that dH vanishes on R p.

With this understanding of the trans versality con-
straint, we now see that the smooth manifold with H
defined by nonzero cp, c„and cz (with all other c's zero)
allows us to independently scale r„:x3~ax3 and
r:y3~uy3 by cube roots of unity, thus giving us an R
symmetry. (Although we have not done a complete
study, many choices of H giving rise to permutation R
symmetries are not smooth. )

From our introductory remarks, we anticipate that
such a choice for the manifold 8 will give rise to cou-
plings which are quite different from the usual x-y-
symmetric choice of H. ' In order to extract the effective
Lagrangian (both renormalizable and nonrenormalizable

terms) we need the transformation properties of the lep-
ton and quark fields. Recall from Ref. 4 that after Aux

breaking via

g ~diag(1, 1, 1)diag(a, a, a )diag(a, a, a)

TABLE I. Transformation properties of H'(R, T) fields un-
der discrete R symmetries.

27 field r 27 field r 27 field r

A2

A3

k4
k5

~6
k7

k9

1

a
1

1

1

1

a
1

a

1

1

1

a
1

1

a
1

q4

qs

a
1

1

1

1

1

1

1

1

1

1

Qi
Qz
Q3
Q4
Qs
Q6
Q7

1

1

1

1

1

1

1

I
1

[where the latter is the subgroup H =SU(3)„i„XSU(3)L
XSU(3)~ of E6] the generations consist of nine leptons,
seven quarks, and seven antiquark multiplets [where
these names refer to the (1,3,3), (3,1,3), and (3,3,1) repre-
sentations of Hj and the antigenerations consist of six
leptons, four quarks, and four antiquarks. The polynomi-
al representatives used in Ref. 4 for the generations are
still valid in this context and hence can be used to direct-
ly determine the transformation properties of these fields.
The only new symmetries which arise on the quotient
space from the nonstandard choice of H made here are r
and r . We list their action on the generations in Table I.
One important point to bear in mind is that the monomi-
al representatives are more precisely described as
parametrizing H'(T), and correspond to the transforma-
tions of the scalar component of the 10 of SO(10) con-
tained in the 27 of E6.

It is a simple matter to use our previous results in Ref.
4 to work out the analogous transformation laws for the
antigenerations. By the Lefshetz hyperplane theorem,
seven of the 14 (1,1) forms are contributed by C, and the
other seven by Cz. Since in this sense they are insensitive
to the hyperplane, we can take over the (simultaneous x-
y) scaling results of Ref. 4 making the replacement that
the x-space forms are invariant under r and vice versa.
This gives Table II. We note that the simplest way to
derive these results from scratch (or for some other sym-
metry) is to make use of the explicit coordinate based
representatives for the (1,1) forms (more precisely, their
homological duals) found in Ref. 14. Alternatively, one
can also make use of the Lefshetz Axed-point theorems as
in Ref. 4.

We should emphasize at this point that the three-point
antigeneration couplings are topological (up to nonper-
turbative sigma model effects) and hence are independent
of the choice of H. Of course, many of the nonrenormal-
izable couplings (which we shall discuss) do depend on H
and the transformation properties above are a powerful
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TABLE II. Transformation properties of 0'(R, T*) fields
under discrete R symmetries.

27 field r, r~ 27 field r, ry 27 field r„

~2

~3
X4

A5

1

1

1

CX

1

1

1

1

CX

1

9'4

Q1
Q2

Q3
Q~

analytic tool for dealing with them. We will use this in-
formation in the last section to extract some phenomeno-
logical properties of this compactification. For now we
consider the second construction of the three-generation
manifold.

III. THE SECOND REALIZATION

The second realization of the Tian-Yau manifold, K, is
presented as the second example in the Appendix of Ref.
3. This construction of the three-generation manifold has
received little attention in the string literature for two
reasons. First, although it was initially thought that this
manifold was a distinct from the first three-generation ex-
ample in Ref. 3, it was later shown that the two examples
are actually diA'eomorphic. ' Second, the construction is
technically more difficult than the first (involving passing
through a singular manifold which one can then resolve)
apparently making model building a more formidable
task. The sets of models, though, realizable on each man-
ifold are almost certainly not identical as, for example, it
may not even be possible to smoothly deform the com-
plex structure of R to K. Furthermore, we shall see
below that the technical obstacles are readily overcome.

The construction of E (Ref. 3) begins with the simply
connected h ' = 83, h "=2 codimension one variety, Ko,
in CP XCP defined by a bidegree (3,3) homogeneous
equation, say, g x; y; +6(g(x; y, +, +x, y, , ) ) =0 for al-
most any choice of complex parameter 6. The x's and y's
here are homogeneous CP X CP coordinates. We then
quotient this manifold by the nonfreely acting group of
order 27 generated by

~1'(x1 x2 x3 3 1 32 33) (x2 x3 xi 3 2 3 3 31)
2 20 2 (x $ x2 x3 y&,y2,y» &x ],nx2, a x3,y &, ay2, a y3 )

2~3' xi x2 x3 yl y2 y3) (xl x2 x3 3'1 +y2 ~ y3)

to arrive at a three-generation manifold, E. The latter
manifold has' fundamental group Z3 and h"=6 and
h '=9. In this construction it is important to bear in
mind that the fixed-point sets are the six tori,
[xi+5(xz+x3) = 0]X[1,0, 0] and [1,0,0]X[y, +5(yz
+y3)=0] (along with the other four obtained by cyclic
permutation on the coordinates) and hence their resolu-
tion does not change the Euler characteristic of the quo-
tient space (but does change the individual Hodge num-
bers). For more details see Ref. 10.

We now determine the transformation properties of all
of the modes in this compactification scheme under the

(covering space) symmetry group D which is generated by
(x;,y, ) —+(x 1,1,y 1;1) where p is a permutation symmetry,

On Ko, there are a priori 100 monomial deformations
of the complex structure which arise as bidegree (3,3) mo-
nomials in x and y coordinates (the ten cubic x-space mo-
nomials times the ten in the y coordinates). Using the
equivalence' q —q +C "0~ P +6P where C is a linear
function, we can eliminate 17 of the 100 combinations
leaving us with the desired 83 representatives of H '.
The two (1,1) forms are the pullbacks of each of the
Kahler forms on the ambient CP spaces. The latter are
invariant under all symmetries (except the Z2 symmetry
J under which they form a regular representation), while
the transformations of the (2, 1) forms are directly deter-
mined from this explicit coordinate representation. For
any choice of Aux breaking it is standard to determine
which modes descend to K.

We now turn to the blow-up modes. Recall from Ref.
10 that we resolve the singular tori by extracting T X84
(where 84 is the four ball) and gluing back T X Q" where

Q is the plum product of the two disc bundles each over
S with first Chem number —2. Since Q deformation
retracts to S h S (two spheres touching at a point) it
is straightforward to determine that we get additional
cohomology arising from H' '( T X (S h S ) ) and
H '(T X(S hS )). Each of these contributes two ele-
ments;' these arise from H ' (T )XH''(S RS ) and
H' (T )XH"(S hS ). With this explicit identifica-
tion of the origin of the blow-up modes, we can determine
how these fields transform under the action of the
discrete symmetry group. We first consider the (1,1)
forms. The scaling symmetries do not mix the tori, and
act trivially on H ' (T ). The two (1,1) forms arising
from S hS (which is simply two spheres touching at a
point) may be identified with the Kahler forms on these
spaces, which again are invariant under the scalings. The
permutation symmetries are a little more difficult to deal
with as they interchange the singular tori. The most
straightforward way to deal with these symmetries is to
use the cyclic Z3 symmetry to label the forms in the fol-
lowing way. Let the ith x-space torus be the one with
y;=1, and let the two (1,1) forms associated with this
torus be denoted a'I' and a2'. We choose the assignment
of the subscripts so that the cyclic Z3 action induces the
transformation a", ~a", +" and a 2' ~a 2'+ ". The
remaining generator of the S3 symmetry is a Z2 coordi-
nate swap, say

12' xi x2 x3 3 1 3 2 3 3) (x2 x1 x3 3 2 yi y3)

This map interchanges the first and second tori (in each
CP ) and maps the third onto itself. The local normal
bundle coordinates of the third tori are interchanged by
this action thus implying that the plumbed S 's are inter-
changed as well. The first two tori are in a similar situa-
tion except that in addition to the S 's interchanging, the
tori do so as well. With this analysis, the transformation
properties of the (1,1) forms are readily determined (and
shall be given momentarily).

A similar analysis applies to the (2, 1) forms except that
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TABLE III. Transformation properties of (2, 1) blow-up
modes on K. Blow-up (1,1) modes transform identically except
for being invariant under the scaling symmetries.

27 field

Li
L2
L3
L4
L5
L6
L7
Lq
L9
Llo

IZ

L3
L4
Lq
L6
Ll
L~
L9
Llo

L7
L8

L4
L,
L2
L,
L6
L5
Llo
L9
L8
L7

s,*

1

1

1

1

1

1

L7
L8
L9
Lio

L
Ll
L2

L4
L)

we must also take into account the nontrivial transforma-
tion properties of the one-form on the torus. Including
this effect gives the list of transformation properties in
Table III. In this table, for ease of presentation we use
the following notation: the two (2, 1) forms on the ith x-
space torus are labeled L2; &

and L2;, similarly for the
y-space forms with the indices increased by 6.

The transformation properties of the 12 blow-up (1,1)
modes are identical except for the fact derived above that
they are all invariant under the scaling symmetries S '~.

We thus see that much of the information required for
model building in this example can be extracted without
much effort. ' Of course, we would ideally determine the
values of the renormalizable Yukawa couplings. For the
(1,1) forms these (tree-level) couplings are topological and
hence the results of Ref. 14 apply here (after a suitable
change of basis). The (2, 1) couplings offer a more diKcult
obstacle as we cannot immediately apply the monomial
manipulation method of Ref. 12 to the blow-up modes.
Nevertheless, much can be said about the structure of
low-energy phenomenology without the precise
knowledge of the values of all of the renormalizable cou-
pling s.

IV. PHENOMENOLOGY

We now briefly discuss some of the new phenomeno-
logical characteristics of the three-generation manifolds
we have been discussing.

We first review the discussion of Ref. 9 regarding the
strong restrictions which R symmetries place on cou-
plings in the effective Lagrangian. Let r be a holomor-
phic automorphism of a chosen Calabi-Yau compact-
ification which Inaps co —+y 'co where y is some complex
phase. By a redefining the lift of the symmetry r to the
vacuum gauge bundle, the symmetry r can be chosen to
act on all components of 27's and 27's of E6 according to
27 —+y ' p27, 27~y' p'27 where p (p') are the trans-
formation matrices for the corresponding Calabi- Yau
moduli. With these redefinitions, any sup erpotential
term must transform by a factor of y. Terms of the form
27, for example, can certainly appear as long as the

wedge product of the corresponding (1,1) forms is invari-
ant under the action of the R symmetry. This is precisely
as expected, since the topological formula' for the 27's is
simply the integral of the wedge product of the three cor-
responding (1,1) forms over the manifold of
compactification. Similarly, 27 couplings can occur if
the product of the corresponding monomial representa-
tives transforms by a factor of y, which is the familiar
condition originally shown in Ref. 11. More generally,
terms of the form 27, - 27 27& - 27 +31, can occur
so long as Pi. . . P P', P' +3k equals y' . An R
symmetry can, for example, leave many fields invariant.
We see, therefore, that couplings between such fields with
k =0 (in contrast with the situation for non-R sym-
metries) are then forbidden by the symmetry.

For the manifold R, we were able to choose the com-
plex structure so as to respect the two R symmetries
r, r . It is straightforward to determine which three-
point couplings amongst the generations are allowed by
these R symmetries. The product of the monomial
representatives for such a nonzero coupling must be in-
variant under all of the symmetries except r and r un-
der which it must transform by a factor of a. As com-
pared with the usual choices of the complex structure
which have no R symmetries, the pattern of allowed cou-
plings is substantially altered. For example, only about
half as many three-point couplings are nonzero as com-
pared with the standard choice (more precisely, there are
42 nonzero three-point generation couplings as compared
with 85 nonzero couplings for the standard choice' '' ).
Furthermore, it is a simple matter to determine the
values of these couplings using the method of Ref. 12.
For the case at hand this amounts to a straightforward
generalization of the results of Refs. 17 and 18.

Only a detailed study of the low-energy model emerg-
ing from this compactification, which we shall present
elsewhere, will allow us to pass conclusive judgment on
the prospects for acceptable phenomenology. However,
we would like to emphasize one particular phenomeno-
logical application of these R symmetries.

We have found that modifying the choice of H from
that made in Ref. 4 to that described in Sec. II has a pro-
nounced effect on the three-point couplings; the potential
restrictiveness of R symmetries, however, is even more
apparent when we consider nonrenormalizable superpo-
tential terms. In particular, consider the nonrenormal-
izable superpotential terms which can lift an F-Aat direc-
tion in field space. These are couplings of the form
A~(2727)" where 3 is a generic E6-singlet field and p =0
or 1. Now, if one can find, say, a 27 and a 27 such that
their product is invariant under an R symmetry, then all
(2727)" terms are forbidden and hence the only way a
fatness spoiling superpotential term can arise is if the 2
field transforms under this R symmetry by a factor of y.
If there are no such A fields we can deform the theory
along this flat direction to a (2,0) model. In Ref. 9 this
method was used to deform the standard (2,2) theory on
the quintic hypersurface in CP, Y4 „to a (2,0) theory.

It was argued some time ago that (2,0) theories offer a
generically more promising starting point for realistic
low-energy phenomenology. Although a number of such
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(2,0) theories have recently been constructed' [which are
not deformations of (2,2) theories], none have a realistic
number of generations. The satisfying aspect of (2,0)
theories which are deformations of (2,2) theories (on com-
plete intersection Calabi-Yau spaces) is that, since the
number of generations is preserved by the deformation,
the (class of) manifolds we have been discussing are the
unique (2,2) starting point for deforming to a three-
generation (2,0) theory.

As we now see, the R symmetries do protect such flat
directions for the manifold R, up to our incomplete un-
derstanding of all of the modes arising from H'(EndT).
A brief glance at Tables I and II shows that any product
of A, &, A, 3, A, &, A, 6 with X&, k& is invariant under rx and r~.
Furthermore, kzA, 5, A,4A.6, XSA.6, A,95 are also invariant.
Are there any gauge singlets which can lift these flat
directions? Amongst the complex structure and Kahler
moduli, the answer is no, as can again be seen using
Tables I and II. This leaves the singlets coming from
H '(End T). Unfortunately, although this cohomology
group is well understood and calculable for some Calabi-
Yau manifolds, no one has succeeded in computing it
for the three-generation manifold. Using deformation
theory ' we can construct 17 representatives but there
is no reason to believe that this exhausts H'(EndT). Any
such H'(EndT) singlet accessible by deformation theory
transforms such as a bidegree (3,0), (0,3), or (1,1) mono-
mial and hence cannot lift our flat directions. Thus, up
to our ignorance of the full structure of H'(EndT) we
have exact fat directions. If we deform along one we get
an SO(10) model; if we deform along two independent
ones (which are mutually flat) we get a three-generation
(2,0) model with an SU(5) gauge group [SU(3)
X SU(2) XU(1) with the fiux breaking described earlier] at
the compactification scale. Furthermore, it is easily seen
that deforming along the flat directions above gives mass
to a number of the excess generation-antigeneration
modes while necessarily leaving light leptons which can
act as Higgs doublets. This compactification scale theory
is thus a more promising starting point than that of Ref.
4. A detailed study is required in order to judge the low-
energy prospects for this theory. [For example, can we
give mass to all of the excess modes through further vac-
uum expectation values (VEV's) while keeping the Higgs
leptons light'7]

Even if future work shows that the EndT singlets do
lift these flat directions, these compactifications have the
potential to lead to viable low-energy models. [We note
that the model in Ref. 4 has also been constructed subject
to this incomplete understanding of H'(EndT). ] In par-
ticular we note that, as discussed in Refs. 4 and 22, an
essential ingredient in obtaining viable low-energy models
is the presence of a matter parity amongst the discrete
and/or gauge symmetries which prevents catastrophic
dimension-four baryon- and lepton-number-violating pro-
cesses. In Ref. 4 a Zz matter parity was found. Our
choice of H does not respect this Zz map so we must look
for such a matter parity amongst our other symmetries.
Happily, we can directly take over the work of Ref. 22 in
which it was noted that the Z3 symmetry B mapping
x~ —+ax& and ye~a yz (which exists for both the stan-

dard choice of H and the one studied here) also provides
a matter parity and hence R meets the first important test
for yielding a viable model.

The manifold E also gives rise to some interesting phe-
nomenological features. R symmetries, for example,
abound in this realization. Writing the holomorphic
three-form as

~
e;Jkx;dx& /i .dxkepq„ypdyq A dy„

Ko

we see therefore that the scaling symmetries

ii (S,') '(S~~) ' are R symmetries unless g(n; +m; )

=0(mod3). It is again a straightforward exercise to work
out the nonzero Yukawa couplings; these will be used
elsewhere in a detailed study of this model. Here, as in
the previous example, we focus on potential exact flat
directions in the superpotential. To do so we focus on a
particular 27, 27 pair; for the latter we choose the restric-
tion to Eo of one of the CP Kahler forms, which we
shall denote by Q&z and for the former we take the 27
whose polynomial representative is (x, +ax ~

+a x3)(y, +a yz+ay3), which we shall denote by Np7.
Under the scaling R symmetries, it is easy to see that
+27+27 C 27+27' We are thus in the situation described
in the previous section: no (Cz~Ozz)" terms can appear in
the superpotential. We now need to see if there is a
gauge singlet field 3 which can spoil this would-be fIat
direction. The two moduli associated with harmonic
(1,1) forms certainly do not transform by a factor of y un-
der the R symmetry. This leaves the complex structure
moduli and the fields from H'(EndT). To deal with the
former, we note that they transform like bidegree (3,3)
polynomials and hence cannot spoil the fIat direction for
which they would have to transform under scalings such
as (x,xzx3y, yzy3) . Finally, to deal with the EndT
fields, we recall that in Ref. 20 it was shown that
h '(EndT)=176. Of these, 160 can be reached by the
deformation algorithm of Ref. 21, that is, by tensors of
the form p, b d f which are symmetric on the last three in-
dices as well as on the second and third indices, but
which vanish if symmetrized on the first three. Such ten-
sors transform under scalings such as the monomial
x,xbx, ydy, yI, and hence none of these 160 fields trans-
forms in the appropriate way so as to spoil the Oat direc-
tion. The remaining 16 elements of H'(End T) come from
H'(CP XCP, EndT»). These in turn come from
the eight elements in H'(CP, T*,) XH (CP, Tcp~) and
the eight elements in H (CP, T &) XH'(CP, T*

& ). It is

straightforward to see that none of these 16 fields trans-
forms in a manner which permits a dangerous coupling.
Having exhausted the possibilities we see that we can de-
form the (2,2) E6 compactification on Ko into an SO(10)
(2,0) compactification. Our real interest, of course, lies
not in constructing a (2,0) model on Ko but rather on E.
The fields Azz and +&7 were chosen so as to survive the
passage from Eo to K, but we must ensure that the new
fields associated with blowing up the singularities do not
spoil the flat direction. To accomplish this, we make use
of the R symmetries on K. In passing from Ko to K, the
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subgroup of the full discrete symmetry group D of Ko
which lies in the normalizer of 6 survives as the discrete
symmetry of K (Ref. 11). It is easy to see that the scaling
symmetries satisfy this criterion. (Of course, they are no
longer all independent on K.) It is now easy to see, using
Table III, that none of the new moduli associated with
blowing up the singularities in this construction spoil the
flat direction we have discussed above. [In checking this,
it is important to bear in mind that the complex structure
moduli transform like co times the corresponding (2, 1)
forms. j We are not quite done since one expects new
singlet mode contributions to H'(EndT) from blowing up
the tori as well. Determining the number of such modes
and their transformation properties seems to be a difficult
computation so we are unable to check if they can lift
the Aat directions. Thus, modulo this uncertainty in the
blow-up EndT modes, we can deform this example to a
three-generation SO(10) (2,0) model. In fact, we can go
further. There is another 27 field on Ko which trans-
forms in precisely the same way as Qzz, namely, the re-
striction to Ko of the other CP Kahler form. There is
also another 27 field with essentially the same properties
as 427, the 27 whose polynomial representative is
(x, +a xz+ax3)(y, +ay&+a y3). Following the same
line of reasoning, it is straightforward to see that these
two fields provide another exact Bat direction. Deform-
ing along this direction as well gives us a three-generation
SU(5) model.

Finally, we would like to brieAy mention some interest-
ing possibilities for introducing Wilson lines into
compactification on K. The fundamental group of K,
after resolving the toroidal singularities, is Z3 (Ref. 10)
associated with freely acting symmetry o, . We can use
O.

i to Aux break E6 to SU(3) in precisely the same way
we used g to Aux break in the case of R. Using the poly-
nomial representatives and the blow-up mode transfor-
mation properties, one sees that the resulting spectrum
consists of precisely that found on R: three generations
of leptons, quarks, and antiquarks plus additional genera-
tion and/or mirror generation pairs totaling six for the

leptons and four for the quarks and antiquarks. In con-
structing K, though, we made use of three Z3's; we can
equally well modify these symmetries to act nontrivially
on the gauge degrees of freedom. (As always we must en-
sure modular invariance via level matching —this is sim-
ple to check for the cases we consider. ) Although cer-
tainly consistent as conformal theories, the spectrum for
these Calabi-Yau orbifolds with Aux breaking is some-
what delicate to extract. If we try do so geometrically by
resolution, we not only have to blow up the manifold
singularities but also deal with a bundle (more precisely, a
sheaf) whose nontrivial holonomy is concentrated at
these singularities. Under the assumption that the non-
triviality of this bundle after resolution does not contrib-
ute any additional cohomology, we find some models
with phenomenologically attractive spectra. For an ex-
ample, if we embed oz as we did earlier for o

&
we find

that no mirror quarks survive, in contrast with previous
models. Potentially, this i.s a substantial improvement
over previous models which are burdened by an excess of
particular —mirror-particle pairs that must gain large
masses to avoid spoiling the low-energy phenomenology.
We emphasize that we have no rigorous justification for
our simplifying assumption about the cohomology of the
resolved bundle (nor any justification that such a resolu-
tion exists) and hence our conclusions regarding the re-
sulting spectra are tentative. The most appropriate
forum for extracting the spectrum. from these geometri-
cally subtle compactifications is in the exactly soluable
minimal model counterpart which exists for a close rela-
tive of the manifold considered here. ' It would be
interesting to resolve this question and work out the phe-
nomenology of these special points in three-generation
moduli space.
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