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An effective-Lagrangian approach is used to explore the effects of a strongly interacting longitudi-
nal gauge-boson sector within the framework of the triplet-Majoron model of Gelmini and Ron-
cadelli (GR). The leading one-loop effects in such a limit are obtained using a covariant derivative
expansion method to secure the manifestly invariant one-loop effective action. Comparison is made
with the minimal effects present in the strongly interacting limit of the standard model. Additional
effects including enhancements to the production of the charged scalars of the GR model are found
to be present. In particular it is found that the model's doubly charged scalar could be searched for
at a hadron collider capable of producing center-of-mass energies of order &s =40 TeV and an in-
tegrated luminosity of order 10 cm

I. INTRODUCTION

The introduction of the minimal Higgs sector and, in
particular, the scalar Higgs boson into the standard mod-
el provides the mechanism by which that model is made
renormalizable. ' However, the details of this sector
remain experimentally unverified. To study its impact on
the known lower-energy phenomenology it is possible to
use a nonrenormalizable effective model. The radiative
corrections to such a model then contain terms which, in
general, diverge according to the scale at which the new
interactions become important. Thus, these divergences
determine the generic manner in which the new physics
must enter the theory, whether that new physics be a sim-
ple heavy scalar as in the Higgs sector of the standard
model or other new matter, and gauge interactions as in
technicolor models.

One may then ask what happens if the Higgs sector is
altered so that the resulting theory is nonrenormalizable.
One method of performing this alteration is to allow the
minimal Higgs doublet to become strongly self-
interacting. That is, we allow the self-coupling constant
of the Higgs doublet to become large. After the usual
spontaneous symmetry breaking, this complex doublet
corresponds to a triplet of pseudoscalar Goldstone bosons
and a massive Higgs scalar. Thus in this limit the Gold-
stone particles, which, in conjunction with gauged
SU(2) XU(1) interactions, supply the longitudinal com-
ponents of the gauge bosons, become strongly interacting.
Additionally, the mass squared of the Higgs scalar, mII,
being linear in the coupling constant, also grows large
and ultimately begins to diverge. In this way m~ behaves
as a regulator for the theory. If the limit is formally tak-
en to infinity, then the Higgs scalar boson actually disap-
pears from the theory as an independent field, its mass
surviving merely as the scale at which new interactions
must become important. The theory then loses renormal-
izability and in fact be represented by a nonlinear o. rnod-
el.

Spurred by the fact that the Higgs scalar has not yet

been found, considerable attention has been given to iso-
lating the most easily visible signatures of a strongly in-
teracting longitudinal gauge-boson system within the
framework of the standard model. However, there is no
stricture which requires the use of the minimal Higgs sec-
tor for such a program. It is possible that more complex
Higgs structures could yield more readily observable re-
sults in these strongly interacting limits. The model of
Gelrnini and Roncadelli, constructed independently by
Georgi, Glashow, and Nussinov, is an extension of the
standard model which has an unusually rich Higgs-boson
structure. Here the Higgs sector is enlarged to include a
complex scalar triplet as well as the usual complex dou-
blet. The triplet transforms under the adjoint representa-
tion of SU(2)L and thus has invariant couplings to the
usual Higgs doublet as well as to the left-handed com-
ponents of fermions and leptons. We thus have a new
source for interactions involving the longitudinal gauge
bosons. It is the purpose of this paper to examine the
strongly interacting limit in the Gelmini and Roncadelli
(GR) model, extracting those effects which depend most
strongly on the scale mH and on those parameters unique
to the GR framework.

In Sec. II of this paper we brieAy review the effective
strongly interacting limit of the standard model and de-
velop general criteria for selecting the low-energy observ-
ables most sensitive to the effects. We then sketch the
calculation of the leading one-loof corrections to these
observables in the effective model using techniques
developed by Honerkamp based on the work of Coleman
and co-workers. In Sec. III we apply these methods to
the GR model comparing the results with those obtained
in Sec. II and additionally finding significant enhance-
ment to the production of charged scalar particles. In
particular, we find that these charged scalars could be
produced in pairs via gauge-boson fusion. Such processes
could be looked for at a hadron collider producing
center-of-mass energies of order v s =40 TeV and an in-
tegrated luminosity of order 10 cm . The reader al-
ready familiar with the formalism of Sec. II may proceed
directly to Sec. III without great loss of continuity.
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II. HEAVY-HIGGS-BOSON EFFECTS
IN THE STANDARD MODEL

$2+i/,
&2

D„ is the SU(2)L X U(1) „-covariant derivative

(2.2)

T e pD 4 = 8 —igA —= —ig'BP D P P. 2 P D (2.3)

with v representing the Pauli matrices. The standard Yu-
kawa coupling to fermions may be given in the con-
venient, form

o +i Q(I—+I 3r3)4~+H. c. ,
1—

Yuk 2 L

(2.4)

where, for instance, if 41 is an up-down quark pair then
the coupling constants are

I =I „+Id and I 3=I „—I d .

Finally, the potential may be written in the form
2

V( ND ) =A, 4& 4& —
—,
'

vD

(2.5)

(2.6)

where vD, analagous to the f of pion physics, is the di-
mensionful decay constant associated with the
vD =250 GeV.

The ungauged kinetic terms and the potential are in-
variant under the SU(2)L X SU(2) transformation

The Higgs sector of the standard model may be
represented by the Lagrangian

X =D "@tDD„C&D—V(@D )+Tv„k,
where @D is the usual Higgs doublet (the subscript D is a
mnemonic for doublet)

—
( v2 y2)l/2 (2.10)

We thus obtain a gauged nonlinear o. model, and the
theory is determined entirely by the Goldstone fields as-
sociated with the broken, or coset, generators of the cus-
todial symmetry. This effective model may then be used
to calculate the leading one-loop corrections in either
model for the strongly interacting (heavy-Higgs-boson)
limit. '

The identification (2.10) forces the Goldstone fields to
transform nonlinearly. Using the transformation law
(2.7) above we see that the variations of the fields may be
written in terms of Killing vectors A ' (P) as

where Oii =arctan(g'/g) is the Weinberg angle. We will
denote such relations as p, which are determined at the
tree level solely by the group structure of the theory, by
the term natural relations. To probe the theory's struc-
ture further in terms of natural relations it is necessary to
look at radiative corrections. These corrections must
come from terms which do not respect the custodial sym-
metry responsible for the tree value. Hence, to continue
our example, we could look for corrections to p from the
gauge and Yukawa interactions, neither of which share
the left-right symmetry of the rest of the Higgs sector.

We therefore have two main sources for observable sig-
natures in the large-A, limit. The first comes from correc-
tions to natural relations which grow with large I,; as
above the sources for these effects are those terms, princi-
pally the gauge and Yukawa interactions, which do not
share the larger symmetries of the rest of the Lagrangian.
The other principal source, rather obviously, comes from
enhancements to the scattering of longitudinal gauge bo-
sons, due to the fact that the self-coupling of those com-
ponents is becoming large.

To study these effects it is expedient to take the formal
limit A, ~ ~ at the outset. This constrains the fields to lie
identically at the minimum of the potential (2.6), and if
the limit is taken in such a way as to preserve the sym-
metries of the Lagrangian, we must have

—«~ ~/2o. +i— e+2i'll w/2o.+i P~e—
2

(2.7) 5p'=E'i, A,'(p)+E"„A/(p) =E A ' (p), (2.1 1)

1ML~= —(Q2 lg\ ), ZL =$3
2

(2.8)

become the longitudinal components of the vector gauge
bosons 8'„+—, Z„.

It is the custodial vector symmetry mentioned above
that ensures the proper value for the mass relation be-
tween the gauge bosons

where v/2 are the generators for the two SU(2) groups.
The asymmetrical minimum of the potential (2.6) induces
the spontaneous breaking of this extra symmetry to the
vector SU(2) subgroup, resulting in a Higgs scalar o with
mass squared m0=. 2A, v~ and three Nambu-Goldstone
fields associated with the three axial, or broken, SU(2)
generators. In the presence of the gauge interactions
these would-be Goldstone fields

where

(2.12)

gV(&)=~V+ 2V V 2 y2
(2.13)

& v &z +~1 d ~ ~ z I ~ Latin subscripts
near the beginning of the alphabet are used to denote
quantities pertaining to the vector subgroup to which the
theory is broken and letters near the middle of the alpha-
bet for those which pertain to the axial coset space under
which the whole theory is not invariant. Greek letters
are used for indices which run over all group values.

These nonlinear transformations are compensated for
in the kinetic terms of the Lagrangian by the presence of
a function

2mw
2 2mzcos I9

(2.9) which operates as a covariant metric defining a curved-
space manifold in terms of the fields P. This function
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may be given in terms of the Killing vectors as the in-
verse of the contravariant metric

m pAJp= AJ, etc. , (2.22)

g'(p)=, &' (p)&'(p)1

UD

which satisfies the defining equation

g
lj P k

g
lk P J g Jk g i P

(2.14)

(2.15)

a„O' a,O"=
V yak P

and similarly for the covariant metric

goal yak
I

(2.16)

(2.17)

The most general Lagrangian invariant under these trans-
formations with at most two space-time derivatives may
therefore be written in the form

,'a~y'g, ,a-„yj U~(x, y—)a„yj+ u (x,y), (2.18)

where we have explicitly allowed for external vector and
scalar sources, U"(x, P) and u(x, P), respectively. By
comparison with (2.1) we see that these sources are

vg(x;P)=gk A j V",
u ( x;P ) = ,' V"m

j3 Vj3„+—Xv„„,
where

(2.19)

A comma is used to denote differentiation by the fields

g k =Bg/Bp". The fact that the Goldstone fields may be
taken as the coordinates for the coset manifold is due to
Coleman, Wess, and Zumino. Essentially this allows the
group transformations (2.11) to be represented as general
coordinate transformations P'~P"(P). Under these
reparametrizations the variations of the coordinates must
transform as contravariant vectors. In particular

which invariantly couples the Goldstone-boson currents
to the vector-boson fields on the coset manifold. The for-
malism used above is reviewed in Ref. 11, and the in-
terested reader is directed there for further details.

Since our group invariance has now taken the form of
a generalized coordinate reparametrization invariance,
the one-loop radiative corrections to the Lagrangian
above may be compactly calculated in manifestly invari-
ant form simply by applying normal coordinate methods
to the perturbative expansion and evaluation of the
effective action I [y]. We obtain this from the
background-field (y') generating functional

Z[q]:e'" ~ —= f [dP];„„exp i J d4x X(y+ )

(2.23)

The integration above is performed over the quantum
fiuctuations ~', P'=p'+rr', of the Goldstone fields in a
manifestly group-invariant manner, and [dP];„„is an ap-
propriately chosen invariant volume element for the coset
manifold. '

We develop the perturbative expansion using the
methods of Honerkamp, as related by Boulware and
Brown. " Here the action is expanded about its station-
ary point, defined in terms of the classical background
field y', the solution to the Euler-Lagrange equations ap-
plied to the Lagrangian (2.18). The quantum fiuctuations
from the classical field values are parametrized by an
affine parameter A, , defining a path on the coset manifold
such that p'(x;A, )~k o=y'(x) and p'(x;A, )~k, =p'(x).
The expansion to one loop may then be accomplished by
expanding the effective Lagrangian in (2.23) along the
Auctuation curves, keeping the first nonzero correction to
the classical value: i.e.,

2 2 sin8ii,

Qo

&(y)=&(q)+ y, X(y(x;A, ))

2 " 2&2 sinO
I

2 3" 2
—Ai„+ 8„=——e( A„+cot20ii,ZO ),

2 2 sing ii,

(2.20)

1 d=&(q )+—,X(P(x;I, ) )
o

(2.24)

To simplify the form of the expansion and to present it in
manifestly coordinate invariant form we may choose the
fiuctuation curves P'(x; A, ) to be the geodesics of the man-
ifolds given by

2&2 sine~

2 2 sin2O~
—A3„— B„:— . Z„.

The function

d P'; dP" dP'

where I kI is the affine connection

(2.25)

1
Ap Q Al j p

UD

(2.21)

plays the geometrical role of a projector onto the coset
space

~kl zg (gljk+gjk, l ,gkl j ) (2.26)

The derivatives d/dA, in the expansion (2.24) may then,
since the Lagrangian is a scalar, be replaced with covari-
ant derivatives Xk along the geodesic
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+ I kicT U
dU j k (2.27)

k D k k I
p p )(I; I

(2.30)

for v~ a contravariant vector, and so forth. We have
defined o "=d p "/d A,

~ k 0. These covariant derivatives
may, in turn, be replaced by covariant space-time deriva-
tives D„since

Ukl=uk I
—UP kup l

—Rkl..ape ave"

,'a—„V—™(U. , k+U& k , ). .

,'R—„—, „(a„q U""+a„@"U"

A semicolon is used to represent covariant differentiation
by the fields:

D,a„y"=a„~k+rk, ~'a„y/=D„~k . (2.28) u. k=u k for u a scalar function of y,
(2.31)

We note that o. transforms contravariantly under the
field redefinitions (2.11). The result of the expansion
above may then, after a little algebra, be written in the
manifestly invariant form

U~. k=vjk —I ~&V for U a covariant function of y,
and so on, and we have defined the curvature tensor

k
+plmn gpk lmn

X(p) =J-(y)+ 2
V"o"gki(y. )V„o''+ ,'oUk, —(q. )a'

+higher-order terms .

We have defined

(2.29)

k k k k j k j+l'mn = ~In, m ~1m, n +~j ~ln ~jn ~1m (2.32)

Also, since, together with the classical field cp, the initial
tangent o' uniquely determines the curve on which the
quantum fluctuations are parametrized, we may choose
this tangent field as the variable of integration in the gen-
erating functional. Thus, to one loop, we may write

Z[y]=exp i f d "x X(y) f [der];„„exp i f d x[ ,'Vi'0 "gk&V„cr'—+,'o"Uki(q—&)o.'')

=e~r' '~~~Det 1/2[(V2 U)l ] (2.33)

where the subscripts and superscripts are included in the
last line to indicate that the determinant is of the mixed
tensor covariant in the first index and contravariant in
the second, and I' '(y)= fd XX(y) is the tree-level

effective action. The one-loop effective action I'"(&p) is
accordingly given by

ir'"(y)=lnDet ' [(V —U)']

=l d x (2.34)

I
32& p

+finite terms . (2.35)

The determinant in this expression is, of course, infinite
and must be regulated using, as per the Introduction, IH
as the regulator. The leading relevant effects, i.e., those
which diverge with large mII, must then be extracted and
evaluated. All this may be done using Schwinger's
proper-time techniques. ' However, the details of the
calculation are not material to the construction of the
theory here. Therefore, we merely present the results of
the calculation, referring the interested reader to the
literature. "'

Hence, we identify the one-loop effective Lagrangian in
the action (2.34) as

4 2

~(1)(~) H gk+ Uk
64~ 32~

iR "t „'d"y—r)'p"+i (V"v . i
—V'"v"'. k) .

(2.36)

The quartically divergent term merely counts the coset
fields. The quadratically divergent term, using the
definition (2.30), can be seen to be

2

, , [4&(V» —&v.k(V»]
327T UD

(2.37)

and thus amounts to a rescaling of uD and the Yukawa
couplings. Under suitable normalization conditions these
terms may therefore be taken to vanish. The physically
observable effects, in accordance with Veltman's screen-
ing theorem, ' are to be found in the remaining logarith-
mically divergent term. Although the full form of that
term is rather cumbersome, it is a straightforward matter
to isolate the relevarit terms. To extract the mass terms,
we may set the Goldstone fields to zero. Thus we note
that in this model there is no contribution to the relation
p = 1 arising from the quantum fluctuations of the Cxold-
stone fields. For the contributions to interactions involv-
ing longitudinal gauge bosons, the calculations can be
simplified by use of the equivalence theorem of Ref. 16,

The renormalization-group parameter p is chosen to be
the mass mz of the vector bosons, and I"

&
is a non-

Abelian field-strength tensor defined as

FPvk [VP, Vv]k
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+6(i3"q'g;~B„g )Xv„
—3Ã2v„„j + (2.38)

The Yukawa terms are included primarily to dismiss
them. The smallness of the traditional Yukawa coupling
as well as the additional powers of the decay constant in
the denominators of each term effectively suppress any
potentially visible effects, thus yielding no effectual con-
straint on either m~ or the Yukawa couplings. The other
terms contribute solely to the scattering of longitudinal
gauge bosons —a negligible process in the standard mod-
el with a light-Higss-boson mass. Here, however, they
can have significant effects. These terms have been evalu-
ated by Gaillard and by Cheyette, ' who found the invari-
ant amplitudes (tree plus one loop) to be

which states that, letting &s be the center-of-mass ener-

gy for a given process involving longitudinal gauge bo-
sons, the S-matrix element for that process is equivalent
to leading order in m~/s to the same process with the
longitudinal gauge boson replaced by the corresponding
Goldstone boson; wL

— or zL. Thus, in the limit
V's =mH ))m~, the error involved in performing calcu-
lations using the Goldstone fields as interpolating fields
for the full longitudinal components becomes negligible.
The leading terms at these energies are those enhanced by
the extra powers of momenta associated with the Gold-
stone fields in our expression (2.35). Isolating these we
obtain

1 mw2
ln [

—[2(K'iiv'g; B„ip') +(8"y'g, 8 qr') ]

sector, if fairly limited in variety. It is possible that other
models of electroweak interactions offer a wider diversity
of possible signatures. Further, if the longitudinal gauge
bosons do prove to be strongly interacting, these signa-
tures could provide valuable constraints on the alternate
models.

Thus we consider the model of Gelmini and Roncadel-
li, ' which provides an unusual richness of new interac-
tions involving the longitudinal bosons considered above.
Here the standard model is extended solely in the Higgs
sector by the inclusion of a complex, weak hypercharge-1
triplet @z transforming under the adjoint representation
of SU(2)L. This transformation may be put in a con-
venient form by defining the matrix

At=r e,, TrAt'At=2~m, ~'

so that under an SU(2)L transformation

iEL r/2~ —iat v/2

(3.1)

(3.2)

The triplet may therefore have an invariant Yukawa cou-
pling of the form

Xc,v„k= ,'I tL—(%—)LAt+L+H. c. , (3.3)

(OiTrAttAtiO) =vz . (3.4)

where, for example, +L = ( vL, eL ). The assignation of
lepton number —2 to the triplet allows small Majorana
masses to be formed for the neutrinos through the spon-
taneous breakdown of the lepton-number symmetry
U(1)i, , Under this process the triplet develops a
nonzero vacuum expectation value

+ +A(WL WL ~WL WL )
UD

+ ln (s+t+u ),
24K VD Pl ~

2

A(wL+wt ~ztzL )= s+
~

ln (s +t +u ),
UD 4877 VD m

The decay constant Uz, by the evolution of stellar objects,
is constrained to be not more than approximately 10 keV
(Refs. 18 and 19). The ratio v =vz /vD 5 10 therefore
becomes a measure of smallness in the theory.

Since the triplet obeys the usual Gell-Mann —Nishijirna
formula we may. write A, in terms of its charge eigen-
states as

2

A(zLzL~zL, zt )=0+
2 4

ln (s +t +u ) .
mH

16% UD mp

(2.39) 1 +

At =&2
1

2

(3.5)

In the first amplitude we have taken u to be the square of
the difference between incoming wL and outgoing wL
and t to be the square of the difference between incoming
and outgoing wL+. For mtt and &s in the TeV realm, the
corrections become comparable in size with the tree
values. Of special note is the amplitude for longitudinal
Z scattering which is negligible at tree values, but of the
same size as the other channels at one loop.

III. HEAVY-HIGGS-BOSON EFFECTS
IN THE GR MODEL

The reactions described in the previous section provide
unambiguous signals for a strongly interacting wL, zL

VZ-+ O y-+ l 4 3
(3.6)

The same groups are gauged in the kinetic terms as in the
standard model. Hence the additional breaking of the
U(1)&, , symmetry gives rise to a true Goldstone boson,
the Majoron y (essentially 43).

There are also allowed couplings involving only the
two Higgs multiplets. The most general potential invari-
ant under SU(2)L X U(1) r XU(1)„,is of the form

The Gelmini and Roncadelli (GR) model therefore corre-
sponds to the addition of new charged scalar fields into
the theory. Under the symmetry breaking above
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V(4D, 4T) =AD( ,'T—rAt At)+A i(4D@D—
—,'uD ) +A2( —,'TrAt At) +X3( ~4D ~

( ,'T—rAt At —
—,'vT))

+A4(~ND
~

TrAttAt N—z~, AtAtt@D)+A&((TrAttAt) —TrAttAtAttAt) . (3.7)

There is a minimization condition relating three of the
new parameters

Xo+ kpu7 +
p

A 3UD 0 (3.8)

The Lagrangian for this Higgs sector may then be writ-
ten as

X =D"O'TD„C'T+D "C&DD„C'D+Xv„k+X~Y„„

—V(42, , @T) . (3.9)

mii =
—,'g (uD+2vT) and mz= —,'(g +g' )(ud+4ur),

A traditional one-loop renormalization-group analysis of
this sector shows that the GR model may be "trivial" in
the same sense that A,P theory is trivial; ' that is, the
only values of the potential's coupling constants for
which the theory is consistent to all energies are the trivi-
al ones, A, ; =0. In practice, this is evidenced by the fact
that the ratio of the quartic coupling constants to the
U(1) gauge coupling does not tend to a finite value in the
ultraviolet limit or, equivalently, to a Axed point of the
renormalization-group equations.

Hence, an interacting GR model would tend to en-
counter a number of renormalization problems, such as
trapping, in which, as one of the coupling constants A, ;
begins to grow large at some scale, feedback in the
renormalization-group equations causes all the other cou-
pling constants to grow large at the same scale. That is,
as one term of the Lagrangian becomes strongly interact-
ing at some scale, all the other terms would also become
strongly interacting at the same scale. These problems
may be simply circumvented by viewing the theory as an
effective low-energy theory, valid only up to some cutoff
scale where new physics enters to modify the theory. The
problems of triviality may then be avoided provided the
ratio A,;/g' for i =1,2, . . . , 5 is well behaved over the re-
gion of the theory's applicability. Such a renormaliza-
tion procedure has been applied to the GR model, allow-
ing a maximum value of 6~ for any quartic coupling con-
stant in the region of the model s applicability, and re-
sulting in large regions of allowed coupling constants. "

We are thus led to an effective Lagrangian viewpoint.
One may also ask what has become of the SU(2)I
X SU(2)~ symmetry which protected the natural relation
p=1 in the standard model. It is violated by both the
doublet and triplet gauge terms and by the Yukawa in-
teractions, but the scale to which this violation is impor-
tant is set either by uT or by the Yukawa coupling. For
example, the violation is already evident at the tree level,
for the masses of the gauge bosons are given by

even at the tree level. But, as noted, because of the
stringent astrophysical constraints on uT, there is no con-
tradiction with the experimental value. More
significantly, however, the k4 term in the potential direct-
ly violated this symmetry. In the strongly interacting
limit we may therefore look for corrections both to natu-
ral relations and to the various interactions of the longi-
tudinal gauge bosons arising from the term

V2
—=~~(INDI'TrAt"At —4DAtAt @D) . (3.12)

As in Sec. II we study the strongly interacting mL
—and

zL limit by taking the formal limit A. ,~ ~ at the outset.
This forces the nonlinear constraint

P+ 1
02+ ' 0'i

D yo = ~ (
2 y)1/2 (3.13)

and the potential becomes

V(@D,@T) = (Ao+ —,'A, ,uD )( —,'TrAt tAt )+A2( —,'TrAt tAt )2

2

+A,4 TrAt At NtDAt —JMt@D,

+A&(( Tr A, tAt) TrAtt—AtAttAt) . (3.14)

(@+—&2ug+)=&0++0(u), (3.15)+1+2u

m =
—,'A4(uD+2uT) .

The fact that y+ has not been observed at DESY
PETRA implies m + & 21 GeV, while, for new physicsx
entering the theory at the TeV level, the cutoff-dependent
renormalization procedure discussed above leads to the
constraint m ~ (730 GeV (Ref. 24). More specific upper
limits are in general dependent on the exact manner in
which the new physics enters the theory. The bounds for
m ++ follow from the relation m ++ =&2m +. Thex" . x. . .x.
Higgs scalar associated with the triplet in this limit is 0 T
with mass squared m =2k,zuT. The minimization cri-

teria (3.8) has been used throughout. The massless Czold-
stone boson associated with the spontaneous breakdown
of the U(1)„,symmetry is the Majoron

The triplet breaking proceeds in the normal manner.
At the tree level the mass eigenstates and masses in this

limit are given as follows: For the new scalars,

y++=C++, m' =X u'+X u'

(3.10) x
1

(@3+2up3)=+3+0(u)
V'1+4u'

(3.16)

and thus

p= 1 —2u Wl (3.1 1)
and the fields associated with the longitudinal compon-
ents of the gauge bosons are
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wl+ = (P++&2vC&+)
&1+2v'

=/++0(v) = —($2+i/, )+O(v),1

(p3 —2v&i)=$3+0(v) .1

1+4v

(3.17)

The logarithmic terms, as before, contain the new
physics. Also, as before, it is a straightfoward matter to
extract the terms which give the leading corrections. Iso-
lating the coeScients of W+ W "and Z"Z we seep P

2

Am w
— ln g X4UT

1 w

64m mH
Thus, to order U, we may disregard the mixings between
the multiplets in our calculations.

The one-loop corrections to our effective model may be
obtained from Eq. (2.35) by fitting the relevant terms in
our Lagrangian to the general model (2.18):

and

2
2 1 mw

hmz= ln (g +g' )X~vT
32K mH

(3.22)

u(x;P)= —,
' V"m pVii„+Xv„k —Vi (3.18)

The expressions for v". (x,P), g;, and the other quantities
in Sec. II remain unchanged. Using the fact that

At, . = —
g,,JM, (3.19)

it is straightforward to show that the quadratic and loga-
rithmic divergences in the one-loop effective Lagrangian
are

2

32~ UD D, kinetic

—8 Vi +4k,~( —,'TrA1. tA )]

2

32K mH

+finite terms . (3.20)

Again the quadratic term is merely a rescaling of the pa-
rameters in the low-energy effective model. In particular
the decay constant UD, the Yukawa couplings I and I 3,
and the two parameters A, 4 and A, 3 each undergo renor-
malizations of the form („„=Z&gb„„where

Z =1-
UD

2
mH

) Z Z 1
2 2'

2
mH

327T VD

2
mH

ZA. —1— Z~ =1+
4 8+vD

(3.21)
A4mH m H

4k3~ UD 8~ VD
22+ 22 .

,a~y-'g„a„y~;~(x, y)a„y~+ u(x, y) .

The only new term which contributes to the loop in the
longitudinal Goldstone fields is the term mentioned
above: V& . Therefore, to follow the procedures of the

4

previous section, our identification for u(x;P) must be
changed to

andt us

A4U m w
2 2

p = 1 —2U — 'ln
16~ m

(3.23)

Therefore V& does lead to a correction to the relation
4

p=1. Because of the smallness of the ratio U=UT/UD,
this does not lead to further constraint on the parameter
A,~ (and thus on the masses of the new charged scalars).
Of course, the terms finite in the large-mH limit also give
corrections to p. These terms have been calculated in the
weakly interacting, light-Higgs-boson model with the
leading result

g2 m~+p=1+
8~2 mw

2

(1—ln2) (3.24)

which leads to the limit mx+ (400 GeV (Ref. 25). How-
ever, the finite terms resulting from our effective theory
are not generic in nature, depending in general on the ex-
act manner in which the new physics enters the theory.
For our purposes then, the limit m&+ &730 GeV will be
more applicable.

The logarithmically divergent terms (2.38) which led to
the amplitudes (2.39) are present in this model, also, and
lead to the same enhancements. (The model in Sec. II is,
after all, a minimal model for the strongly interacting
longitudinal gauge-boson sector. )

Lastly, we may isolate the leading contributions in the
limit &s =mH ))mii to interactions involving the longi-
tudinal gauge bosons and the new charged scalars. Logi-
cally, these should be those terms in (3.20) which arise
from the inclusion of Vz in u(x;P) and which are also

enhanced by the presence of extra powers of momenta.
Presented in terms of the charge eigenstates these terms
can be seen to be

2

ln . 4(B"w+B„w +B"z B„z )N++ 4&++ —2(+w+B„w +8"z B„z )[cr +(4& ) ]
327T UD m w

O T+i+3
2ia&u+a z e+~ —e++~C+ +H. c.L p L v'2

-+ (3.25)
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and correspond to the production of charged scalars by
the longitudinal gauge bosons. The relevant tree-level
terms are

—2wi w 4++t4 ++ +
[ ~ +(&5 )2]

+ ++4 @++)++
o.T+E+3

LML zl v'2

neutral scalar 4T, introducing a factor of &2 into the ap-
propriate amplitude for each exchange. Of special note
are the amplitudes for the reactions zL zL ~y y+ and
wL+mL —+g g+ which, in this limit, are of order zero
both at tree and one-loop levels. By way of comparison
we note, for example, that at the tree level in the weakly
interacting GR model with a Higgs-doublet mass
IH ((1 TeV, the amplitudes in the large center-of-mass
energy limit arising from the k& and k4 terms in the po-
tential are

+H. c. + (3.26)

The appropriate amplitudes, tree plus one loop, are there-
fore

2k4 S IH
A(zl zi ~y y )=0+ ln

8n U m

A (zl zc ~y y+ ) = —
—,
' k4,

A(wi wL ~g g )= A,g,

A(zLzc ~y y++) = —X, ,

A(w~+w, y y++) =0 .

(3.29)

Pl
A, (wI+wL ~y y++)=2k, ~+ ln

16m UD mw
2

+ A4 S mHA ( wl wL ~o Tcr T ) = —A,4
— ln

16& UD Pl w

=A ( WL+ WL ~gg )

4 S mH
2

A (zL zL ~cr Tcr T ) =0—
2

ln
UD mw

(3.27)

and so forth. Hence, the strongly interacting limit corre-
sponds to a relative enhancement of a source of the dou-
bly charged scalars over that of the singly charged sca-
lars.

One of the most promising means for realizing these
reactions' is boson-boson fusion occurring via double
bremsstrahlung in pp collisions. For example, the ampli-
tude for the process wL+wI ~y g++ [Eq. (3.27)] may
be used to approximate the eft'ective cross section as

ff(wL wL g J )

A(z, z, n)
2

+ ++ ~4l s mH
A(wL zI ~y y )= —2iA~+ ln

16' UD Pl w

A(wl ZL~+ g )

&2A(wc+zan—~cr Ty+ )

i V 2A(wI—+zL ~yy+ ),
and so on. Here, as before, &s represents the center-of-
mass energy for the process, and, in reminder, we neglect
all corrections to the tree terms of order less than loga-
rithmic. Had the entire derivative expansion been
summed, we would have found that the normalization
parameter in the logarithms is more appropriately given
according to the replacement

lnm~ —+inc) =ln( —s) =im+lns . (3.28)

The imaginary portion determines the absorptive part of
the amplitude for any of the processes considered above,
and, in general, will add to the cross section for a given
process at a rate approximately on the order of the other
one-loop contributions. We will generally disregard this
factor in obtaining numerical estimates, and so our esti-
mates may be regarded as conservative in this regard.

At momenta such that &s =m~ &)m~ the reactions
in Eq. (3.27) could provide clear signals for the produc-
tion of the charged scalars in the Gelmini and Roncadelli
(CrR) model, and therefore, constraints on the masses of
y++ and y+. At these energy levels the U(1)~, , symme-
try would be restored. Those processes involving y or O. T
would therefore be replaced by processes involving the

~2Ip'I s
1

2ma+'
Ipl 2 ~'ud s 64~ u s

1 dL
7

4ls d ~
pp /w

(3.30)

dL
7

d7
pp/w w 5.2X10 for Qs =40 TeV,

(3.31)

which will justify the requirement +spaz =40 TeV. A
similar calculation for a diboson mass of 1 TeVjc has also
been presented' with the result

=4.5 X1O-'
d~ pp/w+w

(3.32)

where p and p' are the center-of-mass three-momenta of
the initial and final particles, respectively, and (s)'~2 is
the center-of-mass energy of the diboson system. The
factor r dL jdr represents the effective luminosity of the
gauge-boson pair in the hadron system. Here ~ is the ra-
tio of the square of the diboson mass, m zz = (s )', to the
pp center-of-mass energy squared.

For numerical estimates, we will assume Qs =40
TeV and rnH=3 TeV/c. We also take m&&=2 TeV/c
and m ~v = 1 TeVjc as representative values for the dibo-
son mass. The momentum ratio is approximated by uni-
ty. The eA'ective luminosity of the gauge-boson pair has
been calculated for m ~~ =2 TeV/c by Rosenfeld and Ros-
ner with the result

3.3X10 7 for Qs =17 TeV,
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TABLE I. Cross sections and estimated yields to reconstruc-
tible leptonic final states for the reaction wL+wL ~y y + at
various values of m ++ and (s)' . Estimates assume a pp col-

lider with (spp) =40 TeV and an integrated luminosity of 10
cm

m ++ (s)' ~en'

(GeV/c) (TeV) (10 cm )

Decay

products

Detectable
yields

l=e,p/l =p
1000

500

250

150

9.4
300

0.59
18

l —l +—+X
l+ I+ I l +X

l*l—++X
t+-l-++X

l+l+l- l-+X
l+l —+X
l —+l —+X

18/2. 1

0.6

1.1/0. 1

36/4. 1

1.2

2.2/0. 26

+++ $+$+ ++ (+—

or weak

~++ ~+ pr+ ~+ C 0~+

(3.33)

(3.34)

These decays have been discussed for various values of
the scalar masses in Refs. 4 and 29. The partial y++ de-
cay widths in the large-m ++ limit are

x

1

64m x
(3.35)

for leptonic decay (3.33) and, to leading order in the y++
mass, approximately

2

g m
4m

(3.36)

for the weak decay (3.34). A generically allowed value of
the Yukawa coupling I

&I may be given by

~1 1(~ =2 7X10 (3.37)

Thus we see that at large values of the scalar mass m ++,

The results for the cross section are summarized in the
first three columns of Table I. For m ++ =1.0 TeV/c,

x
corresponding to the maximum mass allowed by the
renormalization-group limit, we find an approximate
cross section of 1.5X10 cm . This would correspond
to a yield of about 150 events at a hadron collider of in-
tegrated luminosity of order 10 cm, such as could be
achieved by a collider of luminosity 10 cm s ' operat-
ing for one year. For m ++ =500 GeV/c, a value near

x
the limit allowed by the finite one-loop correction to p,
we find a total cross section of 9.4X10 cm for a 2-
TeV/c diboson mass and 3.0X10 cm for a diboson
mass of 1 TeV/c. Even at masses as low as 250 GeV/c
the cross section can obtain comparable values. Similar
results hold for the processes yielding pairs consisting of
one doubly and one singly charged scalar.

Detection of these events would proceed via their prin-
cipal decay products, which may be leptonic

the decays would be principally via the weak current.
We would therefore expect the decay products from the
pair production process considered above to be of the
form 8'+8'+8 W 4 N . These events would be fair-
ly spherical and involve end products of four quark or
lepton pairs. The two light 4 would be essentially unob-
servable, and thus the events would have well over 20%%uo

missing energy.
The cleanest signals would involve primary decays of

the 8'— into leptons, which we will assume could be
reconstructed with an efticiency of approximately one. In
particular we focus on the detection of four leptons and
of same-charge lepton pairs, events which have no
quark-antiquark background. We consider only direct
decays of the 8'—into leptons. With these assumptions,
an observability factor may be computed as the product
of the relevant branching functions for the 8 —+ decay.
For example, the observability factor for a four-lepton
event would simply be [8(W —+ev„pv„)) . A more exact
factor would include the effects of cuts in the rapidity.
However, because of the structure of the events, we
would not expect appropriate rapidity cuts to
significantly alter these factors. Further, the contribution
of the absorptive terms serves to offset any reductions in
expected yields. Additionally, since detection of electron
charge would require special effort while that of muon
charge would probably not, we have separately included
estimations for decays to same-charge dimuon events
(O' —W —~@~vs—v; W+ W+ —+anything).

The yields of reconstructable events for the reaction
wL+wL ~y+ y may then be estimated using these
observability factors. The results, assuming an integrated
luminosity of 10 cm, are presented in the final two
columns of Table I. We see that, for both m ++ =1.0
TeV/c and m ++ =50 TeV/c, even the more spectacular
four-lepton events can begin to become visible at in-
tegrated luminosities on the order of a few times 10
cm . In addition, those processes producing one doubly
and one singly charged scalar contribute further to the
expected yields of dimuon events. We would also expect
such reactions to produce detectable yields of trimuon
events at rates of the same order as those predicted in
Table I for the other leptonic processes.

Detection of hadronic decays of the 8'+— is a more
nebulous affair. However, even here a certain number of
events might be reconstructed. For jet-jet decays of the
vector bosons where at least one of the jets comes from a
heavy quark (c,b, t), the strong production background is
of the same magnitude as that produced via the weak pro-
cesses. Appropriate jets are distinguished by the pres-
ence of a muon in the jet. Further, an IsAJET study ' has
shown that hadronic decays can be distinguished from
the strong background at a signaI/noise ratio of 1:1 with
efticiency 0.2. This, coupled with the unusual structure
of the events, could allow detection of a percentage of the
hadronic decays also.

We therefore conclude that, in a strongly interacting
longitudinal gauge system, the doubly charged boson
could begin to be looked for at the next generation of col-
liders. If the charged scalars were relatively light, then
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they could hopefully be produced via the dominant
mechanisms in the weakly interacting system, primarily
e+e annihilation and gauge-boson decay. However,
the absence of trimuon events at CERN argues against
scalar masses that are appreciably lighter than the
gauge-boson masses.

Additional reactions characteristic of a strongly in-
teracting sector, such as the multiple productions of pairs
of longitudinal 8'—and Z in each of the processes de-
scribed above are also possible at the energies we have
been considering. However, these signatures are con-
siderably weaker than those of the other events described
above, being damped by additional powers of va. The
presence of the second scale UT additionally serves to
damp the observable effects that the presence of the
Higgs triplet may generate, both at tree and loop levels.
This was rejected not only in our expression for p, but
also in the fact that we were able to neglect the Inixings
between the multiplets, allowing a model with strong
self-interactions only at the higher scale to be represented
by a nonlinear o. model essentially as in the case of a sin-

gle Higgs doublet.
One could also ask what happens if the triplet becomes

strongly interacting at the second scale UT, which would
correspond to the limit A,2~ oo in the potential (3.7). As
in the doublet case, this forces the nonlinear constraint

—
(U

2 @2)1/2 (3.38)

where @ represents the five remaining real component
fields. A simple scaling by the factor u=UT/UD shows
that this would provide an effective theory valid only up
to an energy of approximately 130—260 MeV, represent-
ed by the mass m . At this scale, the effective model

T

would then predict enhancements to the scattering of the
triplet scalars, including the Majoron. However, produc-
tion and detection of such interactions at these levels
would seem improbable at best. Interestingly, though,
the model does predict a correction to p which is consid-
erably larger. We find

7k4 pT
Ap = — ln

16m m
C7 T

(3.39)

m + (51 GeV, I ++ (72 GeV
x

(3.40)

which, together with the lower bounds discussed earlier,
would allow a fairly narrow mass range for the scalars.

We choose the normalization parameter pT to be the
mass of the singly charged scalar, m +. Requiring that

x
the value of p agrees to within one standard deviation of
the experimental value gives
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