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We study systematically the dependence of the neutralino mass eigenvalues and eigenstates on the
parameters of the mixing matrix. Starting from analytical solutions for special values of the param-
eters we work out various practical approximation formulas for the masses. We examine their ap-
plicability in the different regions of parameters accessible with the next generation of accelerators.

I. INTRODUCTION

In the minimal supersymmetric extension' of the elec-
troweak standard model there are four neutral gauge and
Higgs fermions y, Z, H &, H2, the supersymmetric
partners of the photon, Z boson, and the neutral
members of the two Higgs doublets, respectively. Their
mass eigenstates are the four neutralinos y;, i = 1, . . . , 4,
whose properties are determined by the 4 X4 neutral
gaugino-Higgsino mixing matrix. '

Without further restrictions this matrix depends on
four parameters M, M', p, and tan8„—:v

&
/v 2. M and M'

are the SU(2) and U(1) gauge fermion masses, respective-
ly; p is the Higgsino mass parameter, and v& and v2 are
the vacuum expectation values of the two Higgs doublets
with U(1) hypercharge —

—,
' and + —,'„respectively. (No-

tice that in the literature also tanP—:vz/v, is used, i.e.,
tang=cot8„. ) These parameters determine the phenom-

enology (i.e., masses, couplings) of the neutralinos, ~ 6 in
particular the nature of the lightest one, usually assumed
to be the lightest supersymmetric particle.

In this paper we study systematically the dependence
of the neutralino mass eigenvalues and eigenstates on the
mixing parameters. In view of the experiments to be per-
formed at the Fermilab Tevatron, KEK TRISTAN,
SLAC Linear Collider (SLC), CERN LEP, and DESY
HERA we work out all cases where neutralinos with
masses accessible in this energy range could be produced.
We draw attention to the fact that in addition to the
scenarios most frequently studied, those with a light pho-
tino or with a light Higgsino, there are also other possi-
bilities for light neutralinos.

Starting from simple analytical solutions of the eigen-
value problem we systematically give practical approxi-
mation formulas for the masses and states over the whole
parameter space relevant for the energy range of ac-
celerators of the next generation. Some of the formulas
derived here can already be found in the literature,
which are, however, only applicable for the light-photino
scenario with v&/v2=1 or the case of large M, M',
and/or p. They are naturally included in our systemat-

II. THE NEUTRALINO MASS MATRIX

As basis of the neutral gaugino-Higgsino system we

conveniently take

g =(

iver,

—iA,„Q—H, PH), j=1, . . . , 4

with the Higgsino states

H
=gH &sin8, PH~cos8, , —

gH =PH, cos8, +PH~sin8, .

(la)

A, r, A,„PH„and QH2 are the two-component spinors of
the photino, Z-ino, and the two neutral Higgsinos H

&
and0

H2, respectively. The mass term in the Lagrangian has
the form

I.M 2mzf, Y,"Q +H.c.

with the mass matrix

ics. It is the purpose of the experiments searching for su-
persymmetric particles to either fix these parameters or
exclude certain regions of parameter space. Since four
parameters are involved here this will in reality be a corn-
plex procedure. In the analysis of experimental data our
considerations will help to indicate the domain where a
systematic variation of parameters is meaningful. More-
over, the approximation formulas presented here show
very clearly the physical properties of the neutralinos for
all interesting cases and thus provide an easy understand-
ing of the physics involved.

After describing in Sec. II the notation and conven-
tions used we present in Sec. III all those cases where an
analytic solution can easily be obtained. Section IV con-
tains a systematic discussion of the general dependence of
the neutralino mass eigenvalues on the parameters. In
Sec. V we give four sets of approximation formulas for
neutralino masses covering in this way all cases relevant
for the energy range of the Tevatron, TRISTAN, SLC,
LEP, and HERA. The range of validity of the approxi-
mations is discussed in Sec. VI.
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A(sin 011 +acos 011 ) (1—a)A, sin01vcos011.

(1—a)i(, sin011,cos011, A(cos 011,+a sin 011,)

0 0

0 v sin20„v cos28„

v cos20, —v sin20,

mz is the mass of the Z boson and 6~ is the Weinberg
angle. We have introduced

mz

M'
, v ——", n ——

mz' (4)

O„M, M', and p as defined in the Introduction are the
parameters of the model. For convenience, in Eq. (2) we
have taken out a factor mz to deal with dimensionless pa-
rameters.

Neglecting CP violation, F is a real symmetric matrix
which can be diagonalized by a unitary 4 X 4 matrix X:

(1 —a)A, sin011,cos011 (g; —v )

[g; —A(sin 0~+a cos 011 )](g; —v )

[g, —
A,(sin 011 +acos 011 )](g;+vsin20, )

[g, —A(sin 0~+a cos 011,)]vcos20„

in the basis Eq. (1). The normalization factor is

N, = [(g, —v ) [sin 011 (g; —A, ) +cos 0~(g; —aA, )

+(g, —X) (g; —aX) ]

+[/; —A(sin 0~+acos 011 )] (vcos20„) I'

(9)

(9a)

with

im kn ~mn ki ~ik

7?Z .

l
mz

The cases o.= 1 and sin28, = 1 have to be handled with
care. We shall discuss them separately in the next sec-
tion. The neutralino components given in Eq. (9) are the
elements X; of the transformation matrix which diago-
nalizes the mass matrix K They determine the couplings
to the other particles.

m; being the mass eigenvalue of the neutralino state

We shall take X,- real and orthogonal. Then some of the
mass eigenvalues m, may be negative. In principle, by an
appropriate choice of the phases of N; all eigenvalues
m, could be made positive, but this does not concern us
here. The sign of m, - is related to the CP quantum num-
ber of y, (Refs. 8 and 9). For more details see Refs. 2 and
10.

The four eigenvalues g, are the solutions of the eigen-
value equation

III. SPECIAL SOLUTIONS
OF THE MASS-EIGENVALUE EQUATION

A. Partial solutions

Most of the following special cases are already known
in the literature.

(a) sin20„= 1. Here one has as solution a Higgsino

0
0

X4 0 (10)

In the following we shall list those special cases where
the eigenvalue equation (8) factorizes so that a solution
can easily be obtained.

(g —v )(g—
A, }(g—aA, ) —[g—A(sin 01v+a cos 0~)]

X(g+vsin20, )=0 . (8)
with mass

Usually, the eigenvalues g, are ordered by their absolute
values. This will not be done here as we shall apply
different approximation schemes to Eq. (8) where an-
other ordering is more appropriate. Notice that g( —

A, ,—v, sin20„}=—g(k, , v, sin20„) and g(A, , —v, —sin20, )

=g(A, , v, sin20, ).
Given the eigenvalues g, , the neutralino eigenstates can

be obtained as

( 1 —a )A, sln01vcos011.

g;
—k(sin 011,+acos 01 )

(g'; —
A, )(g; —ai(, )

0

l —1,2, 3

together with the three other states in general being
photino —Z-ino —Higgsino mixtures
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with

P, =[si n8~(g; —
A, ) +cos 8z(g; —aA, )

+(g, —~)'(g, —aX)'~'" . (12a) aAv=(sin 8~+a cos 8~)sin28„ (20)

and the three other states as given in Eq. (16).
(f) Inspection of the eigenvalue equation (8) shows that,

if the parameters obey the condition' '
The analogous case sin20, =——1 is obtained by substitut-
ing v~ —v. For more details see Ref. 16.

(b) v=O. This special solution is similar to case (a). It
contains a massless Higgsino

there also exists a massless neutralino state y3, which is a
mixture of all four interaction eigenstates

—(1 —a )sin8~cos8~

0
0x'=

4 0 (13)

0 1
X3 N 3

with

sin Op +A cos Ogr

—aA,
—o;A; cot20„

2 1/2

(21)

0
X1 0

0

(14)

and the three other states as given in Eq. (12). This case
is usually called the "light-Higgsino scenario. "

(c) a = 1. In this case one obtains a photino

1

N3 = sin Og +cx cos 0~+2 2 2 elk

sm20U
(21a)

—0.22

For a= 1, y3 has no photino component, for sin2I9, =1
the gH component vanishes. If the parameters M and M'
are related through M'/M =—,'tan 8~ (i.e., a=0.47 for
sin 8~ =0.22), then the massless state has the form

with mass

together with the three other states which in general are
Z-ino —Higgsino mixtures

0

0 1
X3

3

0.59
—0.47K,

—0.47K cot20„

2 1/2
Pe 47k
sin20,

g,
—v

+ 28 y l 2P3)4

vcos20,

(16)
As one can see, for I, & 1, g3 is mainly a Z-ino, whereas
for A, ) 1 it is mainly a Higgsino. Therefore, one could
call this case the "light Z-ino —Higgsino scenario. "

0
X1 0

0

(17)

and the three other states as given in Eq. (16) for a= l.
This case corresponds to the "light-photino scenario. "

(e) sin 8~=0. As it will turn out, it is useful to also
consider the limiting case sin 8~=0 (Ref. 17). Then the
solution is again similar to case (c). One has a photino

1

0

with

Q;=[(g; —v ) +(g;+vsin28, ) +(vcos28, ) ]' . (16a)

(d) A, =O. This special solution is similar to case (c). It
contains a massless photino

1

B. Complete solutions

0
0 ~ X2

0

0
sing

—cosP
0

cosP
sing

0

0
X4

(22)

with the mixing angle

By suitably combining two of the conditions (a) —(f) the
eigenvalue equation (8) can be reduced to a quadratic
equation giving the following simple solutions.

(i) sin 8+ =0 and sin28, =1. Here we obtain the fol-
lowing neutralino states:

1 0

0
0

(18) 1 k —v
sing = 1—

+(A, —v) +4

' 1/2

with mass

(19)

1 VcosP= 1+
&(X—v)'+4
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The masses are'

=ak,
g~= —,'[A.+v+ t/(A, —v) +4],
gq= —,'[A. +v —')/(k —v) +4],

(23)

(iv) a= 1 and sin28„=1 or v=O. Again, the masses

and states can be read oft'from Eqs. (22) and (23).
(v) &»=(»n'8~+a cos 8~)sin28, . If the condition

(20) is fulfilled ("light Z-ino —Higgsino scenario" ), com-
plete solutions of the eigenvalue equation (8) are possible
for the following.

(a) sin 8ii, =0. Here the mass eigenvalues are

It is interesting to note that in this case the chargino
masses also take the values gz and g& of Eq. (23).

In Sec. V we shall use this solution as a starting point
for perturbation theory. For illustration Fig. 1 exhibits
the dependence of the neutralino masses, Eq. (23), as a
function of v for A, =2 and +=0.47.

(ii) sin 8ii, =0 and v=O. This gives the same eigen-
states and masses as in Eqs. (22) and (23) with v=O.

(iii) A, =O and sin28„=1. Here again the eigenstates
and eigenvalues are given by Eqs. (22) and (23) with A, =O
(Ref. 5).

g', =aX,
gq= —,'[A, +'t/A, +4(v +1)],
g', =0,
f4= —,'[A, —+k +4(v +1)] .

The state g& is a photino

0
XJ 0

(24)

(25a)

y3 is given by Eq. (21) with sin8ii, =0 and the other two
states are

0

( gO)2 2

o

N, g; +v sin28„
i =2,4

v cos20,

with

N, =[[(g, )
—v ] +(g;) +v +2(, vsin28, ]'~

(25b)

(25c)

(b) a= 1. In this case the results can be obtained from
Eqs. (24) and (25), in particular /= A, .

(c) sin28, = 1. The eigenvalues are

g) 2=ah, + —,
' IA(1 —a)

+v+ ')/[A(1 —u)+ v] +4(1—kv) I,
g =0,

3 4 v The eigenstates g3 and y4 are given by Eqs. (21) and (10),
respectively, whereas g, and gz can be obtained from Eq.
(12).

(vi) ~A,
~

&&1 and/or ~v~ &&1. Also in this case a com-
plete solution can be derived. Asymptotically one has
the following mass eigenvalues and neutralino states:

g, =ah, , /~=A, , g, =v, f4= —v, (27)

FIG. 1. Solutions g of the mass eigenvalue Eq. (g) as a func-
tion of v (dashed line) for A, =2, a =0.47, sin28 ~ =0.22,
sin28„=v'3/2. For comparison the solutions g (solid line) for
A, =2, +=0.47, sin 0~=0, sin28, =1 according to Eq. (23) are
also shown. Also shown are the points of degeneracy A, B, C,
and D. Dotted lines correspond to the asymptotes /=A, and

cosO g

sln0 gr

0
0

X3=
0

cos 0 ——
U 4

—sin 0 ——
U 4

(2g)
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sin0+

cos0p

0
0

X4

0
0

sin 0 ——
V

cos 0 ——
v 4

D: $3=/, =aA, for vD =ah, + 1

(1—a)A,
'

The degenerate states will split for sin20, %1 in points A
and 8, or for sin 8~%0 in point D. The degeneracy in
point C, however, is removed only if both sin28, %1 and
sin 8~%0 (see Fig. 1).

In cases (ii) —(vi) one encounters a similar situation.

Clearly, y& is a b-ino, yz a W' -ino, g=(1/&2)(QH',—
QH2), and 74=(1/&2)(QH, +QH2).

C. Degeneracy

g=g~= —v„=—,'(A, —'t/A, +2),
8: g=g4= —v~ =

—,'(A, ++A, +2),
C: g=gq= —vc =aA, ,

(29)

Before discussing perturbation theory one has to find
out whether two of the eigenvalues are degenerate. For
the special case (i), sin 8~=0 and sin28„=1, there are
four points of degeneracy, A —D, as shown in Fig. 1. At
these points the following eigenvalues of Eq. (23) coincide
(assuming A. & 0):

IV. GENERAL STRUCTURE
OF THE NEUTRALINO MASS SPECTRUM

In order to get more insight into the structure of the
mass spectrum we shall discuss the dependence of the
solutions of the eigenvalue equation (8) on the parameters
I,, v, and sin28, . For this purpose we solve Eq. (8) for A, ,
v, and sin28„respectively, as a function of g. This pro-
cedure allows us to give a complete survey of the mass
spectrum in analytic form. Furthermore, it will show in
which regions of the parameter space the different ap-
proximation schemes are applicable.

A. A, dependence of the neutralino masses

Solving the eigenvalue equation (8) for A, one obtains
the two branches

a+(1—a)sin 8~ g+vsin28,
I[(1—a)g(g —v )+(acos 8~—sin 8~)(g+vsin28, )]2' g —v 2a(g —v )

+a[2 sin8~cos8~(g+ v sin28, )] j
'~ (30)

Figure 2 shows g as a function of 1, for v= 1, a=0.47 (corresponding to M'/M =
—,'tan 8~) and the two values

sin28, =0 and sin28„=1. The crossing at the points A and C occurring for sin28, =1 splits for sin28, %1. The mass
eigenvalues depend sensitively on sin20, only in the neighborhood of these crossing points. This will be important in
our treatment of the various approximation methods. For ~A,

~
& 4 the solutions rather quickly approach their asymptot-

ic values /=A, , /=ad, , and g=+v.

B. v dependence of the neutralino masses

Solving the eigenvalue equation (8) for the parameter v one again obtains two branches:

1
v+ = [—

—,
' sin28„[g —A (sin 8~+a cos 8~ ) ]

+(Ig(g —iL)(g —aA) —[g—A(sin 8~+a cos 8~)]cos 8„j
X tg(g —

A, )(g —aA, )—[g—A(sin 8~+a cos 8~)]sin 8, j)'~ ] . (31)

For sin20, = 1 this simpli6es to

A(sm 8gr+a cos 8g )v+=g-
(g—A, )(g—aA, )

v = —g'. .

In Fig. 3 we show g' as a function of v for a=0.47, A, =2,
and sin20, =0 and 1. One observes that for v(0 the
mass spectrum is rather different from that for v)0.
One can also see that there are three regions showing
diFerent behavior of g with v: (i)

~ v~ (0.5; (ii)
0.5((v~ (2; (iii) ~v~ &2. As we shall see, three diff'erent

I

types of perturbation formulas correspond to these re-
gions.

The square root in Eq. (31) gives rise to three excluded
mass regions, the boundaries being determined by the
zeros of the two factors in the square root. Figure 4
shows the A, dependence of the excluded regions for
a=0.47, sin28, =v'3/2, and sin28„=0. They are largest
for sin20, =0. The widths of the excluded mass regions
depend on the parameters a, k, and sin20, . For
sin20, —+ 1 these three excluded neutralino mass intervals
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-- -2

FIG. 2. k dependence of solutions g of the mass eigenvalue Eq. (8) for v=1, a=0.47, sin'8~=0. 22, sin28, =1 (solid line), and
si»8, =0 (long-dashed line). Also shown are the crossing points A and C, and the asymptote (=v (short-dashed fine).

will shrink to the three crossing points 2 —C of Fig. 1,
corresponding to degenerate mass states. [The crossing
point D of Fig. 1 is already removed since we have
sin 8~%0 in Eq. (31).] For X~O the excluded region
near /=ad, shrinks whereas the others extend up to their
maxima. Also, for a = 1, i.e., M' =M, only two excluded
mass regions appear.

C. 0, dependence of the neutralino masses

Proceeding as before we show in Fig. 5 the dependence
of g on sin28„ for a=0.47 and two pairs of parameter
values, A. =0.3, v=0.5, and X=0.3, v=1, respectively.
Apart from the regions near sin20, =+1 the dependence
of g on sin28„ is rather weak. Furthermore for tr =1 the
upper and lower parts of the curve would merge at
sin28, = —A, /v and cross the solution /=A, . A similar
crossing would occur for sin Oz =0.

In the case of no degeneracy of two eigenvalues the
curves g(sin28„) extend into the unphysical regions
~sin28,

~
) 1. Then there are excluded mass regions at

~sin28,
~

= l. If there is degeneracy the curve becomes
tangent to the line sin20, = 1 or sin20, = —1. This corre-
sponds to the degeneracy of the mass eigenstates at the
crossing point 2 of Fig. 1.

Generally, if k) 0 and v) 0, the lowest branch of the
curve g(sin28, ) corresponds to the solution $4 for v) v„,
and to g3 for v & v~, g3 and g~ as defined in Sec. V.

D. The lightest and the second lightest neutralinos

Because of its importance for phenomenology we show
in Fig. 6(a) a contour plot' of the mass eigenvalue (in-
cluding the sign) of the lightest neutralino as a function

of v and A, following from Eq. (8), for sin~8~=0. 22,
+=0.47, and sin20, =0.4. In accordance with the solu-
tions (b), (d), and (f) of Sec. III A there are zero-mass con-
tour lines for A, =0, v =0, and the hyperbola correspond-
ing to Eq. (20). In Fig. 6(a) there appears another zero
line at A, =0.1 and v) 0 which in reality is a discontinuity
where the eigenvalue changes from positive to negative
values, jumping from one solution to the other. Only in
the domain inside these zero lines the lowest mass eigen-
value is negative. Furthermore one can see from Fig. 6(a)
that the lightest neutralino has a mass smaller than —,'mz
for A. & 1 and all v, and for v~ & 0.8 and all A, (for
sin28, =0.4). For illustration, we show in Fig. 6(b) the
corresponding three-dimensional plot. '

Figure 7(a) is a contour plot in A, and v for the mass ei-
genvalue (including the sign) of the second lightest neu-
tralino for o, =0.47 and sin20, =0.4. There is a line of
discontinuity between positive and negative values
refIecting the fact that the second lightest mass eigenval-
ue jumps from one branch of the solution to the other.
The zero line near X=0.1 and v) 0 is the same as that in
Fig. 6(a) corresponding to a degeneracy of the two light-
est states. As one can see the second lightest neutralino
has a mass smaller than mz for A, & 1 and all v, and for
~v~ &0.8 and all A, (for sin28, =0.4). Again we also show
the corresponding three-dimensional plot in Fig. 7(b).

V. APPROXIMATE SOLUTIONS

In the following we shall present approximation formu-
las for the neutralino masses for any value of the parame-
ters a, A, , v, and tanO, . Depending on the region of pa-
rameter space we shall start from the complete solutions
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given in Sec. IIIB and then apply perturbation theory.
We shall first give four difFerent sets of approximation
formulas and then indicate their range of applicability.

A. Expansion in sin 0~ and sin2{ 8„—m /4)

Here we start from the solution (i) of Sec. IIIB, Eqs.
(22) and (23). It turns out that expanding in sin 9~
works numerically better within a large range of A,

(A, (10) than expanding around A, =O (Ref. 5) or a= 1.
Similarly, one finds that the expansion in sin2(0„n/4—)

to first order is applicable in a rather large range of v and
tan8, ( I vl & 10, 0.1 & tan9, & 10).

The mass matrix Y, Eq. (3), can be written as

Y = Yo —2v sine cosa'
&

—2v sin eX3

+A, sinOu cos9~(1 —a)X', +A, sin 8~(1—a)X3,

(32)

9.5

where e= I9, —m /4 and Yo is the mass matrix for
sinews, =0 and sin20, =1 (sine=0), and the 4X4 matrices -05

FIG. 4. A, dependence of excluded mass regions for a=0.47,
sin 0~ =0.22, sin28„= &3/2 (///), and sin28„=0 (g g g).

w3

» jj fl I'lfl
f~

~ ~

I I I

2

JUUIIJIJIJJIJUIJUIJIUIJIUUIUIJUUUIIJUUJIIIUJUIUUUIJIJIUUIUJUIJUIJIUIJIJIJ UI$IUIJIIIIIUIIIIIIJIJIjIIIIJIJI IIIjIIJIIIJIlIlIJIjIIJIjIIJIIIUIJIJIJIIIIIjIjIjIIJIJIJIJIJIJ

, .', l, I fl I
II'.

ll sin 2B

FICr. 3. v dependence of solutions g of the mass eigenvalue
Eq. (8) for A, =2, a=0.47, sin 0~=0.22, sin20, =1 (dashed line),
and sin20, =0 (solid line). Shaded areas indicate excluded mass
regions. Crossing points A, 8, C correspond to points of degen-
eracy.

FICr. 5. sin28„dependence of solution g of the mass eigenval-
ue Eq. (8) for a =0.47, sin 0~ =0.22, A, =0.3, v=0.5 (solid line),
and v = 1 (dashed line). The dotted line corresponds to
/=A(sin'8a +a cos'Os l.
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o = ~(g+v'A, '+4» 4=O a"where

&601

X,. and X,
' are

0 0
X = X,'. =0 o.

o.; 0

0 0 = 1sing= — 1—
1/2

Pauli spin matrices. App y' gl in perturba-where 0.; are t e au i
tion theory to Eq. , y'(32) ields 1/2

( 1 —a )sin 011

1+A(1—a)(aA, —v)

0 1 (1—a)X sin20~
0 002=42 —~, (O

v(1 —sin20, )

gO gO

1 (1 —a)X sin'0~

&(X—v)'+4
v(1 —sin20„)

2v(A, +v) —sin20,

2v(A, +v) —1

cosg = — 1+

4.0-
(33)

3.5-

2.5-

2.0-

po loC9~ ~

, . . . , 4 the eigenvalues o 'F and arei=1, . . . , , are
=—'[A, + ++(A,—v) +4], 4

——2
V

In the case of degeneracy there appear
E . (33), correspon ing' g

Fi . 1. Here the ormu apoints A —D in i ig. . h
'

able. One has to app ly degenerate per-viously not applica
r the resent case this is worked outturbation theory. For p

in the Appendix.

1.5-

1.0—

0.5-

0.0
-4

0.1C
I

-2
I

4
Y

B. Expansion in sin and v

III 8 and expanding i

2
[A,(1—a)sin0s, cos0s, ]=A, ( sill 0 gr +a cos 0 gr ) ah,

1

2
= —

A, ( I —a )cos P sin 0ll, +v s'+v sin20 sin P2 2

g 2
[A,( 1 —a )cosP sin0 ll, cos

02
—

kl

( v sin20„sing cosPv
' „' ) (vcos20„sing)

4—
k42 3

+ S4=k — —a
&

—A.(1— )sin /sin 0ll +vs'+v sin20 cos P

[A,(1—a )sing sin0lvcos0ll ]+
k3

—Fi

s ) (vcos20, cosg)(v sin20, sing cosg

(34)

)2V Sillsin20, +A, (v cos20,

v=0 rovides approximation for-'g = po

11 o1 io (ii) of S8 . Starting from t e so u
'

values of tan, .
'n sin 0 an vw

8.p
-5

o in unitslue of the lightest neutralino
'

tour plot and (b) three- ime
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v —
A, (sin Oii +acos Oii,

g~
=v+ ( 1+sin28„)

v+ A, (sin 0ii, +a cos2 2g )

2( A, + )(k+ )

(35)

C. Expansion in 1/A, or 1/v

f S III B Eqs. (27) and (28), asin solution (vi) o ec.
7

g
n „ub, .

o ho .
ldthe zeroth approximation per ur a

'

aA, +v sin20,
gi =at, +Slil Oii

A, +v sin20„
f2 = A, +cos Hii

Theare valid for all values of tanO„. y

r and v) 2 (A, )0.5) if there is no de-
f oh Adigeneracy. or e. F the latter case we refer to e

D, The "light Z-ino —Higgsino'no scenario"

a X, v, and sin 0, are such that the
condition Eq. (20) is approximately satis e i is u
introduce the quantity

(36)5 =ak v —sin20„[a+ ( 1 —a sin 0 ii,

E s. (24)g

merically satisfactory mass eigenvalues i
are given by

g, =aA, + (1—a)A, (a+v )

a[1+v +a(1—a)k ]

3.5-

3.0-

2.5-

2.0- /o
OI

2

1 — sin
5 (1—a)(a+v )

(1+ ') '(1+ ')

vA, 6
a(1+v )

g, =(I '+a, sin Oii+ z

(37)

i =2,4

1 0-

0.5—
0.

with

(1—a)A, (a+v )gI
'

a[(1—2a k 1 vg 1+ ')+[(1—a)A.'+2(1+v' ](I"]

i =2,4,
0.0

0
A+V A, +4v +4], see Eq. (24 .

1 alid if there is no de-Again these formumulas are on y va i
ne has to proceed asI the degenerate case one as ogeneracy. n e

outlined in the Appendix.

OF THE APPROXIMATIONSVI. RANGE OF VALIDITY

goo
ue of the second lightest neutralino inFICs. 7. Mass eigenvalue of e se

in the sign) as a function of v an, oz g
ing from q.E (8) for a=0.47, sin 0~= . , s'

contour plot an d (b) three-dimensional plot.

w which of the approximation formu-In Table I we show w ic o
d in the variouscan be appropriately use in

h df A. and v. As a criterion we ave
c f th mass eigenvalues, onlymerical accuracyc of20%%uo ort ema

errors. Withoutes
~
&0.2 we allow igger err

f d' t d in Table I, exceptf A. and v than indicate ina larger range of
How to proceedin the vicinity o't f oints of degeneracy.

we shall discuss below.
. (34), (35), d (37), lidq.

'
fied. Acceptable results

The applicability of q.

h5dfi d E. (36). I
ondition (20) is satisfie . cce

or 6 ~0.3, with
E. (37) i b

b ause here the condition (20) issuits than Eq.
nearly satis e .

The quality of the approximation orm
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TABLE I. Approximation formulas as given in Sec. V for the neutralino mass eigenvalues in the appropriate regions of tan8„A, ,

and v [defined in Eq. (4)]. Equation (33) is applicable for tan8, & 0.1. Equation (37) is applicable if ~5~ 0.3. 5 is defined in Eq. (36).

v& —2 —3&v& —0.5 iv) &0.S 0.5&v&3 v)2

0&A, &0.7 Eq. (33)
Eq. (35)

Eq. (33)
Eq. (37)

Eq. (33)
Eq. (34)
Eq. (37)

Eq. (33)
Eq. (37)

Eq. {33)
Eq. (37)

0.5&1,&2 Eq. {33)
Eq. (35)

Eq. (33) Eq. (33)
Eq. (34)
Eq. (37)

Eq. (33)
Eq. (37)

Eq. (33)
Eq. (3S)
Eq. (37)

X)2 Eq. (35) Eq. (33)
Eq. (35)

Eq. (33)
Eq. (37)

Eq. (33)
Eq. (35)

Eq. (35)

(35), and (37) is illustrated in Figs. 8(a) —8(c), respective-
ly, in the appropriate regions of v for X=1, +=0.47,
sin219, =0.4. As one can see the application of these for-
mulas covers the whole range of v except near the points
of degeneracy corresponding to the crossing points
A, B,D in Fig. 1. At point C Eq. (33) works because it is
not singular.

The intervals in v at the crossing points A, B,D where
Eq. (33) is not applicable can be specified as follows:

0 04 k4 & 01 .
28 &02

sin2

mc. & mii, I 1+sin28, +F(5)

—[(1+sin28, ) +2(1+sin28„)F(5)]'

for F(5) & —sin28„,

(39)

mc2 & m~I 1 —sin28, F(5)—
1

—[(1—sin28„) —2(1 —sin28, )F(5)]'

B.
0 0

k2 k4 & 0 1
28 & 0

S1I128
(38)

where

for F(5 ) & —sin28, ,

~ ~

Here g, i = 1, . . . , 4, is the zeroth approximation
given in Eqs. (23), and gz =

—,'(A, —+A, +2), gs =
—,'(A,

+V A, +2), gD =aA, . Within these intervals one can use
formula (Al) of the Appendix [for illustration see the dot-
ted lines in Fig. 8(a)]. A rough estimate, however, can
also be obtained by the zeroth approximation. Further-
more, at the points 3 and D the variables A, and v may be
such that formula (34) or (37) can be applied [see Figs.
8(b) and 8(c)]. It may also happen that point C lies within
the interval of point B as given by Eqs. (38). Then one
can use Eq. (Al) for point C.

Concerning the light Z-ino —Higgsino case, Eq. (37), it
is noticeable that there is a rather stringent upper bound
for the mass of the lightest chargino mc . Assuming

1a= —,'tan 0~, we obtain

F (5)=—sin28„+3 5
5 sin Ogr

For example, for tan8, =0.5 and ~5~ &0.2 this gives
~mc ~

&35 GeV. Therefore, the corresponding region of
1

parameter space may be experimentally excluded in the
near future.

APPENDIX

As we have seen in Sec. III C in the case of solution (i),
Eq. (23), there are four points of degeneracy A D(see-
Fig. 1). Near these points one has to apply degenerate
perturbation theory. Starting from Eq. (23) as zeroth ap-
proximation one obtains
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Point 3: gz 4= —v„1+

Point 8: g = —v 1+
7

cos28,
(1+4v'„)'"

cos20,

(1+4v,')'"
IPoint C: g& 4= —vc— ((1—a)i, sin 8~+v(1 —sin28„)2[2(1—a)A, v —1]

+ I[(1—a)A, sin 8+,—v(1 —sin28, )) +8(l —a) A, v sin 8n,

X(1—sin28, )] )'~

(1—a)A, sin8~cos8n,
Point D: g, q=aA, +

+1+(1—a) A,

(A1)

(bI

3-

2-
2-

~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ o ~ i ~ ~ ~ ~ ~

2') ~ 3
I

Flo. g. Comparison of approximation formulas for the neutralino mass eigenvalues g' (dashed line) with the exact solutions of the
eigenvalue Eq. {8) {solid line) as a function of v for a=0.47, sin 8~=0.22, X=1, sin28, =0.4. {a) Approximation formulas {33). In
the vicinity of the points of degeneracy approximation formula (Al) (dotted line). (b) Approximation formulas (34) for Ivl & 1 and
(35) for lv! ) 1.5. (c) Approximation formula (37).
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where v~, v~, and vc are given in Eq. (29). We want to
emphasize that Eq. (Al) gives the perturbed eigenvalues
at v=v~, v~, vz, and vD, respectively. This also holds
for point C, although the situation here is more subtle.
Equation (Al) gives '.he splitting of the two eigenvalues at
v=vc, if either sin0~%0 or sin20, %1. There is, howev-
er, still a crossing point of the two solutions g& and g4, but
at a position vWvc. The degeneracy is completely re-
moved only if both sin0~%0 and sin20, %1.

Similarly, in the case of solution (vi), Eq. (27), one has
four points of degeneracy at v=+X and v=+aA, . Degen-
erate perturbation theory yields the following splitting of

the degenerate mass eigenvalues:

1
g& 3=al+ —sin0~+1+sin20, for v=aA, ,W

1
g& 4=aA, + —sin0n, +1—sin20, for v= —aA, ,

=+1(2 ~=A, + —cos0~+1 —sin20„ for v= —
A, ,

2

g3 &
=X+ —cos0~+1+sin20„ for v =—1, .
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