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A phenomenological equation of state of strongly interacting matter, including strange degrees of
freedom, is presented. It is shown that the hyperon and kaon interactions must be included, in or-
der to obtain a reasonable description of the deconfinement transition at high baryon densities. The
consequences of kaon condensation on the nuclear-matter—quark-matter phase diagram are ex-
plored. The relative particle abundances obtained in an isentropic expansion of a blob of quark-
gluon plasma are presented for different initial conditions. Implications for ultrarelativistic heavy-

ion collisions are briefly discussed.

I. INTRODUCTION

With increasing energy density, dense matter is expect-
ed to experience a phase transition from a system of
strongly interacting hadrons into one of weakly interact-
ing quarks and gluons. Although the behavior is predict-
ed by finite-temperature lattice simulations of the under-
lying fundamental QCD (for recent reviews see Refs. 1
and 2), a tractable equation of state valid also at finite
baryon densities is not yet available from first principles.

However, in many problems, e.g., in ultrarelativistic
heavy-ion collisions or in the early Universe, an equation
of state is very useful. One possibility is to construct a
phenomenological one, which reproduces the essential
features of the lattice simulations at zero density, and ex-
trapolated to finite densities in a reasonable manner. A
common approach, which we will also take, is to work
with different models for the two phases, and join them at
the phase transition using the Gibbs conditions for phase
equilibrium. Such equations of states have been exten-
sively studied in the literature and employed in many ap-
plications (see, e.g., Refs. 3—-12). Usually the quark-gluon
plasma is described within the bag model, while the ha-
dronic equation of state has been parametrized by rela-
tively simple forms.

For the hadronic equation of state reliable empirical
information is available only at low temperatures near
the saturation density, p~p,. The behavior of the equa-
tion of state at high energy densities depends strongly on
which hadrons are actually included in the model and on
how these particles are assumed to interact with each
other. For example, pions, kaons, and hyperons are not
relevant at the saturation point and yet they may gen-
erate qualitative changes in the behavior at high tempera-
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tures and densities. Very little empirical information is
available in this regime.

Different aspects of strangeness production in
scenarios involving a quark-gluon plasma in the early
Universe and in ultrarelativistic heavy-ion collisions are
currently of high interest.!3~2? A phenomenological mod-
el for strangeness production in .heavy-ion. collisions,
where all particle abundances are allowed to deviate from
their equilibrium ones, was recently investigated by us.?
One of the basic ingredients of such studies is the corre-
sponding equation of state, which, in addition to nucleons
and pions, must also include strange particles.

Several such equations of state have been proposed.
However, most of them suffer from more or less severe
deficiencies; i.e., they are thermodynamically inconsistent
or violate causality. In some early work, the nucleons
were treated as noninteracting, pointlike, objects. This
results in an equation of state, with the undesired feature
that for very high baryon densities the hadronic phase is
again the stable configuration.! By adding a short-range
repulsion between the nucleons, e.g., due to the exchange
of w mesons, one can eliminate this problem. An alterna-
tive way is to take the finite size of the baryons into ac-
count, by means of an excluded volume.?*~2% We prefer
the first alternative, which in contrast with the second
one leads to a thermodynamically consistent equation of
state. (In the excluded-volume approach, thermodynam-
ic relations such as, e.g., n =0dp /9u, where p is the pres-
sure and pu the chemical potential, are not satisfied in the
hadronic phase.) As we will show, similar difficulties
arise when the model is extended to include hyperons, if
they are treated as noninteracting.

At high densities and low temperatures, kaon conden-
sation is likely to occur. We show that, depending on the
kaon interactions, the presence of a condensate may
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change the phase diagram considerably. In many models,
this phenomenon has been excluded from the beginning,
by treating the kaons as Boltzmann particles.

The use of equations of state with such deficiencies is
unsatisfactory and may lead to unreliable results. In this
paper we suggest a model for the equation of state of ha-
dronic matter, which is practicable and void of the
deficiencies mentioned above and at the same time in-
corporates the contribution of the strange particles in a
semirealistic way. To this end, we shall extend Walecka’s
relativistic mean-field model,?”?® to account for the in-
teractions of hyperons in addition to those of nucleons
(see also Refs. 29-31). We treat all mesons, except the
kaons, as noninteracting. A repulsive kaon-kaon interac-
tion is needed to obtain a reasonable phase diagram in the
presence of a kaon condensate.

In Sec. II we present the equation of state, and discuss
the kaon-condensation problem in detail. Applications of
the equation of state to situations relevant for relativistic
heavy-ion collisions are discussed in Sec. III. Concluding
remarks and a summary are given in Sec. IV.

II. EQUATION OF STATE FOR HADRONIC
AND QUARK MATTER

In this section we first present the equation of state of
hadronic matter, which is obtained by generalizing the
Walecka model (see also Refs. 29-31) and then we de-
scribe how kaon-kaon interactions have been incorporat-
ed. Finally a brief presentation of the equation of state of
the quark-gluon plasma is given.

As we mentioned in the Introduction, nucleon-nucleon
interactions must be taken into account, in order to ob-
tain a reasonable phase diagram. When the nucleons are
treated as free, pointlike, particles then the free energy of
the hadronic phase is lower than that of the quark-gluon
plasma at high densities. Similar difficulties occur, if one
simply adds a gas of noninteracting hyperons to a system
of interacting nucleons. This is illustrated in Fig. 1,
where we show the pressure of the two phases as a func-
tion of the baryon chemical potential at constant temper-
ature (T’=10 MeV). Note that, because of the principle
of maximum pressure, the hadronic phase is stable at low
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FIG. 1. The pressure py of the hadronic gas, with only
nucleon-nucleon interactions taken into account, and the pres-
sure of the quark-gluon plasma p, as functions of the baryon
chemical potential up at given temperature 7.

and at high densities, while the plasma phase is stable
only at intermediate densities. This unphysical feature
emerges because at large densities the nucleons feel the
short-range repulsion, while the noninteracting hyperons
do not. Therefore, almost all nucleons are converted into
hyperons, e.g., through the reaction K+N -7+, thus
lowering the energy below that of a quark-gluon plasma.
Consequently, with such an approximate equation of
state, one still faces the same difficulties as with nonin-
teracting nucleons.

Furthermore, in order to obtain a consistent treatment
of kaon condensation, kaon interactions must be taken
into account. Therefore, we have constructed a new
equation of state, where nucleon and hyperon, as well as
kaon, interactions are taken into account.

A. Hadronic matter

A straightforward extension of the Walecka model is
made by incorporating hyperon interactions mediated by
the exchange of vector and scalar mesons, such as the nu-
cleon interactions in the original model. For simplicity,
the hyperons (A and X) are represented by an effective Y
particle of mass my=1170 MeV and degeneracy factor
g =8. Neglecting the contribution of the negative-energy
states we find for the pressure of the nucleons and hype-
rons in the mean-field approximation (i=c=1)

1
Pry(pysty, T)= ) (Cpng—CinJ)

my

+ 2

j=N,N,Y,Y

pi(v;,T) . (1)

[We note that in this approximation, nuclear matter at
high density exhibits unphysical instabilities with respect
to fluctuations of the meson fields at short wave-
lengths.3>3% However, since we consider only long-
wavelength (bulk) properties, these instabilities play no
role in the present calculation.] The coupling constants
C%=195.7 and C2=266.9 are the original ones of the
Walecka model,?”?® which have been adjusted to fit bind-
ing energy and density of nuclear matter in its ground
state. For simplicity we assume that the coupling con-
stants are universal, i.e., the nucleon and hyperon coup-
ing constants are equal. Since the binding energies of A
hypernuclei are not very different from the average bind-
ing energy of a nucleon, this assumption seems reason-
able as a first approximation.
In Eq. (1) the kinetic pressure of particle j is

k4

mj*z)l/z f(k’mj*’vj) (2)

kin -8 r-
pj (V]"T) 62 fO dk(k2+

and the vector and scalar densities of the nucleons and
hyperons are

n5=(nN—nN)+(nY——n7) 5

(3)
ng=n,y+ts gtnytn 5.

The partial density of particle j, with effective mass m *

and degeneracy g;, is
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nj(vj,T)=—i2—f0 dk k2f(k,m*,v;) ,

4)
Pt 0 j 0°° (k2+m} )1/zf(k’mf*"’j)’
where
fUe,m,v)=(exp[(Vk>+m2—v)/T]+1} ! (5)

is the momentum distribution function. The auxiliary
potentials vy=—vg and vy=—wvy, which are intro-
duced for convenience, are shifted with respect to the nu-
cleon and hyperon chemical potentials by the self-energy
due to the vector field:

2 C2

_ _ 14 _ _ v
UN=—Hg=vNyt 7 np, Uy= "py=vyt——np.
my my
(6)
The effective masses m * satisfy the implicit equation
e, _Gs
mi=m; > H (7)
my

In the case that the coupling constants are not universal,
i.e., when the hyperon coupling constants differ from the
nucleon ones, the equation for the effective mass is some-
what more complicated, involving the ratio of the two
coupling constants. (This would be the case if we were to
adjust the coupling constants, e.g., according to Refs. 34
and 35, where properties of hypernuclei have been fitted.)

Besides nucleons and hyperons we consider the follow-
ing hadrons: pions (g, =3, m =139 MeV), kaons (gx =2,
myg =490 MeV), cascade particles (gz=4, mz=1320
MeV), O’s (gg=4, mq=1670 MeV), and 7’s (g,=1,
m, =550 MeV, g, =1, m,, =950 MeV). Except for the
kaon, these hadrons are treated as free particles. Their
contribution to the pressure is simply a sum of terms of
the form (2).

The cascade resonance (=) and the ()’s are, because of
their larger masses, much less abundant than the nu-
cleons or the hyperons. Consequently, one does not en-
counter difficulties with the phase diagram, even for
noninteracting =’s and ’s. However, one should keep in
mind that for nonvanishing net strangeness, the strange-
ness chemical potential may become so large that it be-
comes energetically favorable to convert nucleons and
hyperons into noninteracting =’s and ’s, thus again
making the hadron gas the energetically favored state at
high densities. Consequently, when studying the possible
formation of strangelets (see Refs. 12, 21, 22, 36, and 37),
the interactions of the multistrange baryons must also be
taken into account. In this paper we restrict ourselves to
systems of vanishing net strangeness, so for simplicity we
neglect the = and Q interactions.

B. Kaon condensation

For noninteracting kaons, condensation sets in, when
g =mg, which in our model happens in the coexistence
region. Beyond the condensation threshold, the kaon
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chemical potential remains fixed: pgx=myg. Since
Kk =g —Hs in equilibrium, the hadronic phase cannot
exist for p, >mg +p;. In particular, for densities corre-
sponding to a quark chemical potential p,>my, the
strange-quark chemical potential u; cannot be equal to
zero. Consequently, in this case, phase equilibrium be-
tween a quark-gluon plasma and an infinitesimal admix-
ture of hadron matter is not possible for vanishing net
strangeness, since this would require p,=0. Thus the
system remains in the coexistence region and the transi-
tion to quark matter cannot be completed.

In order to take care of this problem, we add a repul-
sive kaon-kaon interaction term to the Lagrangian densi-
ty

L =—MY ¥ ®)

where Wy is the kaon field and A the kaon-kaon coupling
constant. We treat the kaon interactions in a mean-field
approximation; i.e., we take into account only the in-
teractions of the kaons in the condensate with themselves
and with the thermal kaons, while the interactions be-
tween the thermal kaons are neglected. We also neglect
the kaon-baryon interaction, which, as shown by Kaplan
and Nelson,® lowers the critical density for kaon conden-
sation. We note that kaon condensation is strongly
favored in the coexistence region. There the strange-
quark chemical potential decreases towards zero, while
the light-quark chemical potential remains roughly con-
stant. Thus the kaon chemical potential grows, ap-
proaching ux =p, on the quark-matter side of the coex-
istence region.

For a uniform condensate of the form
(Wi (1)) =explipg){y ), where ug is the kaon chemi-
cal potential, the expectation value of the kaon-field
(W, ) satisfies the equation of motion®

(uk —mZ —2A1( W ) 2 Wg ) =0 . 9)

The contribution of the condensate to the pressure is

pcond:(:u%_mlz()!(wK)lz—}\(Hd}K)P)Z

1
=Zx(,u§<—m,% 2, (10)

where the last equation is valid only when (¥ )70, i.e.,
when g =myg. The density of the kaons in the conden-
sate is given by

1
ncondzx(.u‘%(— 1%)[1'[( (HK >mg)

=0 (ug <myg) . (11)

In the condensed state, the thermal kaons acquire an
effective mass 7 ¥ =m2 +2A|{Wg )|>=p% through the
interaction with the condensate. In this way the chemi-
cal potential can assume values above the rest mass of a
free kaon and no singularities arise in the pressure and
density integrals, Egs. (2) and (4).

The total pressure in the hadron phase is then the sum
of the contributions from the interacting nucleons and
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hyperons, from the noninteracting hadrons 7, K, K, 7,
=, Z, Q, Q, and the pressure of the kaon condensate

pH:pNY+2pjln+pcond . (12)
j

C. Quark-gluon plasma

The quark-gluon plasma is assumed to consist of
noninteracting quarks, antiquarks, and gluons. The non-
perturbative effects associated with the confinement tran-
sition are as usual subsumed in a constant vacuum pres-
sure B. We have used the value B=(235 MeV)*, which
yields a transition temperature consistent with Monte
Carlo simulations.! The total pressure of the plasma
phase then takes the form

PG Pg"'EPkm B, (13)

where the partial pressure p}““ of the quarks of species j
is given by Eq. (2) and the index j runs over all quarks
and antiquarks. The quark degeneracy factors are g;=6
and the quark masses m, =m; =0 and m; =150 MeV, re-
spectively. The gluon pressure is
)
Ps™ g90 r

and the quark and gluon densities are
nip;,T)

(g, =16) (14)

=%fowdk k2 (exp{[(K2+m2) 2=, 1/T}+ 1)
T

(15)
and

g,6(3)
=———g72 T .

(16)

III. RESULTS AND DISCUSSION

Phase equilibrium between the plasma and the hadron-
ic phase is determined by Gibbs conditions for thermal
(Tqg =T§g), mechanical (pog =ppg), and chemical equilib-
rium:

UN=—Br=30y MPr=Hy=Hy=0,
P =—pg =g =), py=—py=Qu,tu,), (17)
pe=—pz=Qu,+tp,), po=—pg=3py, .

At given temperature T and quark chemical potential u,
the strange-quark chemical potential y; is determined by
fixing the net strangeness of the total system S, (ha-
dronic matter and quark-gluon plasma), i.e.,

vV ou,  V ap net 2

(18)

where V' is the total volume and Vy and V, are the par-
tial volumes of the coexisting phases.

The resulting phase diagram for vanishing total
strangeness S, =0 is shown in Fig. 2. For the parame-
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FIG. 2. The phase diagram of hadronic/quark matter for
vanishing net strangeness. The phase boundary ¢ separates the
pure hadronic phase from the coexistence region, while ¢y
separates the quark-gluon plasma from the coexistence region.
We show ¢, for two values of the kaon coupling constant A. Fi-
nally, the phase boundary cx shows the threshold for kaon con-
densation.

ters we use, the transition temperature at u,=0 is
T? ~161 MeV. The phase boundary of the hadronic
phase is labeled by cy, while that of the quark phase is la-
beled by ¢y. We note that at low temperatures the phase
boundary ¢, depends on the strength of the kaon-kaon
coupling. Details will be given below.

Let us begin by discussing the phase boundary of the
hadronic gas c¢y. In the hadronic phase at positive net
baryon density, most of the antistrangeness is carried by
the kaons, while the strangeness is predominantly carried
by the hyperons. A nonzero chemical potential p is then
required to obtain vanishing net strangeness [Eq. (18)].
The relation between p; and T along the hadronic phase
boundary cy is shown in Fig. 3. We note that in hadron-

300 T T T

ps[MeV]

0 50 100 150
T[MeV]

FIG. 3. Strange-particle chemical potentials uf along the ha-
dronic phase boundary ¢y and the critical strange-quark chemi-
cal potential u™ below which the kaons start condensing.
Both quantities are shown as a function of temperature.
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ic matter of vanishing net strangeness, the strange-quark
chemical potential is rather large, u, * 150 MeV, already
at temperatures 7 < 100 MeV. On the other hand, along
the quark-matter phase boundary ¢y, the strange-quark
chemical potential vanishes, due to the strangeness sym-
metry in the quark phase. Thus, in the coexistence re-
gion u; varies between zero at ¢y and some finite value at
cy- Consequently, the strangeness content of each of the
two coexisting phases does not vanish separately. In fact,
since 1, = 0 in the coexistence region, the s quarks prefer
the quark phase, while the 5 quarks accumulate in the ha-
dronic phase.2"?23637 Hence, there is a tendency to
separate strangeness from antistrangeness during the
hadronization of the plasma. The suppression of antis-
trangeness in the quark phase is more pronounced in a
baryon-rich than in a baryon-poor plasma. This is illus-
trated in Fig. 3, where we show the strange-quark chemi-
cal potential p; as a function of 7. We note that in the
baryon-rich region (I'—0) p, significantly exceeds the
strange-quark mass. Thus, one expects a possible separa-
tion of strangeness to be strongest in cold matter (cf. Ref.
37).

Let us now discuss some details associated with the
possible formation of a kaon condensate. For tempera-
tures T above 100 MeV the quark chemical potential p,
does not exceed the kaon rest mass on cy. Since the kaon
chemical potential ug=p, for u,=0 this implies that
Mg <mpg and, consequently, that there are no complica-
tions due to kaon condensation in this regime with the
present choice of parameters. However, for temperatures
below T ,,3~100 MeV the kaon chemical potential
exceeds the free kaon mass in the coexistence region.
This signals the onset of kaon condensation; the thresh-
old is determined by the condition px =my [see Eq. (11)].
The corresponding phase boundary is labeled by cx in
Fig. 2. We note that, in the mean-field approximation,
the threshold density is independent of the coupling con-
stant A. In Fig. 3 we also show the strange-quark chemi-
cal potential %" below which the kaons condense as a
function of temperature.

However, the position of the phase boundary between
the kaon-condensed coexistence region and the quark-
gluon plasma does depend on the coupling strength A.
For large values of A the condensate exists only in a nar-
row band along cg, while for A—0 the coexistence region
at low temperatures extend up to infinitely large baryon
densities np (cf. the two contours ¢y for A=10 and 100 in
Fig. 2). As we noted above, this is due to the fact that the
equation p, =myg +2A|{ Wy }|*+pu,, which holds in the
condensate, cannot, for A=0 and He>mg, be satisfied on
the boundary ¢, along which u, =0.

Thus, for small A (~ 1), the position of the quark phase
boundary ¢y depends strongly on the coupling constant,
while for A > 50 the dependence is very weak. We also re-
mark that the phase contour ¢y, obtained for large values
of A is rather similar to that which emerges when the
kaons are treated as Boltzmann particles. However, in
doing so we would exclude the possibility of kaon con-
densation and at the same time unnecessarily distort the
relation between pg and u, in the coexistence region. We

stress that our investigation of kaon-condensation in con-
nection with the hadronization transition is only prelimi-
nary. Further studies, employing more realistic models
with kaon-baryon interactions are needed.

The equilibrium abundances of the different hadronic
species along the phase border line ¢y are shown in Fig. 4
as a function of the entropy per baryon. These are of in-
terest, since results of model calculations suggest that the
relative hadron abundances, produced in the hadroniza-
tion of the plasma, are close to the equilibrium ones of

the hadronic phase.'®?3 In this context it is interesting to

note that the strangeness-changing reactions in the ha-
dronic phase do not significantly alter the abun-
dances.!®?3

We observe that the strange particle abundances reach
maximum values at temperatures slightly below the max-
imum transition temperature T2, while the pion number
increases exponentially with temperature. The maxima
for the strange-particle densities are due to the fact that
their chemical potentials vary from zero at T=T?. to
some positive value at low temperature. For instance, the
kaon density is approximately ng o« T3 %exp[(ug
—mg)/T]. For temperatures below 90 MeV the kaon
chemical potential is essentially constant, pg =500 MeV,
along the cy border. Thus in this regime, the density
grows with temperature, due to the 7°/2 factor. As the
temperature is increased above 90 MeV, u. starts de-
creasing, but for temperatures up to 7=~ 140 MeV, the
decrease in the chemical potential is slow. In this regime,
the density still grows with temperature, since the growth

Temperature [MeV]
189 1:?0 '!50 1155 160

104

1072

Density [fm'E]

=

1072

-3
10 0

ENTROPY S/A

FIG. 4. Abundances of baryons and mesons along the ha-
dronic phase contour ¢y as a function of the specific entropy.
On top we also show the corresponding temperature scale.
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of the T3/? factor compensates the decrease in the ex-
ponential factor. For T > 140 MeV the kaon chemical
potential u, rapidly decreases and vanishes at T=T?r.
Thus, in this regime, the kaon density decreases, explain-
ing the maximum at 7T =130 MeV.

However, the maximum abundances are reached in a
temperature-density regime, which is not likely to be
reached in an isentropic expansion of a quark-gluon-
plasma blob into the hadronic phase. This is illustrated
in Fig. 2 where isentropes are displayed in the density-
temperature plane. One sees that for rather different
values of the initial entropy in the quark phase an isen-
tropic expansion ends up in a relatively small density and
temperature window in the hadronic phase. This behav-
ior is a consequence of the requirement of entropy con-
servation during the phase transition. The high number
of internal degrees of freedom in the plasma phase im-
plies a high entropy per baryon. In the hadronic phase,
the smaller number of degrees of freedom that can con-
tribute to the entropy must be compensated by a decrease
in the net baryon density, so as to yield the same entropy
per baryon. Therefore, the baryon density is decreased,
while the temperature increases during the hadroniza-
tion. We note that if entropy is produced during the ex-
pansion, the system ends up on an isentrope of higher en-
tropy per baryon and thus even further away from the re-
gion where the strange-particle abundances reach a max-
imum.

Thus it is evident that both a baryon-poor (high initial
entropy values) and a baryon-rich plasma (low entropy
values) after the hadronization transition end up in the
hadronic phase, in a temperature range only slightly
below the transition temperature (T2 ~ 161 MeV).

We also note that the yields for 77, K *, and Y are rath-
er flat for specific entropy values S/ A4 > 10 (see Fig. 4).
Therefore, the K+ /7" ratio also remains fairly constant
in this regime (see Fig. 5). In fact both the K " /7 and
K~ /7~ ratios show a strong dependence on the specific
entropy only for low values of S/ A4. For S/A4 > 15 the
asymptotic ratios (S/A4 — o) for K* /7% and K~ /7~
are quickly reached. The asymptotic ratios are relevant
for a system of vanishing net baryon density. The results

10 T T T T

0 | | L 1
S/A

FIG. 5. Ratios of hadrons along the hadronic phase bound-
ary cy as functions of the entropy per baryon.

displayed in Fig. 5 indicate that the K T /K ~ ratio is
much more sensitive to the initial baryon content of the
quark-matter blob than the other ratios. Furthermore,
this ratio contains information on the net strangeness
content of the quark blob in terms of the strange-quark
chemical potential u, since K+ /K~ ~exp(2u,/T). Fi-
nally we note that the rather exotic ratio of antihyperons
to antinucleons is on the order of unity and does not vary
much for entropy values S/ 4 > 15.

In summary, the results shown in Figs. 4 and 5 indicate
that the ratios of particle yields should be rather indepen-
dent of entropy for S/ A4 > 15, provided the strangeness
degrees of freedom are approximately equilibrated. From
an experimental point of view, we expect that the above
ratios should not change significantly as a function of the
transverse energy deposition E; in ultrarelativistic
nucleus-nucleus collisions.

As we already mentioned, there is a tendency to
separate strangeness from antistrangeness in the coex-
istence region. Thus in small quark-matter blobs, which
are in phase equilibrium with the hadronic phase, there is
an excess of strange quarks. The relative strange-quark
excess in an infinitesimal blob of quark-gluon plasma
coexisting with hadronic matter on the phase boundary
Cas Dtrange =1y —ng)/(ng —n,+n; —n), is shown in Fig.
6 as a function of the temperature. The strange-quark ex-
cess Agrange( T) is a few percent at small temperatures and
increases monotonously with 7 up to values as high as
50%. Thus in our model there is an appreciable strange-
ness excess in the quark phase near the hadronic side of
the coexistence region. This excess of strangeness has led
to speculations about the formation of strangelets in rela-
tivistic heavy-ion collision at high temperatures®'-*? and
even hadronic matter at zero temperature.’’ We note,
however, that the present calculation and those in Refs.
21, 22, and 37, apply only to equilibrium situations.
Whether strangeness separation can actually occur and
generate observable effects in nonequilibrium situations,
such as heavy-ion collisions, can only be ascertained in
dynamic calculations, e.g., using the kinetic model of Ref.
23.

0.8 — T T T T T 7T
0.5 - -1
0.4 | 4

0.3 .

Astrange

0.2

0.1

T T T
L

0.0 P RS N S R S
40 60 80 100 120 140 160

Temperature [ MeV ]

FIG. 6. Net strangeness content of an infinitely small quark-
gluon blob in equilibrium with the hadronic phase, i.e., on the
hadronic phase boundary, as a function of the temperature.
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IV. SUMMARY AND CONCLUSION

We have presented a model for the equation of state of
strongly interacting matter, including strange degrees of
freedom, which is practicable and at the same time in-
cludes the essential features of hadronic matter in a con-
sistent way. The equation of state can be used both in
static and dynamic calculations, which involve the phase
transition between hadronic matter and quark-gluon
matter. The main new features of this equation of state
are a consistent treatment of the hyperon interactions
and the possible formation of a kaon condensate. Al-
though these effects have previously been considered by
other authors, they are new in the context of the hadroni-
zation transition. The hyperon interaction is crucial in
order to obtain a qualitatively correct behavior at baryon
densities, where a transition to quark matter is expected.

For moderate temperatures (7' < 100 MeV) kaon con-
densation occurs in the coexistence region. In order to
obtain a reasonable phase diagram we have introduced a
repulsive interaction among the kaons in the condensate.
Depending on the details of the kaon interactions, the
condensate may raise the deconfinement density at low
temperatures considerably. This again may affect the
structure of neutron stars and the possibility of strange-
ness separation in cold matter. Further studies of this
effect, using more refined models of the kaon interactions
in hadronic matter are needed before definitive con-
clusion can be drawn.

We have also found that, for a wide range of initial
conditions, an isentropically expanding quark-matter
blob ends up in a rather narrow temperature and density
window in the hadronic phase. Consequently, particle ra-
tios, such as K /7T, K~ /7#~, and Y /N, are rather close
to their asymptotic values already for specific entropy
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values S/ A > 15. Since these ratios depend solely on the
underlying equation of state, the measurement of these
particle ratios could give us direct information on the ha-
dronic equation of state at high temperatures.

Dynamic calculations indicate that, if a quark-gluon
plasma is formed in an ultrarelativistic nucleus-nucleus
collision,. the final strangeness abundances are by and
large determined in the hadronization transition. The
strangeness production during the transition is probably
very effective, so that the hadronic matter is produced
near strangeness equilibrium. Furthermore, the strange-
ness changing processes in the hadronic phase are be-
lieved to be slow compared to the typical expansion time
scale. Thus, a reliable calculation of the strangeness con-
tent of the hadronic phase near the phase transition re-
gion is useful for analyzing and interpreting experimental
data.

The results represented in this work are the outcome of
static equilibrium calculations. It is a major task for fu-
ture studies to perform nonequilibrium phase transition
calculations, e.g., along the lines of Ref. 23, where a less
elaborate equation of state was used.
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