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How well do we know the Kobayashi-Maskawa matrix?
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We evaluate the Kobayashi-Maskawa I,'KM) matrix using a maximum-likelihood method which
takes into account experimental errors on input data and "systematic errors" associated with
theoretical approximations. We carefully reconsider the constraints from meson decays and mix-
ings as well as CP violation. %'e derive values for all matrix elements with errors smaller than
0.008, show that the ratio

I U„q/U, b I
must be bigger than 0.036, and that the phase angle 8 of the

KM representation is smaller than m. Surprisingly our conclusions depend very weakly on the value
of the top-quark mass. Any experiment violating the constraints of our fitted KM matrix would im-

ply physics beyond the standard model with three generations and a minimal Higgs sector.

In the past three years our knowledge of meson mixing
and CP violation has considerably progressed. On the ex-
perimental front BdB d mixing has been firmly estab-
lished, direct CP violation (e') has been observed. Vari-
ous experimental and theoretical bounds limit the mass of
the top quark to the range 70—200 GeV. On the theoreti-
cal side we have witnessed progress in calculating long-
distance weak-interaction parameters using lattice tech-
niques and the 1/X, expansion. We reassess our
knowledge of the minimal standard-model parameters in
light of these developments.

The strategy that we use in our search for the structure
of the Kobayashi-Maskawa (KM) matrix can be sketched
as follows. The light-quark matrix elements IU„dI and
I U„, I

are directly determined by data on superallowed
nuclear P decays and K and hyperon decays. The rest of
the Cabibbo matrix

I U,d I
and

I U„I will be determined to
a higher precision from the unitarity of the matrix than
from direct measurements. The rest of the matrix ele-
ments are determined from the data:

I ~ —IU,bI

(BdoB o
) —m 2I U,„U,* I

2

e-m, Im[(U„U,d) ]+m, Im[(U„U,d) ],
e'-(Inm, )[Im( U„U,d )] .

The matrix elements are also restricted by unitarity; e.g.,
in the limit that all angles are small one can derive that

I U,„I

=
I U,b I s, +

Here s, is the Cabibbo angle.
We note that theoretical calculations of the quantities

listed above are becoming more reliable. The bag param-
eters, which gave the biggest uncertainty, seem to be un-

der control in lattice calculations, at least for the 8
mesons. ' The I llew, expansion gives similar answers.
One can, thus, with a reasonable amount of confidence,
use the method outlined above to derive limits on the
KM matrix elements. As we want to establish reliable
bounds, we shall exclude from our analysis data for
which the theory is not under control.

Our main result is that the KM matrix elements are
constrained to the intervals

0.9748-0.9761 0.2173-0.2230 0.0013-0.008
U = 0.2169-0.2226 0.9734-0.9752 0.039-0.062

0.004-0.020 0.037-0.060 0.9980-0.9992

I + I + l'
—

l'
— m, sin5

A~= I+l'++ l l m,
(4)

The observation of Az will turn out to be extremely
dificult as 6 =~.

(2)

The intervals correspond to 2o. deviations from the Atted
value. The phase 6 must be less than ~ and
IU„bI/IU, bI)0.036. The latter result follows from the
fact that e is proportional to the KM angle sinO&. Non-
vanishing values of e prevent sin83, and therefore

I U„s I,
from vanishing. In the Wolfenstein parametrization Eq.
(2) corresponds to the following parameter intervals,
again at the 2' level:

A =0.94-2.6; p=0. 30-0.70, g=0. 14-0.53 .

Our results have implications for further study of the
weak interactions of b-Aavored mesons. One can obtain
constraints for B,B, mixing [Am (B,B, ) —m, I U,& U„ I ]
and CP violation in the B system, i.e., the asymmetry be-
tween like-sign dileptons from semileptonic decays of
8 B pairs:
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C] —S]C3 $]$3

U= S, C2 c]c2c3 s2$3e' c]c2s3 +s2c3e i6 (5)

1 2 1 2 3+ 2 3
i6 i6c ]$2$3 +c2c3e

Given the awkwardness of the interpretation of the an-
gles and phase, we shall later give bounds both for these
and for the absolute values of the matrix elements them-
selves.

We first impose experimental bounds on the KM ma-
trix elements from neutron and hyperon P-decay mea-
surements, as well as from data on v and v production of
charm:

I U„d1=0 9747+0.0011,
I U„, 1=0.2197+0.019,

and
I U,d1=0.21+0.03. In principle, one can also make

use of the constraint IU„1=0.96+0. 12 from D~Kev
(case 1), but this is not model independent, the absolute
limit being

I U„)0.66 (case 2).
The next two observables will be related to 8 physics.

8 mesons constitute a borderline case of the applicability
of perturbative QCD. Nonperturbative corrections come
from the fact that the quarks are bound within the meson
(this is in principle measurable through the decay con-
stant fs) and from the possibility of bound intermediate
states (this is parametrized by a bag parameter Bs).
Apart from these factored corrections, which are in prin-
ciple calculable through lattice calculations or by 1/N,
expansions, the dependence on other parameters should
be well represented by perturbative calculations as
momentum transfers are high.

Consider first the 8 meson width. Most of the theoret-
ical complications can be avoided by considering the
semileptonic decay width for which the final-state in-
teractions are negligible. This quantity can then be relat-
ed to the total 8 width via the measured semileptonic
branching fraction 8,]. Thus our first constraint will be

r, =
B I 192vr

m,
+QCD

= [(1.15+0.14) ps]

We want to stress here that our results will hold only
in an SU(2) XU(1) model with three generations and a
minimal Higgs sector. Slightly extended versions of the
standard model, e.g. , assuming a richer Higgs sector,
could jeopardize the lower bound on m, and modify the
analysis of 8 mixing.

The structure of this paper is as follows. First, optim-
istically taking the theoretical formalism at face value, we
shall produce bounds on the various parameters and ob-
servables that occur in decays and mixing of 8 mesons
and in CP violation. These limits should only be con-
sidered as best guesses. We shall refer to this approach in
the following as case 1. We then consider the effect of
theoretical uncertainties and produce absolute bounds,
the violation of which would imply that new physics
beyond the standard model is needed. This will consti-
tute case 2. Throughout our analysis, we shall carefully
define the probabilistic meaning of the produced limits.
We discuss the input of our analysis next.

We use a mixing matrix which is unitary:

with f (x)=1—8x +Sx —24x ln(x) a phase-space fac-
tor and

6m GFm~ rn,2

(B f )I V,*b V,d I
I6~'r, IQCD (7)

The first factor introduces experimentally measured
quantities; the second takes long-range corrections into
account. The third factor depends on two unmeasured
Kobayashi-Maksawa matrix elements. g&oD is a QCD
correction factor for which we use an exact result' and,
finally, I(x) is a phase-space factor' that depends qua-
dratically on I, for large-m, values. We take into ac-
count the new limits on the top-quark mass. UA2 has de-
rived a new upper bound on I, of the order of 180 GeV
from electroweak radiative corrections. ' In case 1 we
will assume that the bound is to 150 GeV, and take the
conservative value 200 GeV in case 2. This is only to
demonstrate that the exact value is not important. The
new Collider Detector at Fermilab and UA2 results'
seem to indicate m, )70 GeV, a limit that we shall imple-
ment for both cases. As the dependence on m~ and mz
is small, no new parameter is introduced, ' except the
product B~f~. Because of the smallness of momentum
transfers, this quantity is not perturbatively calculable.
The calculation of these long-range constants now seems
to be under control in lattice studies as a result of the
discovery of the CP-switching symmetry. ' The bag pa-
rameter and the decay constant are calculated to be
B~ =1.011+0.19 and fz =0.105+0.035 GeV. This is in
qualitative agreement with results from 1/N, expansion
and from sum-rule methods, ' which give 8~= —,

' and

B~fb =(0.115+0.015 GeV) and (0.190+0.03 GeV), re-
spectively. We choose here to implement the lattice
QCD result as it is based on a more fundamental ap-
proach. This result, however, still uses a quenched ap-
proximation and involves as extrapolation to the 8 meson
mass. It is therefore not totally reliable. We first choose

2a, (A~cD, mb )
X@CD 1 ( 7T —)

3&

a QCD correction factor. We use for I ~ the value of
Ref. 10: (1.15+0.14) X 10 ' ps. Another value was pub-
lished last year, " giving rs =(1.31+0.14) X 10 ' ps.
We have checked that this ambiguity hardly affects the fit
and the numbers we give are compatible with both ~z
values. The main uncertainty comes from the value of
the bottom-quark mass which we shall allow to be in the
range 4.6—5.0 GeV. The QCD corrections introduce
AQcD which we shall first restrict to the range 0. 1 —0.3
GeV (case 1), and then vary up to 0.4 GeV (case 2). The
value of I, enters in the phase-space corrections, but
given the smallness of m, /mb its precise value is not too
important. We shall allow it to range between its current
value 1.25 GeV and its highest constituent value 1.8 GeV.
Equation (6) also shows that the dependence on the
heavy-quark mass makes any constraints from the D life-
time useless for our purpose.

The second quantity which we shall study will be the
Bd8 d mixing' parameter
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to combine the errors on fs and Bz in quadrature and as-
sume a Gaussian probability distribution (case 1:
f~B~=0.011+0.0095 GeV ) and subsequently use only
bounds with a fiat probability (case 2:
0.0027 (f~B~ &0.04 GeV ).

In principle, one could include lepton distributions
from semileptonic B decays. These can be used to deter-
mine the ratio

~ U„b / U,b ~. We have shown' however
that, in the context of the Altarelli model, the theory is
arbitrary enough to accommodate values for that ratio as
high as 0.21 whereas the usual bounds from this model
are of the order of 0.14. This analysis has recently been
confirmed and extended to other models. ' The CLEO
Collaboration has performed a detailed analysis of their
data, and their results

~ U„& ~
/

~ U,b ~
& 0. 14,

~ U,b ~

=0.044
+0.010 will be considered in case 1. We shall assume the
conservative bound U„b~/~ U,b~ &0.21 in case 2. Also,
bounds on

~ U„b /~ U,b can in principle be drawn from
the nonobservation of charmless B decays, but the in-
terpretation of the branching ratios is very uncertain, and
bounds as high as 0.25 have been given.

Finally, we introduce the CP-violation parameters of
the K K system in the analysis. As in the B mixing
case, the long-range contributions can be factored out
into a bag parameter B~ and a decay constant f~, which
has been measured to be 0.169 GeV. The kaon bag pa-
rameter is calculable on the lattice, but the result is much
more uncertain due to the inapplicability of the CP-
switching symmetry. Gavela et al. quote the estimate
Bz =0.86+0. 11. Large-X, expansion gives Bz =—', +0. 1

and two recent sum-rule estimates yield
Bz =0.50+0.22 and B =0.58+0. 16. In case 1 we shall
take the lattice estimate at face value, assuming that the
probability distribution is Gaussian. In case 2 we shall be
much more conservative and limit the value of Bz to the
interval [0.3, 1.0].

The expression for e is well known:

Ls= g exp[[q, —t, (p, )]/25q; I

We adopt the equivalent definition

( )
2 1i2

ri pa

6q,
(10)

The maximum of L, defines the best fit. To evaluate the
errors, one should in principle calculate integrals such as

P2
I's ——I dpb f d "p,JLs,

Pl

with H the penguin height. The expression for H is
given in Ref. 29. It depends on the same parameters as
well as on an arbitrary hadronic scale p which enters only
via logarithms. We shall vary its value between 0.6 and 1

GeV. Another approach based on a 1/X, expansion is
discussed in the literature. All scales are fixed here, but
the strong dependence on the strange-quark mass re-
places the arbitrariness of our scale p.. We have checked
numerically that for reasonable strange-quark masses it
leads to the same results as Eq. (9).

Our various inputs, both for the parameter ranges and
for the experimental values, are summarized in the first
columns of Tables I and II. The problem thus amounts
to fitting 10 observables q, (i=1—10) to theoretical ex-
pressions t, (p, ) which contain 12 parameters p,
(a =1—12). The range of these parameters is constrained
by theoretical arguments. Most previous studies have
Axed some of the parameters to preferred valUes and then
varied others to get "bounds" on them. This procedure
has the advantage of simplifying the physical discussion,
but the reliability of the produced bounds is questionable.
We choose here to fit all the observables simultaneously
and to let all the parameters vary in ranges tabulated in
Table II. To get the best value for all q, and p„we mini-
mize a likelihood function. This function is normally
defined by the probability density

2i/26m
the probability for pb to be in the interval [p„p2]. These
integrals are unfortunately extremely hard to evaluate
numerically as L& is null in most regions of parameterWe here assumed that the AS =2 box diagram dominates

the amplitude Ai, which is proportional to Bzfl... and
made use of the fact that the contribution from CP viola-
tion in %~2m decay is experimentally negligible. The
mass difference of the K K system Am, for which non-
perturbative contributions are not under control, is for-
tunately experimentally known to be 3.521 peV. The ex-
pression for A, is given in Ref. 27. It depends on m„mb,
m„and A&cD and introduces the products

~ U„U,z ~
and

We then consider the direct CP-violation parameter
e'. We limit ourselves to the leading contribution from
the QCD penguin diagram and make use of the fact that
for K ~~~ decay, the ratio Re 32/Re 3o is experimen-
tally known to be = —,', . We so obtain

space. A similar procedure should be adopted to calcu-
late the constraints on the various q; from the joint fit.
Given these difhculties, we choose another procedure to
define the various errors. We consider the quantity

CT )
= 111111(L )

b 1' 2
a

which is the minimum of the likelihood function for pb in
the interval [p &,p2]. As the observables are independent-
ly measured, the probabilistic significance of o. , is the
same as that of the usual standard deviation. However,
this definition is not totally satisfactory as a fit with all
quantities away from their central value by an amount
5q is equivalent to a fit where one of them is off' by
v'105q, . One does not want a large number of good fits
to cover up a large discrepancy for a single quantity. We
shall thus also use the alternative likelihood function

ReA2/Redo cz~2~3sin(&)

C]C3
(9)

(&) with J a Jacobian, and from these subsequently calculate
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TABLE I. Allowed ranges of observables. The signification of o. is explained in the text. In the last
two columns the top values refer to absolute bounds, the second line to our best estimate.

Observable

I U,bl

I U, bl

~~(10 " s)

(B —B )

e(10 )

Input data

0.9747+0.0011

0.2197+0.0019

0.21+0.03

& 0.66
0.96+0.12

0.044+0.010

& 0.21

&0. 14
11.5+1.4

11.5+1.4/13. 1+1.4
0.70+0.13

2.275+0.021

3. 1+1.1

Best fit

0.9754

0.2202

0.0048

0.2198

0.9745

0.044

0.014

0.42

0.9990

0, 11

11.5

0.70

2.2750

3.35

0.9750-0.9758
0.9753-0.9756
0.2183-0.2216
0.2195-0.2207

& 0.015
0.0069

0.217—0.222
0.2191-0.2204
0.971—0.975

0.9743-0,9747
0.042 —0.081
0.041 —0.050
0.005 —0.031
0.006—0.017
0.039—0.082
0.039—0.048
0.996—0.999

0.9987—0.9991

& 0.031

& 0.047
10.0—12.9
11.1 —13.4

& 0.57

& 0.67
2.264 —2.290

2.2744-2.2752

2.2-4.4
2.7-3.7

0.9746-0.9764
0.9748-0.9761
0.2159-0.2235
0.2173-0.2230

0.017
0.0082

0.214—0.224
0.2169-0.2226
0.969—0.975

0.9734-0.9752
0.039—0.097
0.039—0.062
0.004—0.033

& 0.020
0.036—0.097
0.037—0.060
0.994—0.999

0.9980-0.9992

& 0.025

& 0.036
8.71 —14.3
9.64—14.7

& 0.44

& 0.50
2.241 —2.3 13

2.2713-2.2756

1.1-5.5
1.8-5.0

iq, t (p, )—
L2 =max

&a 5q,
(12)

and the corresponding standard deviation

02=ml (Lnplp ~[@ p ])Pb Pl ~P2
a

(13)

As a disagreement of 1 standard deviation on all q, would
not lead to a problem at the 3o. level, we shall adopt this
second approach to evaluate absolute bounds (case 2).
The first approach, which takes into account all the q;
simultaneously, is in principle superior and will be used
in case 1.

Case 1 is an elaborate version of the usual analysis pro-
posed by many authors for the analysis of BB mixing and
gives the region of parameter space where the theory
would be most comfortable. Case 2 is derived from our
own work on BB mixing' ' ' which does not lead to
any significant lower bound on the top-quark mass. If
this kind of analysis were to disagree with experimental
results, we feel that there would be a serious problem for
the standard model.

The bounds for both cases are shown in Tables I and

II. We stress that these limits hold individually for each
quantity; e.g. , it is not true that if all parameters but one
are fixed to their best fit value, the error will be as indi-
cated. Likewise, the best fit is given only as an indication
and is not compelling in a strict statistical sense. We
should mention that there is no perfect fit. The minimum
number of standard deviations, o. , is always bigger than
0.8 in case 1 and 0.5 in case 2. This is due to the value of

~ U„d which is always fitted slightly higher than its mea-
sured mean. We have already given in Eq. (2) the bounds
on the KM matrix elements, corresponding to case 1. We
want to emphasize that the smallness of the values of

U„b ~/~ U,b ~
allowed at present is of the order of 0.03 and

almost any value within the present experimental limits
can be accommodated.

As an example of the power and use of our fit, we com-
pare our results for

~ V,d/V„~ with a recent Mark III re-
sults. ' Neglecting theoretical uncertainties, they obtain

~ V,d/V„~ =0.41 —0.095 at the Icr level, with a central
value of 0.059. Our fits give

~ V,„/V„~~=0.049 —0.052
(0.048 —0.053) at the 2o. level in case 1 and (2) which are
compatible with the Mark III bounds and can be used to
constrain the theoretical uncertainties of their analysis.

We can translate these results into the Wolfenstein pa-
rametrization [see Eq. (3)]. Our phase convention gives
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TABLE II. Allowed ranges of the input parameters. The signification of o. is explained in the text.
In the last two columns the top values refer to absolute bounds, the second line to our best estimate.

Parameter

S)

S2

S3

6 (rad)

B,j

w«D (Gev)

&IIfg («&')

m, (GeV)

m& (GeV)

m, (Gev)

p (GeV)

Range considered

0.21 —0.23

0.005—0.2

0.01—0. 12

0—2m.

0.11+0.006

0.1 —0.4
0.1 —0.3
0.3—1.0

0.86+0. 11
0.0027 —0.04

0.0110+0.0095
1.25-1.80

4.6—5.0

70-200
70-150
0.6—1.0

Best fit

0.2202

0.065

0.022

2.92

0.110

0.263

0.86

0.011

1.41

5.0

150

0.61

0.2188-0.2220 0.2158-0.2240
0.2196-0.2208 0.2173-0.2231
0.022-0.141 0.019-0.150
0.029—0.079 & 0.089

& 0.070 & 0.079
& 0.031 & 0.037

0.27-3.11 0. 10—~
0.93—3.00 0.75—3.06

0. 106-0.116 0. 102-0.121
0. 109-0.113 0. 108-0.116

No improvement
& 0. 16

No improvement
0.57—0.90 & 1.03

No improvement
& 0.009 & 0.007

No improvement
& 1.62 & 1.74

No improvement
No improvement
No improvement

& 105 &70
No improvement
No improvement

A,
2

1—
2

i.21—
2

—AA, 3/p +I)

Ak (P+iI))
&p'+n' (14)

~ ~3~(1 )2+ 3 A A(1 p+,iq)—
p +(1—p) +Il

—e'

W'e obtain the following formulas for A, , 3, p, and g:

(15a)

comes

J =s lsls3clcpsln(5)2 (16)

sz+S3+2+1 —sin (6)S2s3
S4

3

s3[sp+1 sIn (5)+s3]
sz+S3+2+1 —sin (5)szs3

S3S 2 SlIl ( 5 )

S2+S3+2V 1 —sin (5)S2S3

(15b)

(15c)

(15d)

Translating our fits in term of these parameters gives, at
the 2o. level, A =0.94—4. 8 (0.94—2.6), p=0. 26—0.87
(0.30—0.70), and Il =0.08—0.6 (0. 14—0.53 ), with the
numbers in parentheses for case 1 and the others for case
2.

CP violation can be described by a parametrization-
invariant quantity J, proportional to the area of the uni-
tary triangles. With our choice (5), this quantity be-

We obtain J =1.14X10 to 3.54X10 (6.97X10 to
4.23X10 ) at the 2cr level in case 1 (2).

We now examine the various ways through which
these results might be improved. First, the bounds of
Table I can be used backwards; i.e., they give the pre-
cision which should be aimed at to improve our
knowledge of (10). Accordingly, a measurement of
~U„b/U, b~ at the level claimed last year at ARGUS
would help. BBmixing would need to be measured at the
S%%uo level and e'/e at the 20% level. Similarly, the error
on e should be reduced by a factor of 3. As far as the pa-
rameters of the theory are concerned, very little improve-
ment from experimental inputs can now be expected.
Conversely, our determination of the KM matrix is in-
sensitive to the precise value of m, . We have checked
this fact by repeating the above procedure for case 2 with
the top-quark mass fixed at 110 GeV. The resulting
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bounds are the same, showing improvement only at the
1% level, except for

~ U,d ~
which would be restrained by

the interval [0.0048, 0.0123] at the 2o. level.
We can also translate our results into definite bounds

on quantities so far unobserved. For B, mixing, we use
the fact that

of the KM matrix. It implies that

s) =
I
V'md/m, +e "V'm. Im, I,

~ +md /m,

Si

(19a)

(19b)

td

(17) S3=
/Qm„/m, /

S)
(19c)

The values we obtain are high: at the 2o. leve1,
b, m (B,B,)/I =3.6—42 (3.4—136), the first interval be-

ing in case 1 and the second in case 2. These results can
be modified by differences in the long-range constants
B,fs for (bs ) and (bd ) mesons.

We also consider the CP-violating asymmetry in B de-
cays:

X(l+l+) —X(l l ) p —1/p
N(l+1+)+X(l l ) p+1/p

(18)

with p= ~(M*,2
—i1,*2/2)/(M, 2

—iI,z/2) ~. The formulas
for M, z and I,2 are well known and lead to the follow-

ing conclusions: Az is negative and, at the 2o. level,

As = —1.33X10 to —5.8X10 (
—2.4X10 to

—2.0X 10 ) for case 1 (2). A measurement of a positive
Az, or of any value outside the previous bounds, would
endanger the standard model.

Finally, we can utilize the approach of case 2 to see if
some parametrizations of the KM matrix are now ruled
out. We illustrate this using the Fritzsch parametrization

r =

imam,

Im, +e'"+'Qm, Im, ~, (19d)

This research was supported in part by the University
of Wisconsin Research Committee with funds granted by
the Wisconsin Alumni Research Foundation, and in part
by the U.S. Department of Energy under Contracts Nos.
DE-AC02-76ER00881 and DE-AM03-76SF00235.

with ~ an arbitrary phase. We fixed the ratios of quark
masses as in Ref. 32 except for m, /m, which results from
our fit. If we take these relations at face value, then the
model is excluded at the 2.2o. level in case 2. If we allow
Eqs. (19) to reproduce the KM matrix elements within
10%, then the model is allowed, and we get an upper
bound m, ( 117 GeV at the 2' level.

In conclusion, we have presented here precise bounds
within which the standard model remains valid and thus
given the precision which the experiments should aim at
to reveal new physics, or to submit the electroweak
theory to its most stringent tests.
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