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B-meson decay constant on the lattice and renormalization
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We compute in perturbation theory the relation between the 8-meson leptonic decay constant F&
computed on a lattice by the 1/mb expansion in the manner of Eichten and the continuum: i.e., the
physical value of Fz. To that aim we compare the QCD radiative corrections up to order a, of the
axial-vector-current correlator for different quark masses with the radiative corrections of the
effective operator which replaces the correlator in the 1/m& expansion. The latter radiative correc-
tions are computed in the continuum and on a lattice. For this effective operator we recover the
anomalous dimension y=2 already found by Shifman and Voloshin. Our final result is that
F& ——0.8F&"', only weakly dependent on lattice spacing and AQcD.

I. 1/M EXPANSION AND EFFECTIVE OPERATOR

Lattice calculations lead to rather successful estimates
of hadron properties: masses, decay constants such asF, Fz, etc. When considering states which include one
or two charmed quarks the situation becomes trickier
since present lattices have am, = —,

' and one has no con-
trol on corrections of the order am, where a is the lattice
spacing and nz, the charmed-quark mass. For the b
quark the same techniques are out of question since
anzb)&1 for any presently realistic lattice. A new ap-
proach is necessary. The basic idea was proposed by
Eichten. It consists of performing a I /mb expansion of
the heavy-quark propagator. Then any useful Green's
function such as correlation functions can be calculated,
to some order in I/mb, only from the knowledge of the
light-quark propagator and the gluon fields, which in
turn can be estimated on a lattice. In principle with this
method one can get an answer from the lattice up to
corrections of the order 1/mba to some power. In fact in
what follows we shall stick to the lowest order in 1/mba.
Numerical calculations on lattice have already been
done' but they can only give rather loose bounds on Fz
by lack of statistics.

We need also to know the exact relation between the
lattice result for F~ and its continuum value, and to that
aim we must compute the radiative corrections both in
the continuum and on the lattice. However, some care is
needed since the 1/mb expansion breaks down for the
frequencies of gluon fields which are not small compared
tO nab.

To state more precisely the problem, let us first recall
what happens in the case of F (Refs. 3 and 4). One com-
putes the correlation function of two axial-vector
currents. These have a vanishing anomalous dimension
due to partial conservation of the axial-vector current.
The local axial-vector current on the lattice has also no
anomalous dimension but it differs from the correspond-
ing operator in the continuum by some finite radiative
corrections. These corrections come from the high fre-
quencies which differ on a lattice and in the continuum.

Let us now consider the current by&y5q. As in the
case of F the correlation function betw'een two such
currents leads to Fz. As we have argued before, the radi-
ative corrections in the continuum are finite (including
some logarithmic dependence on mb ). On the lattice the
continuum limit would be subtle to find out since it must
go in two steps: for a &&mb, one must consider the
operator obtained from I /mb expansion with the b de-
gree of freedom frozen out; but for a '&)mb the b
quarks propagate on the lattice and one must compute
the original correlation function between b y„y 5q
currents. However, this program would be particularly
dificult to perform.

Therefore we adopt another strategy. . We will use as
an intermediate tool the effective operator which results
from the I/mb expansion on the continuum. This opera-
tor having an anomalous dimension, its matrix elements
depend on the renormalization point. In a first step we
compare in the continuum the exact correlation between
by„y~q currents and the result of the effective operator
for a given renormalization point, and in a second step
we compare this effective operator on the lattice and in
the. continuum, for the same renormalization point and
for some lattice spacing. Of course, we expect that in the
final result any dependence on the continuum renormal-
ization point will disappear.

In the remainder of this section we will summarize the
I/mb expansion, in Sec. II we will compute the relation
between the exact current correlator and the effective
operator in the continuum, and in Sec. III we will com-
pute the renormalization of the effective operator on the
lattice, using Wilson fermions.

A. Formal 1/mq expansion

In the Euclidean metric let us define

P(t)= f dx((qy y b) (by y q)„, )e' '" .

At large t the lowest pseudoscalar state dominates the
sum over intermediate states:
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P (t) —
[ (0~ bypy, q ~E7 & ('e

~ 2M~

—M~t=F~M~e (1.2)

Pi «(am, mb r)

—m t 1=e ', dp UTr
1+yo Slatt(0 .0)

2

where we have taken p=0. The correlation function in
(1.1) can obvioulsy be expressed through a path integral
integrated over gauge fields (we assume the quenched ap-
proximation):

1
&(qy py» }p(bypr5q). , i &

=

XT1'[Sq(x t '0)ypy5

XSb(0;x, &)ypy g],

(1.3)

where 2M is the integration measure times the Faddeev-
Popov determinant and the gauge-fixing term, Sb (Sq) is
the b (q-) -quark propagator in the background gauge
field A.

To lowest order in 1/mb the b propagator is equal to

Sb(0;x, t)=P 0 5(x) 8(t)e
2

mbt 1+QQ+8( t)e—
2

(1.4)

where mb is the lowest-order b-quark mass, i.e., its bare
mass, and where

Xo 0P =P exp ig dzp A p(0 zp)i
3'0

—m0t 1P (t)=e ' —2)A e

XTr
1 —

yo
2 y y S (O;O, r)rpr5

t being the usual color Hermitian matrices. The ap-
proximation (1.4) is valid only as long as the background
gauge field is smooth enough. If, neglecting for one mo-
ment this caveat, we simply substitute (1.4) into (1.3) and
(1.1) we get the following approximation for P(t) when
t &0:

X(U, zUz3 U, , )

(1.7)

where q=tla. The naive a~0 limit transforms (1.7)
into (1.6) and thus the lattice estimate of (1.7), via Monte
Carlo methods, for instance, would give an estimate of
(1.1), i.e., of Fji.

B. Radiative corrections and renormalization

We now return to the problem of the high-frequency
gluons. They have two effects. First they renormalize
the relation between PH(t) in (1.6) and P(t) in (1.1).
Second, as it is well known, the high-frequency gluons are
the source of finite differences between the lattice and the
continuum, because of the fact that at small distances the
discretization of space-time introduced by lattice approx-
imation shows up.

The fact that the radiative corrections introduce
differences between (1.1) and (1.6) can be seen through
the following argument. The expression (1.1} is the non-
local product of two partially conserved currents
[Bp„=0 ( mb )] and these currents have (because of
Ward identities} a vanishing anomalous dimension. Ra-
diative corrections only bring in finite contributions since
for high frequencies (larger than both mq and mb) the
vertex correction exactly cancels the quark field renor-
malization diagrams.

On the other hand, the formula (1.6) corresponds to a
static b: i.e., an infinite-mass b quark; there is no more
current conservation (Bp„AO), the high-frequency can-
cellation never occurs, and the sum of all diagrams in
Fig. 3 has a logarithmic divergent ultraviolet contribu-
tion. It follows, as first noticed in Ref. 5, that the Green's
function in (1.6) has a nonvanishing anomalous dimen-
sion and its value depends on the renormalization point p
and on the renormalization scheme. The same is true for
(1.7) whose value has some lna behavior when a ~0 with
the same anomalous dimension as (1.6). Our aim is to
know the relation between (1.1), which is the physically
relevant quantity, and (1.7), which is computable by nu-
merical methods. Being interested in the large-t limit we
will define the renormalization constant by

XP 0 (1 6) P(mq, mb, t) Z(a, mq, mb}P~ «am, mb, —,(1.8)t~ oo b'a

—mbt0
Except for the c-number factor e ", the operator

whose vacuum expectation value is taken in (1.6) depends
only on light quarks and gauge fields. It is a gauge-
invariant quantity as expected

On the lattice the Green's function corresponding to
(1.6) is

where we have made explicit the dependence of P (1.1)
and P~,«(1.7) on the masses. —M~tAs we have stated in (1.2) P(mq, mb, t)-e for
t~ Do. In this paper we work in perturbation theory in
which case the behavior of P(m, mb, t) is dominated for
large t by the lightest physical states, i.e., the threshold of
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the quark-antiquark continuum: it behaves as—(mb+m )t
e " ', where m and m& are the "physical masses. "
By "physical masses" we mean the masses which would
be the physical masses in a nonconfining theory, also
often called the pole masses, and which have been shown
in Refs. 6 and 7 to be renormalization point and renor-
malization scheme invariant. For the light quark this
means that the mass which we take in the right-hand side
of (1.8) is not the lattice mass as defined, for example, in
Ref. 8 but the pole mass. For the b quark the radiative
corrections (see Sec. III) lead to a mass renormalization
which diverges in 1/a when a —+0. We will fix mb so that
the resulting mass, after radiative corrections, is the pole
mass of the b quark.

With these definitions of the masses the threshold is
the same on both sides of (1.8), and the ratio between P
and P&,« is indeed a constant independent of t when
t ~ ~. In Ref. 2 the bare b mass is also taken with a 1/a
divergence to compensate the radiative correction, and it
is argued that this bare mass is the one which must be
used in order to compute bb states using static QCD-
derived potential from the lattice calculation of the Wil-
son loops.

In the next two sections we will compute in the Feyn-
man gauge P(mq, mb, t) and P~,«(amq, mb, t/a). For
practical reasons it will be necessary to compute also
PH(p, m, mb, t), and we define

Ztt(p~mq~mb ) = hm [p(mq, mb, t)/PH(mq, mb, t)] .

(1.9)

FIG. 1. Schematic representation of the diagrams contribut-
ing to P(t)).

2ImII(s')ds'
II(s) =polynomial+

'o (s' —s)(s' —si )"

(2.2)

for any s& and for so equal to the physical threshold ener-
gy squared. For large t, the polynomial does not contrib-
ute. Taking s, =0,

27T i s'+qo s'"

(2.3)

2I IIp(t) — (g )2nf d d
—iqot

(2n. ) i s'"(s'+qo)
(2.4)

where we have exchanged integrals (both integrals con-
verge). We integrate (2.4) using residues, qo =ki v's', and
end up with

II. CONTINUUM RENORMALIZATION

1 ~ 2ImII(s')Pt=
2~ '0 &s' (2.5)

A. Radiative correction to the axial-axial correlator

We want to compute the radiative corrections to
P (m, mb, t) defined in (1.1) up to the order a, . At first
sight it seems that we have to compute two-loop dia-
grams and then a Fourier transform. But if we did the
computation this way we would have a hard time dealing
with ultraviolet divergences of the quark loop which
would play no role in the final result since we need an
answer for large t. Typically we assume t ))1/m
& 1/mb. To short circuit this difficulty we will use
dispersions relations. To deal with infrared divergences
we introduce a gluon mass A, . Of course, no dependence
on A, must remain in the final result. Note that the use of
gluon mass as an infrared regulator is possible here since
we will nowhere use the gluon-gluon coupling in our
computation. In order words, our diagrams are QED-
like. We start from

P(t)= f dqoe ' II(q=O, qo), (2.1)

where II(q) is given by the sum of the diagrams schema-
tized in Fig. 1.

For —qo=s &0 (Euclidean metric) and from its
analyticity II(s) verifies a subtracted dispersion relation:

—(mb+m )t 3V 2P't =e
7T2

mbmq

t(mb+m, )
(2.6)

Figures 2(b), 2(c), and 2(d) lead to

P'(t) =P"(t)= ,'P'(t)——
4a,

ln +y@+ 1 P'(t), (2.7)

where yz is Euler's constant ( =0.577).
In the calculation of (2.6) and (2.7) we have assumed

A, «1/t «mq, mb From (2. .7) the sum of all the dia-
grams with three cut lines vanishes.

Each of Figs. (2b'), 2(b"), 2(d'), and 2(d") gives a result
proportional to Z2 —1, since they only amount to a re-
normalization of the cut lines (see Appendix A for a dis-
cussion of this point) with

The main outcome of formula (2.5) is that, for large t,
only a small area in the physical cut, just above the
threshold, will contribute. In fact when t »1/mq, 1/mb
one can apply the nonrelativistic approximation to the
cut quarks. The cut diagrams that contribute to ImII(s')
are depicted in Fig. 2.

Figure 2(a) leads to (see Appendix A)
' 3/2
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p2
Zz(p, , m, k, ) —1=— ln +21n

317

A,
2

+4
Rep' (t) as 3(inb mq }=+ ' ln

P (t) 3~ mb+mq

'mb ~ —6
m

(2.&)

where the mass m is mb (m ) for Figs. 2(d') and 2(d")
[Figs. 2(b') and 2(b")], and where we have used the
modified minimal subfraction ( MS ) renormalization
scheme. Now Figs. 2(c') and 2(c") have the same real
part and opposite imaginary parts:

mbmq+ ~A'S
mb+m

' 1/2

t 1/2~2

—[Zz(p, mb, l.)+Z~(p, ,m, i.)] . (2.9)

Finally, the total contribution of diagrams of Fig. 2
leads to

' 3/2

(a}

—(mb+m )t 3V 2
Bib, mq, t =e

2(Xq
X 1+

+-', a, &2m.

mbmq

t(mb+m )

(2.10)

3(mb —m ) mb
6+ ' ln

mb +mq
1/2 '

mbm t

mb+mq

, q

(b)

The self-energy graphs Figs. 2(b'), 2(b"), 2(d'), and
2(d") lead also to mass renormalizations which do not
contribute to the renormalization constant Z (1.8),
whence we are not interested here in their exact value.
.For reasons explained in Sec. I B, we take for the renor-

malized masses the pole masses and not the (MS) ones.
It is understood that all the masses in (2.10) are the pole
masses, since they give the best estimate of the correla-

(c) B. Renormalization of the e6'ective operator PH( t)

, q

(c') (c")

To expand the operator PH(t) (1.6) up to g, we expand

both the string operator and the light-quark propagator
up tog:
I' =1+ 'g A

g f —dr' f dq" A (q')A (q"), (2.11)
2 0 0

S(0, t;0)=So(0,t;0}—ig f d x So(0, t;x) A (x }S&(x;0}

g f d—x d"y So(0, t;x)

X A (x)SO(x;y) A (y}SO(y;0}, (2.12)

(b')

7+75

q

(b")
where S0 is the bare propagator, and 2"are 3 X 3 Herrni-

tian matrices. Then PH(m, t) is renormalized by the dia-

grams depicted in Fig. 3, where the double line depicts
the straight temporal line between (O, t) and (0,0), and
the gluon propagator coupled to the double line propa-
gates only the time component of the gluon 6eld:

Figure 3(a) leads to
—(mb+m )t

PH(m, t) =e

XTr
1 —y0

YOl 5

I+y0
VQV5

FIG. 2. Cut graphs contributing to the absorptive of P (t).

3 2p(3) m

/~2

' 3/2

(2.13)
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(a) (b) cg 'k e ~lyl
G(y)= f (2.18)

where to is the gluon energy: to=+k +A, . The integral
in the right-hand side (RHS) of (2.17) gives

(c)
G (y)+ G (

—y)I =2 dy t —y (2.19)

or

FIG. 3. Graphs contributing to P~(t) and P&,«(t). The dou-
ble line represents the path-ordered product of gauge fields
along a temporal line.

. f dy(t y—) fdkk e
0(4~)"-""r

2

(2.20)

where we have used co=k ()(.=0). After some change of
variables

from (2.6) and (2.13) we check that

P'(m&, rn~, t) =PH(rn„, t),

where m, is the reduced mass

mbmq
m =

I' m
qmb+mq mb

Figure 3(b) gives [cf. Figs. 2(b), 2(b'), and 2(b")]

PH(m, p, , k, , t) =Z2()((,, m, A, )PH(m, t)

(2.14)

(2.15)

24
PHd(m, p, i, , t) = —g— ( t)4 d

(4 )(d —()/2r
2

L

X f dx (1—x)x'
0

X f dyy e «PH(m, t),
24

PJt(m, p, A, , t) = —g—
(4 )(d ()g2r d —1

2

(2.21)

+ — ln +7 E+1 PH(m, t)
4 0's At

3 7T 2

(2.16)
we end up with the result

1 r(d —2)PH (m, t)

(2.22)

with Z2 in Eq. (2.8).
The graph in Fig. 3(d) is given by ( t)2e «E

P"(m, )L(, , A, , t)=+ ln PH(m, t) .

42

PH(m, p, A, , t) = —p4

X f dr, d ~Gr( ~
—rr, )PH(m, t),

0
(2.17)

where d is the dimension (we use MS renormalization)
and G is the gluon propagator (time component) in the
Feynman gauge:

(2.23)

Note that the coefficient of lnp is different from the one
in Z2, which will lead to a different anomalous dimension
for PH than for P.

We are left with diagram in Fig. 3(c), which is more
difficult:

PH(m, i((, , k, t)= ——', g , p "e ' f d x f dr Tr
0

1 +f{)
S(t,x)yoS(x, O) G(r, xo) . (2.24)

After Fourier transformation and some manipulations we get

PH(m pA t)=4g p "e f e Tr
1+yo

[So(p)roJ(p)+ I (p))'oSo(p) l (2.25)

where

J(p) = d k 1 1 S(p+k) —S(p —k)
(21T)" tko k +A, 2

(2.26)
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After integrating over k and using yo= 1 from the projector in (2.25) we get

J(p)= — dx ln
1 1 p

16m o xm+x 1 —x@+1—xA,

i p—y(.1 —x) ip—o+m [xpo+x (1 —x)p +xm +(1—x)A, ]'~2+xpo

16m o i [xpo+x(l —x)P +xm ]'~ [xpo+x(1 —x)P +xm +(1—x)A2]'~ —xPo
(2.27)

The first term in (2.27) leads to an UV renormalization

2cxs p2e
PH'(m, p, A, , t)=+ ln

2 PH(m, t)
3'7T

(2.28)

4 A A, tP' (m, p, A, , t)= —— 2 ln +y +1

up to terms of the order (1/mt) ~ . The most subtle part
is the evaluation of the second term in (2.27). We refer
the reader to Appendix B. We end up with

and that there remains no mass singularity when m —+0.
Details of the calculation are given in Appendix D.

We start with the case of P, and we use the same nota-
tions as in Sec. II A. From (2.5) and (A2) we get

3 1 —mbtP'(t) = —e
&2 t3

(2.32)

Then we take the m ~0 limit of (A10) assuming also
that s —mb «mb, which corresponds to the assumption
I /t « m&. A lengthy calculation leads to

A,2t—ln
= 3

2k "k ImII = y 1+ ( —"+—'m~)
2 3

+In(mt)+2 —v'2~3~ v'mr
Pl+g ln

2%2
(2.33)

XPH(m, t) . (2.29) where y =s —mb. As expected, all the singularities in m
have been canceled. From (2.5) and y « mz, we get

From (2.16), (2.23), (2.28), and (2.29) we end up with

0's P 4m
PH(m, p, t) = 1+ ln + i/2m''mt ——'.

7T 2 3 3

CX I t
P(t)= 1+ —", +2y~+ —94m +ln P'(t) .

(2.34)
XPH(m, r), (2.30)

where all dependence on A, has disappeared as expected.
The coefficient of Inp in (2.30) agrees with the anoma-

lous dimension y =2 found in Refs. 5 and 9 for I'~. From
(2.10) and (2.30) we get

Next we compute the diagrams of Fig. 3 in the case
m =0. The diagram of Fig. 3(a) leads to

2m' m t

ZH(p, plq, mi, ) —1
CX

ln
4/3 2

2
fPl b

(2.31)
3 1 mb'—e

m ~0~2 3
(2.35)

where ZH has been defined in (1.9)
Figure 3(b) (massless quark self-energy) leads in MS to

C. The mq~Olimit
g p t e E

PH(t) = —— ln
16m 4

PH(t) . (2.36)

The result (2.31) has been achieved under the assump-
tion A, «1/t «m, mb, but we do, of course, believe that
it still holds for any value of the ratio ( I /t)/m~ Indeed, .
the difference between P (r ) and PH(t) is of ultraviolet ori-
gin and the infrared contributions must cancel exactly.
In other words, the di6'erence must have no dependence
in the quantities such as I!tor m~, and we would like to
check this independence. Unhappily, it is difticult to
check it in the most general way because the analytical
formulas become too complicated. We prefer to perform
this check in the other extreme limit: A, , mq « 1/t « mb.
This will also help us to be sure that the lnm dependence
in (2.10) is a consequence of the approximation I/t « m~

(2.37)

Finally, Fig. 3(d) gives obviously the same correction as
in the case of nonvanishing m (2.23).

Adding (2.23), (2.36), and (2.37) to (2.32) we get
r

2t2
PH(t) = 1+ ln

4
+2y~+ +— PH(t) . .4n 8

9

(2.38)

The vertex part leads to

4 g2 p2t2
PH(t)= —

—,'ln +y~+1+ PH(t) .
3 4m.



8-MESON DECAY CONSTANT ON THE LATTICE AND. . . 1535

From (2.38) and (2.34) we get for ZH(p, m, mb) the
same result as in (2.31). This is precisely what we expect-
ed.

III. LATTICE RENORMALIZATION

We have now to find the connection between the
effective correlation functions PH(m, mi„t) in the con-
tinuum (1.6) and P i«( am, mb, t/a) on the lattice (1.7).
The relation between the 1attice operator

1+yp
O„„(a ') =q(0) U» U, , U. . .q(t) (3.1)

and the continuum one in a given renormalization
scheme

—5 mbt
O,.„,(~)=z„«(~a,g)O„„(a

—
)e (3.3)

and Zi,« is determined from the 0 (g ) corrections to PH
and Pl,«We have performed the lattice perturbation
theory with the Wilson action for the fermion:

S(f)= g —g [P(x )(r —y„)U„(x )1t (x +p)
1

+iT(x +p)(r +y„)U„+ (x)g(x)]

of the operators 0 in (3.1) and (3.2) differ from the
Green's functions defined in (1.6) and (1.7) only by the ex-

—m~t0
ponential factor e ' [remember that we do not take the
same bare mass in (1.6) and (1.7) in order to compensate
the term 5 mb (3.3) and end up with the same pole mass
on both sides]. We have

1 +Qp
O„„,(p) =q(0) P

2 + m +4—g(x)P(x)
a

(3.4)

X exp ig dr Ao (r, 0)t q(t),
0

(3.2)

where p is the renormalization point, can be reasonably
computed in perturbation theory if the scales used are
much greater than A&cD. Note that the vacuum averages

l

The O(g ) corrections to Pi,«(t) are given by the dia-
grams of Fig. 3 and are computed by comparison with
the corresponding continuum diagrams we have for PH(t)
(see Appendix C).

The large-t behavior of the lattice diagrams is

() 3
2m 3 1ia«2 P q
7T q

3/2 —m t —m t
e 'e

2

Pi (t)= —21n(m a )+4 lna«
m t

2
+ 5'V E F0000

r g coski

+ ', J''"d'k
4~ 2

2k
+sin kisin

46]62
r 1+ + (3.5)

2
P' (t)= ——21n(m a) —41n]att q

m t

2
5y E +FPPPP 6

' 1/2
mqt+4~ 2'

„k~g sin"

+ ', I "d'k '
4m

1

462

a ™bt4» +21'a+Foooo+Foooi
16~2 3 2a

where Fpppp and Fpppl are the numerical constants defined in Ref. 10: Fpppp-—4.369 and Fpppl
——1.311; yE is the Euler

constant;

b. , = g sin, b,2= g sin ki +4r 6~i,

and

4 g' 1 +-d'k
3 16m. a —~ 2~ g(1 —coski)

(3.6)

The sum of all diagrams in Fig. 3 amounts to
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2Foooo+Foool
p„„(t)= 1+ —21n(mqa) y—E+

31T

25
6

r2 g cosk2
1+

12m 262

g sin k~sin

4hlh2

k~
2+sin

+ At 2r2 —1 1+
Lmbt

Pl «(t)e (3.7)

Comparing (3.7) with (2.30) for PH(t) we derive the
0 (g ) expression for Z1,« ..

4/b

2 2

(3.8)
P„„(a,t), (4.1)

where C is defined by

+
12m

k~2g sin
2

2Foooo+ Fooo& 9lnC2= ———y E

r g cosk2

+
262

P ( t) =Z (a, m, M& )P1,«(a, t ),
)

' 12/25

a, (m, e-2")Z(a, m, Mb) =

Numerically, we get, for a '=2.6 GeV ', mb =4.5 GeV,

where a is the lattice spacing, C is the constant defined in
(3.9), and b = —", .

We thus end up with

k~g sin k~sin

4hlh2

Z(a, mq, M&) =0.80, AMs=200 MeV,

Z(a, mq, Mb) =0.83, AMs=100 MeV .

Remember that, from (1.2),

(4.3)

2r —1+ 1 (3.9)

Numerically, ln(C ) =7.43 for r =1:i.e., C =41.l.
It can be useful to know that the contributions to the

numerical constant lnC from the different diagrams are
0.17 from Fig. 3(d) (heavy-quark renormalization), 2.97
from Fig. 3(c) (vertex renormalization), 4.29 from Fig.
3(b) (light-quark renormalization).

IV. FINAL RESULT AND CONCLUSION

From formula (2.31) we see that, choosing

p =mbe, we get PH(t)=P(t). It was expected that
this would happen for a value of p close to mb since
PH(t) is an approximation of P(t) only for the momen-
tum scales «mb. In other terms, we can say that the
evolution of (1.1) as a function of the renormalization
point has a vanishing anomalous dimension down to the
vicinity of mb and that it gets the anomalous dimension
of (1.6) below that region. The coefficient e ~ gives a
measure of the effect of the transition between these two
regions in the MS scheme.

From (3.8) with standard renormalization-group in-

tegration we get

Z 1/2F latt
B B (4.4)

where F~"' is the result of applying (1.2) with P1«, instead
of P In fact Z. (a, mq, Mb) happens to be slowly depen-
dent on a ', m&, and A—s. For example, keeping
A~~=200 MeV we get

Z(a, mq, M&)' =0.81, a '=1.6 GeV,

Z(a, mq, Mb)' =0.79, a '=3.0 GeV .
(4.5)

F M ~[a(m e )]Q Q s Q
(4.6)

which shows that the radiative corrections studied in this
paper bring in logarithmic corrections to the zero-order
result,

FQMQ ~ constant independent of MQ, (4.7)

The results (4.3) and (4.5) are rather encouraging since
they show that the perturbative correction to FB is only
20%. It raises the hope that the lattice calculations will
be able to give a reasonable estimate for FB when the sta-
tistical errors will be suSciently reduced.

Formula (4.2) also teaches us something about the way
the leptonic decay constant F& of a Qq meson varies (Q
being any heavy quark) as a function of the quark mass

m& and/or the meson mass Mt1. From (1.2) and (4.2) we
see that (see also Ref. 5)
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F~ + 150 MeV . (4.8)

obtained by equating P(t) in (1.2) to PH(t') in (1.6). The
behavior (4.7) is an old result from the quark model: The
Qq tneson wave function becomes independent of m~
when m& —+ ao and this implies (4.7).

The erst attempts to compute F~ from the lattice"'
have used the formula (4.7) (FsMs=FDMD) and the
value of FD which can be safely computed by the stan-
dard method ' as long as m, a ((1. The results are
Fs-—85 MeV (Ref. 11) and Fs-—74+12+21 MeV (Ref.
12).

However, the use of (4.7) to connect Fs to FD is ques-
tionable, not only because of the absence of the logarith-
mic corrections in (4.6) but mainly because it is by no
means obvious that the charmed quark is heavy enough
to allow the use of the asymptotic formulas. Therefore, it
has appeared necessary to try a direct Monte Carlo com-
putation of F~ using the technique proposed in Ref. 1

with the more reasonable assumption that the b quark is
heavy enough. Unhappily, because of large statistical
fluctuations one has up to now only been able to derive
an upper bound:

FIG. 4. Quark-propagator renormalization.

In deriving (4.8) the radiative corrections computed in
this paper, (4.3) and (4.5), have been used. Qbviously
more statistics is needed to get a more precise answer.
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APPENDIX A

In this appendix the index 1 (2) refers to the q (b)
quark. The diagram of Fig. 2(a) is given by

dp, dp2
21mII„",'(k )=3

z 4 (
—)Tr[y„y5( —P2+m2)y, y5(P'&+m&)]

(2m ) (2m. )

X(2m. )5(p, —m f )(2n. )5(p2 —mz)(2n) 54(k —p, —pz)8(p, )8(p2)
leading to

(A 1)

m &+6m&m2+m22 2

21mII„"„'=(k„k,—k g„) 1—
$ 2$

(m —m )

2$

+k„k ~~ (m, +m~)
4~ $ $

(m, —m2)1— (A2)

where s =k and co= I Q[s —
(m t+m2) ][s —(m

&

—m2) ]I '~ . In the k rest frame only the longitudinal part (propor-
tional to k„k, ) contributes to Iioo.

Figure 2(d) gives the longitudinal part

2g 12k"k'ImII„"„'"(k )= J d(ps) IS(p2.1) (s+m, +m2)+8(pt l)(p2 1)(mf —m2)
2m '

+(pq. l)[ Ssmz(—mi+mz)+16m2(m2 m f )]

+4m2(m, +m2) [(m, —m2) —s]I,
where d(ps) is the phase space:

d(ps)=d p, d p2d 15(p, —m f )5(p2 —m2)5(l )5&(k —p, —
p2 l)8(p& )8(p2—)8(l ) .

Figure 2(b) is obtained from (A3) by exchanging p &
and p2. Each of Figs. 2(c)—2(c") gives

2
12k "k"ImII"'(k ) =+ d(ps)

.(2~)' (p&.1)(p2 1)

(A3)

16(p& 1) (m, m2+m2)+16(p2 1) (m, m2+m, )
—16(p, l)(p2 l)(s —2m, m2)

(m —m )

$2

—Ss(mt+m2)[m, (pt 1)+m2(p2 1)]—8(m t+mz )(m2 —m, )(p, —p2) ~ 1

(m&+m2)+4s (s —m, —m2) (A4)
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Adding up Figs. 2(b), 2(c), and 2(d), i.e. , the diagrams with three cut lines, and integrating over the phase space we get

T

2k"k"IrnII,' '(k )= 2(m, +mz) Lz(s)+4s (s —m, —mz)~ Lo(s) ——ln ln
(2~)' s 1 —

U 2(m, +mz)

—4s mzlc Jz(s) — ln
smzz 2(m, +mz)

—4s m i' J, (s) — ln
sm, 2(m, +mz)

4s vL—i(s) . , (A5)

where

(m —m )

$ $2

s —(m, +mz)
s —(m, —mz)

(m, +mz)

+ . &(p)
p —m +i e p —m +i e p —m +i E'

(A6)

The result is well known:

and A, is the gluon mass. For the functions J, , L; we use
the definitions in the Appendix of Ref. 13.

Now we turn to Figs. 2(c'), 2(c"), 2(b'), 2(b"), 2(d'), and
2(d"). Some subtlety arises with the self-energy graphs
Figs. 2(b'), 2(b"), 2(d'), and 2(d"). Each self-energy graph
has the e6'ect of multiplying the quark propagator by Z2
so that, naively, we expect these diagrams to multiply the
result of Fig. 2(a) by Zz(p, mq)Zz(p, m&). But this is
wrong. The point can be made clear if one considers only
the propagator of, say, the q quark (Fig. 4). We are look-
ing for the absorptive part of the sum of the two dia-
grams in

Z2S=
p m Xg + l 6'

(A7)

lim Im
e~o

1 1
Z

Z +l6' Z +lE' =i~5(z) . (A8)

The consequence of (AS) is that the self-energy graphs
amount to a factor Zz(p, mq)Zz(p, m&) without squares
(we thank J.-P. Leroy for this argument). The same re-
sult comes out if we apply the cutting rules without self-
energy graphs but with renormalized fields in the cut
lines. The sum of Figs. 2(c'), 2(c"), 2(b'), 2(b"), 2(d'), and
2(d"), i.e., the diagrams with two cut lines, is given by

where Xz vanishes on shell. Now we expect the absorp-
tive part to contain a factor Z2, not Z2 as naively de-
duced from Figs. 2(b') and 2(b"). The problem comes
from the fact that a naive estimate of the absorptive part
of (A6) has non-well-defined products of distributions of
the type P(1/z)z5(z). To get a well-defined result we
must keep e finite, compute the imaginary part, and send
e to zero at the end of the computations. The result is
that

2I PI ~I II g (2) $ g K

4 6 ~

3m]+3m2 —4m]m2 m]
2 2

m, —m2
2 2 ln —2 1—

m2

2 21+m2 m] m
2

ln- ln
4(m, +mz)

—(m, —mz) ReIO(s) —(m, —mz) [s —(m, +mz)z]ReI, (s)

+ (m i
—m z ) Re[I &

(s) I, (0)]+2s Re—K (s) —2( m
&
+ m z )Re[K (s) —K (0)]

m)+my m)2 2

ln ln
m& —m2

A,
2

4(m, +mz)

+2s ReIO(s)ln —2sReIi (s)(m
&
+m z )ln

2 m, +mz) ' ' 2(m, +mz)
(A9)

Finally the sum of all diagrams in Fig. 2 gives
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2k "k ImH, = cos= 3
4~

(m, +mz) (mi —mz)
S $2

2

x i+g
6~

3m ] +3m 2
—4m /m2 m]2 2

1n —2 1—
(mi —mzz) m2

t 3

+2sReIC (s) —2(m, +m z )Re[E (s) —X (0)]

m2+m2 m] m)m22 2

1n 1n
m i

—m z mz 4(mi+mz }

—(mi —mz) ReIIO(s)+[s —(mi+mz) ]Ii(s}I+(m i
—mz) Re[Ii(s) —Ii(0)]

[m,Ji(s)+mzJz(s) —(s —m i
—mz)Lo(s)+Li(s)] + (m, +mz) Lz(s) (A10)

CO 8m

in agreement with Eq. (4.2) in Ref. 13, except for the value of F„(0),for which we agree with Ref. 14. As expected, any
dependence in A, has disappeared in (A10) since the sum of the diagrams in Fig. 2 are infrared finite. For the same
reason, the mz ~0 limit in (A10) must be smooth, and this can indeed be checked (Appendix D).

The correlation function P(mz, m„t) is now given by Eq. (2.5). But the Laplace transform in (2.5) is rather difficult
to compute. For the sake of simplicity and since this corresponds to the physical situation (1.2) we want the result in
the limit t « 1 /m z, 1 /m „equivalent to the limit

l p l
« m z, m, . The result is

3M
2

2k"k ImII = (m +m ) 1—(mi —mz)
pv 4 1 2

2'
1+ 3(mi —mz) mi 4 mimzn—6+ 1n + As

m, +mz mz 3 ' (m, +mz)lpl
(Al 1)

in agreement with Eq. (A16) in Ref. 15. The Laplace transform (2.5) is now easy to perform, leading to (2.10).

APPENDIX 8

We give some details on the calculation of Fig. 3(c). We just consider the first term in (2.27). It contributes to (2.25)
for

4 2 p 2

g dx ln PH (m, t)(a)

xm +x (1 —x)p +(1—x)A,

P"(m, t) . (81)

The second term in (81) gives a contribution suppressed by 1/t compared to Fig. 3(a). Thus (Bl) leads to (2.28). We
now consider the second term in (2.27). We define

Jz(p)=—
—i(p y)(1 x) ip—0+m— [xpo+x(1 —x)p +xm +(1—x)Az]'~ +xpo

16m o i [xpo+x (1—x)p +xm +(1—x)A, ]' [xpo+x (1—x)p +xm +(1—x)g ]'iz —xpo

(82}

We have to compute the integral (2.25) with J(p) substituted by Jz(p) (82). We will first perform the dp integration.
To that aim we look for the singularities of Jz(p) and So(p) in the upper-half complex p plane. So(p) has the well-
known poles at p = —i+m +p . The square root in Jz(p) has a branch point at

i

1/2

po=i m +(1—x)p + 1 —X 2

and the cut extends up to +i ~. Let us define po=iy. For any y )m, there is one value of x,x, such that
+—xy +x(1—x)p +xm +(1—x)A, is real (imaginary) for x &x„(x )x, ).

We also define x,x+, the value of x for which the arguments in the ln of (82) vanish:

—x(1—x)y +x(1—x)p +xm +(1—x)A, =0 . (83)

For y ) (m +A, ) +p the denominator in the ln in (82) is imaginary with a positive imaginary part if x &x &x+.
Since 0 &x, &x &x+ & 1 we cut the x integra1 into four parts. For each part we compute the discontinuity in the ar-
gument of the integral (82) for po crossing the cut which is on the positive imaginary axis. The cut in the integrand of
(82) comes out to be
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0 forx &x, ,

i —(p y)(1 —x)+y+m2' for x, &x &x
+xy —xm —x (1—x)p + ( 1 —x )A,

0 for x &x &x+,

2
2

i—(p y)(1 —x)+y+m for x+ &x &1 .
+xy —xm —x(l —x)p +(1—x)k

The cut contribution to (2.25) is then equal to

(84)

28
3 167r (2~) m "* y —(p +m ) +xy —xm —x(1—x)p —(1—x)A,

x+d 4m (y+m) 1

«m+~1'+p' — y —(p +m ) V xy —xm —x(1—x)p —(1—x)A,

where we have neglected higher orders in 1/mt. The second term in (85) contributes to (2.25) for

(85)

4 g2 At
ln +yE+1 PH' (m, t)(t2)

3 2712 2
(86)

while the first term in (85) leads to
2

+— v'mtPH (m, t).34 2m
(87)

In the derivation of (87) we have used

dx &1+x +1
ln

o 1+x Vx
=in(B+1)ln(MB+ I+1)+in (2)—ln (v'B+ I+ I)—

—,'ln (B+1)

dx 1 1 dx—2f ln(1 —x) ——f ln(1 —x) .
1!(1/B + 1+1) X 2 1/(B+1) X

(88)

The 8 —+ ~ limit is

2

ln 1+x +
o 1+x x 4

(89)

We are left with the contribution of the pole p =i+p +m . Let us first consider the case x &x, . It contributes to
(2.25) for

e
—mte b P P e

—(p /2m)tt md 2 1 1 dx
arctan

7T' 2772 P 0 Ql —x
m x
P +1—x

(810)

using, for m «
~ p ~,

dx P X
arctan

0 +1—x m +1—x
~1„P+P
m m m

(811)

we find, for the contribution of the pole to (2.25), when x &x„

g 4 g $
2 2 — /2&mt —— 1+ ,' lnmt-— p dp e p ~ lnp Pzt'(m, t) .

3 2~' ' &2~
(812)

For x & x, the contribution of the pole to (2.25) is
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2
g —mte ™b ~ I e

—(p /2m)&

2n' (2m )' X

dx
- 1/2 ln

p
2 g2

x —(1—x)
m m

2
1/2

(1—x)A,

m
I

1/2
px —x —(1—x)
m m

(813)

4 g A, t
ln34~ m f p dp e ~ ~ lnp Pt't'(m, t) .

V2m p

(814)

using x2(p /m ) —(1—x)g /m &&x we get the follow-
ing contribution to (2.25):

is no more than the calculation of X'1"' already done in
literature. ' ' We have checked that we agree with
these authors. For example, the agreement of the
diff'erence between P&,« in (3.5) and (2.16) with the
difFerence between Eq. (10b) and (12b) in Ref. 8 is found
using the identities

+sin k„
+m 4d k

2 2 — (4b, )~ (4h )3

k„g sin
2

4m
(Cl)p'(mb, m, p, A, , t)+P' (mb, m~, p, A, , t)

PH (m, p, A, , t)+PH' (m, p, k, t) .
tytb ~ oo

4A,

(815)
[see Eq. (3.10) in Ref. 17] and

Now the sum of (86), (87), (812), and (814) gives
(2.29).

One important remark is in order here: adding
P'(m&, m, p, A, , t) and P' (mb, m, iti, , k., t) in (2.9) to
P'(mb, m, i4, A., t) in (2.7) and comparing with (2.28) and
(2.29) we get

The result of the vertex graph for the effective
operator's Green's function (1.6) PH is simply given by
the mb~~ limit of the vertex graph for the exact
Green's function (1.1). Since the same is trivially true for
the light-quark self-energy, we conclude that only the
heavy-quark self-energy gives different results for the real
operators versus the efFective operator.

APPENDIX C

sin " —r sin
2 2

+sin k„

k„g sin
p

2

451

'2

(C2)

In this appendix we give more details on the derivation
of (3.5). We need not be too detailed about P&,«since this

Now we consider P~',«(t). The equivalent of (2.27) on
the lattice is given by

bt c ~ ~ 4 2 +~ d p 'pot +K 4 iko(7+1/2)

p
' —~ (2m)

1 +$0
S(ap)Vp(ap, ap+k)S(ap+k) Gp(k), (C3)

i g y sinp —+ma+r g (1—cosp, )

S(p) =
g sin p + ma +r g(1 —cosp )

(C4)

the vertex i Vp (p,p +k ) is given by

where r and t are integers (time expressed in lattice
units), S is the quark propagator

Gp(k) =
4g sin-k„

2

XS(p +k)

Let us de6ne
iko /2

Ji(p)= i f 4,k
— Gp(k)Vp(p, p+k)

)4 ik0

(C6)

(C7)
k0

& Vp(p, p +k) = ypcos pp+
2

and the gluon propagator is given by

k0—isin p+0
(C5)

and

iko /2

J2(p) = i f — .„Gp(k)S (p —k)
(2 )4 ~ko

X Vp(p —k,p) . (C8)
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The lattice equivalent of (2.26) is

J(p) =Ji(p) —J2(p) .

Let us call J, (p) and J2(p) the values of (C7) and (C8) with p =0 in Vo and the numerator of S (C4). We get

~4k lkP /2

J2(p) —Ji(p)= 4,&
cos sinkp+r siii g (1 —cosk~)

~ (2~)4 e'"o
1

4b. ,h2 m 2

where

b2(m)=+sin (k„+ap„)+ ma+re [1—cos(kz+apz)]
p

From (C10), after some manipulation, one obtains

(C9)

(C10)

(C 1 1)

cos ko/2+r
J2(p) —J, (p) = —2

4b, ,b2 m

+ d k 1 ko 1= —2 4 cos —1+r b& +—~ (2m) 4&I&2 2 ' 4b, ,b2(m)
(C12)

where we have replaced b,2(m) by b,2 in the term which has a smooth behavior near k =0.
We then use the identity

+ d k 1

(2~)4 4h, b,,(m }
+OOOO

—yE —f dx ln[(1 —x)(xp +m )a ]
16m 0

2
p

2
S111 r Sln

+ f dk"
4m

(C13)

We are left with the difference between J(p) (C9) and
(C12). This difference is an ultraviolet finite integral, it
depends only on the small-k region, and one can substi-
tute to the lattice integral the continuum one, leading to
P'2(t) as given in (2.29). We end up with the expression
of P f,«(t) given in (3.5)

Now we compute P&,«(t). The factor which multiplies
P )~«( t ) is giveii by

t —1

Go(r2 —r))
2 3 —0

1

1 —cosko
d

dk

sink 0

1 cosk0

and integrate by parts:

(1+cosko )(1—coskot)—2 '2 g (1 —cosk2 )

sinko sinkotJCf- d4k t
3 2 —~ 1 —cosko 2+ (1—coskz)

(Cl 7)

with

Go(r2 r, )=f d k e—

We get

k
4g sin

2

(C15)
We start with the second term in (Cl'7), which we call

J"' . After integration over k we get

Jd, 2 4g2 f d
—

SaI3(2

X [I (2 o)+aI, (2 ) aI,(2a)—
4 g +~ 1 cosko 1d4k
3 2 m 1 —cos—ko g(1 —cosk2 )

Now we use the fact that

(C16)
,' [I,+,(2a)+I, ,(2a) ]I—, —

where I„are modified Bessel functions (see Ref. 10).
To perform the integration (C18) we split the integral

into two parts as done in Eq. (A13) in Ref. 10. We get
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4 1 i I, + i(2a)+I, ,(2a)J ' =—g '
2 (Foooo+Fooo, ) —f da ae Io(2a) I,(2a)+

16+2 ' 0

I, +,(2a)+I, ,(2a)—f da a e I()(2a) I,(2a)+ '
2

+ z f da —[1—f(t,a)]2f(t, a) 1 ~ 1

(4ira ) 8n i a

(C19)

where we have chosen f ( t, a ) according to the asymptotic expansion of I, :

f(t, a)=

2{x

t+ "t/t +(2a)
[1+(t/2a)]'

exp t/ t + ( 2a ) + t ln

(C20)

The first integral in (C19) vanishes when t —+ ~ as well as the second one, although this takes some pain to prove. We
are left with

Jd~2 —
g

24
3

1

2 (Foooo+Foooi ) — q f dy —e
16m 4~ 2/r

3'

1+)/1+y
( 1 + 1 /y 2

)
i /4

exp ~ t +1+y —y + ln

dy ( 1 e t /2y)
4m'

(C21)

One can prove that the first integral in (C21} vanishes
in the limit t ~ Oc and we end up with

J ' =—g 2 (Foooo+Foooi+2yE)+ jn-d, 2 4 1 t
16m 4m

(C22)

Let us now consider the first term in (C17). This term
is linear in tla and it contributes to the mass renormal-
ization. Indeed it comes from the terms in (C14) with
~&=~2 and these would exponentiate in higher orders in

g . To compute its contribution we note that

sinkot sinko

2m(1 —cosko)

converges to the Dirac distribution when t~ao (the
difference decreases exponentially in t).

Finally we get

(F o+oooF io+oo2r E)+4»4 2 1

16m 2

+~
a 2~2 —~ g(1 —coski )

APPENDIX D

In this appendix we give some details on the calcula-
tions in the case of m ~0, since they are far from trivial.
The most difficult piece concerns formula (2.37). We
start from (2.27) with m =0. Let us first consider the first
term in (2.27). Its contribution to (2.25} has a pole [the
S(p) pole] and the cut from ln term. The pole leads to [in
the following we omit the multiplicative factor PH(t)]

4 2 2
g ln P +1

3 8~2 g2
(D 1)

The cut leads to the factor

4 g2 A,t
2 +pE+ln

3 4m
(D2)

Let us now consider the second term in (2.27): i.e.,
(B2). We first compute the contribution of the numerator
to the trace in (2.25):

f p dp f —y&P +i( 2 g2tz)38+ o

2 2—4 g f ~dx x 1(1+ g )
xit—

34~ i x x

(C23)

[p (1—&)—po] .
Po+P

We thus have to deal with the integral

(D3)
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2 dp dPO 1 i dx 4[p (1 x) po] [xpo+x(1 —x)p +(1—x)A, ]'~ +xpo
2~ Po+P «[xpo+x(1 —x)p +(1—x)A, ]' [xpo+x(l —x)p +(1—x)12]'~~—xpo

(D4)

The strategy is the same as that in Appendix B. There is a value x, such that for x & X„(x)x, ) the pole is out (ln)
«the c««the sq~a~e root. Now x+ = 1 and the cut contribution to (D4), equivalent to formula (85), is substituted by

4 z 1 Itl&t dp ao
&

i p (1 —x)+y
4m (2n) 0 ", y2 —p~ +xy —x (1 —x)p —(1—x)A2

f d p (1 )+y
y e

I
~

~2
~ ~

2

Qg2+p2 X y p +xy —x (1—x)p —(1—x)A,
(D5)

where again po=iy. The first part of (D5) leads, after integrating over x and a change of variables, to

4 2 1 ~ dy
3 4m o y(1 —y)

3y +1 y+1
ln

2 y 1
y (D6)

The cut in the second part of (D5) gives, after a change of variables,

3y +12
A'

4 1 PXt 2
2 2 P p in

4~2 0 2%2 +I+pl j 2 1 y2 2

(y+1)—
p

k2 2 A2
y —1 — +

A, y
(y2 1 )p2

(D7)

To deal with the infrared singularity near the lower bound of y we cut the integral into two parts below/above
+1+5 with A, /p «5 « 1. After some work we end up with the result (once PH has been factorized out)

00 2 2p'ap —in' p+in p+
6~' A, t A, t 4

The pole term in (D4) for x & x, [equivalent to (810) and (812)] gives

r

g ~p — 'g p 2 t p
+(1—x)A, —x p +(1—x)A, —x p

I

and the pole term for x, & x [equivalent to (813) and (814)] gives

12

(DS)

(D9)

p 1 ——
2 xp++(1 —x)A, —x p

377 0 2 s V(1—x)A, x p xp V(1 x)A, x p
f "p'dp ln' —ln + +-oo 2 2 m 1

6~2 A, t A, t 6 2

(D 10)

Adding (Dl), (D2), (D6), and (D8)—(D10) leads to (2.37).
We now add a few words about the computation of the light-quark self-energy diagram (2.36) in the massless limit:

X(p)= f dx 2(1 x)iP ln —
z0 (1—x)(xp +A, )

Figure 2(b) gives then

(D 1 1)

g . —
mb t cc 2 pp pQ spot pQ

2
2le

12m2 0 2~2 2& p2+p2
pe

p2 +p2+Q2

PQ+P +A,
ln

p2+p2 $2 +,',
PQ+P

p() +p +A,
in

P0+P
(D12)

The contribution from the poles in (D12), having now factorized out P~(t), is equal to

g i p
12~2

"
~2

3
2

(D13)
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The contribution of the cut to (D12) is

g
2 A2t2

—,'+2@ +1n
12m 4

The sum of (D13) and (D14) leads to (2.36).

(D14)
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