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A formalism for analyzing spin correlations in multibody decays of A, is presented. It is a gen-
eralization of the a,P, y formalism used to two-body hyperon decays. Application to semileptonic
A, decays and to a few nonleptonic decays are also discussed.

I. INTRODUCTION

II. BASIC FORMULAS

We consider the decay of A, to a final baryon (which
without loss of generality we call A) and spinless mesons.
The matrix element for decay can be written

T=u (p, s)Mu (P,S), (2.1)

where p, s are the momentum and spin of the A and I',S
are the corresponding quantities for the A, . The ampli-
tude M depends on y matrices and on the momenta of the
remaining decay particles. Since the squared matrix ele-
ment is

The recent successes in photoproduction and ha-
droproduction of sizable samples of charmed hadrons
herald a future in which the size of data sets will increase
still further by orders of magnitude. Of special interest
will be detailed properties of charmed baryons, states
difticult to study in e+e collisions because of a lack of
statistics.

It is quite thinkable that these charmed baryons may
be produced polarized. The process pp ~A, +X is quite
similar to pp ~A+X. The observed polarization of A is
believed to be due to polarization of the strange quark in
its production. This mechanism (albeit poorly under-
stood) may well generalize from strange quarks to charm
quar ks.

Given that the possibility does exist, it is important to
make the search. It seems to be the case that the theoret-
ical phenomenology needed to back up such searches has
not received too much attention. The purpose of this
paper is to provide a formalism for doing this. It is
meant to generalize the "a,P, y" phenomenology used for
nonleptonic two-body decays of hyperons. We were
motivated mainly by three-body decays of A, such as
A, ~pEC m. + or A, ~A~+a, but it turns out that the
formalism is Aexible enough to handle multibody decays
such as A, ~Am+m+~ or semileptonic decays, e.g.,
A, —+Ap+v„, as well as reducing directly for two-body
decays to the extant a, P, y formalism.

In the next section we lay out the formalism. We then
apply it in Sec. III to semileptonic A, decay. Various
norileptonic channels are discussed in Sec. IV. Section V
contains concluding remarks.
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the complexity of the spin angular distribution is limited
to terms linear in s" and S". The quantities 3„,a„, and
B„are functions of the four-momenta of the parent A,
and its decay products.

It will be convenient to hold the configuration of decay
momenta fixed in space while looking at the angular dis-
tribution of the spin degrees of freedom s" and S" rela-
tive to that configuration. This implies a choice of coor-
dinate frame fixed with respect to the decay
configuration. By convention we choose, in the rest
frame of the A„ the z axis along the A momentum vec-
tor. Without any real loss of generality, we also special-
ize in what follows to three-body final states. The y axis
is then chosen normal to the decay plane.

To understand more about the properties of the spin
asymmetries, we proceed in four stages of increasing
complexity.

1. A, polarized: A polarization not observed

This means that we average s„-dependent terms to
zero. It then makes sense to go to the A, rest frame, in
which case we can write for the decay width

dQs
dl =I" (T„T )dT, dT [1+S.A(T, , T )]

4m
(2.3)

T, and T2 are Dalitz variables, the kinetic energies of
two of the final particles in the A, rest frame. The mag-
nitude and orientation of the vector A can be dependent
on the Dalitz variables. d Qs is the solid angle element of
the unit spin vector S of the A, in its rest frame.

2. A, unpolarized: A polarization observed

The formula is essentially the same, although one
should consider the spin orientation s in the rest frame of
the A, not the A, :

dQ,
dI =I o(T„T,)dT, dT2 [1+s a(T, , T2)]; (24)

4m

a and A are not the same vector. However, we shall
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For this case we restrict our attention to the upper
components of the Dirac spinors; what needs to be evalu-
ated is

1+o's — 1+o'S
2 2

(2.5)

with, in a convenient normalization,

show in the next section that their magnitudes are in fact
equal.

3. Both A, and A polarized: A extreme
nonrelatiuistic in the A, rest frame

u(p, s) = +m
2m

y, (s)

y2(s)

0
0

(2.11)

T=(y (s),0) Ii+ m y(S)
2m

M 0 (2.12)

where (Ii+m)/2m is the Lorentz-boost operator of the A
rest-frame spinor to the A, rest frame. Then

%I = 1+o'( R+ i I ) . (2.6) and we can identify M as the upper left-hand 2 X 2 subma-
trix of (If+ m )1M/2m, evaluated in the A, rest frame:

The (real) amplitudes R and I depend on location in the
Dalitz plot. The differential width is p+m 1+yo

2m 2

1+@0
2

(2.13)
dns ddr = ro(T„T2)dT, dT2 4~ 4m

X(1+S A+s a+B sXS+s;Slci) .

Note that A, , a, , B;, and C, are not quite the same as
the components of the previously defined quantities
a",3 ",B",but some differ by a Lorentz boost. The
quantities a ",A ",B" will not directly enter into our
phenomenology.

Straightforward evaluation of the trace yields

2(R —R XI) 2(R+R X I)

The previous formula, Eq. (2.7), for spin correlations
(2.7) stands unchanged; we must remember that s is the spin of

the A as seen in the A rest frame, while S is as seen in the
A, rest frame. A11 other variables are evaluated in the A,
rest frame.

We can apply these results to two-body decays such as
A, —+Am+. In this case the formalism gracefully reduces
to the standard a, f3, y phenomenology. Evidently R and
I must be proportional to p, the A momentum; the
coe5cient is the ratio of p-wave to s-wave decay ampli-
tudes:

2I
1+R +I

C; = (1—R I )o; +2(R—;R +I.;I )iJ I J I J
iJ 1+R +I

(2.8) R+iI=p (2.14)

Choosing the z axis along the A momentum vector, this
implies, according to Eq. (2.8),

4. Both A, and A polarized: relativistic kinematics

The general case is essentially no more complicated
than what has already been presented. We may write the
decay amplitude, in the A, rest frame, as

T =u (p, s)1MQ (P,S),
where

(2.9)

We now can see that A and a are equal in magnitude.
The average orientation measures rather well the real
part R of the spin-dependent amplitude; the difference in
orientation is dependent upon I, the imaginary part.
However, I is probably better measured by the antisym-
metric part of the double-spin correlation, proportional
to B.

Note that a small spin-dependent amplitude [(R
+I ) ((1] implies large spin transfer from A, to A, i.e.,
C,"=5; . This is itself an excellent signature.

2 Re/*P=a„=a =0, A, =a, = =u,
I
&I'+

I

&I'

8 =8=0, 8, = =P,
l~l'+ IPI'

vv
I

2 2 y' v+ P

(2.15)

III. P DECAY OF A,

The formalism above actually applies to A, semilep-
tonic decays as well, since there is only one helicity state
for the final leptons which contributes. We, therefore,
can evaluate M for that case as well. Furthermore, this
exercise will lead to insight into the structure of nonlep-
tonic decays to the extent that a "factorization" hy-
pothesis applies to the dynamics of nonleptonic charm
decays. We write, for the decay amplitude, ignoring for
the moment weak-magnetism corrections, etc. ,

y)(S)
y2(S)

B (P,S)=

0

(2.10)

T = u (p, s)(g~y„+g „y5y„)u (P, S)J", (3.1)

where J" depends upon lepton momenta only. We now
write this out explicitly in two-component notation, and
find
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1+y —
year PT=(v (s),0) yo"P 1 —y

(l, i, 0) structure of a spin-1 circularly polarized quantum.
Its magnitude, however, is large in the limit. Writing

I

gv
2 uJ

cr J
+2 Jo

—J0

Jo y(S)
—crJ 0

q+k=nO

with

n.q=n-k « 1,

(3.&) we have

n =1,

(3.7)

(3.8)

R+iI= 1 — P Vr
1+y

gv
—i (PXV)1+y

Here P=P~/E~ and y =E~/m„, as measured in the A,
rest frame. This allows, after multiplying the matrices,
the identification with the spin-dependent quantities R
and I previously introduced:

V= —(n+inXk) .
8

(3.9)

As 8~0, the decay becomes collinear. In general the ve-
locity P of the A does not vanish but it lies in the direc-
tion of the leptons. Hence, P tends to be orthogonal to V
in the limit and can be either along or against the direc-
tion k. However V diverges. The net result is that P.V
remains finite. However in the last term PXV=+i~P~V,
so that

(3.3)

where V=J/Jo depends on the kinematical variables of
the leptons (or in general of the spectator system).

The quantity V in the case of semileptonic decay is
easy to calculate. Neglect of lepton mass gives

X(n+inXk) +
g v &+'Y

(3.10)

V(q)y(1 —y, )u (k)V=
V(q)yo(1 —y~)u (k)

(3.4)

Multiplying numerator and denominator by u (k)v(q) al-
lows V to be computed via a trace calculation:

Trgy ( 1 —y s )k'yoV=
Trlyo(1 y5@—yo'
q+k+i(qXk)

1+q k

Here k and q are unit three-vectors in the directions of
neutrino and charged-lepton momenta, respectively.

To get a feel for the physics, consider the extreme cases
when the leptons are collinear.

(a) Small dilepton mass: q=k. In this limit V=q is
real. Notice that this lepton configuration has helicity
zero and behaves as a spinless meson. The phenomenolo-
gy is similar to A, ~A+ m, as evaluated in the "factori-
zation" approximation. We shall review that case again
in the next section. At a more general level, the phenom-
enology is similar to that for A~pm . The quantity
R+ iI (which evidently points in the direction q) is analo-
gous to the ratio of p-wave to s-wave A-decay amplitudes.
In the present case we have

IV. NONLEPTGNIC DECAYS

A. Two-body final states

The general formalism for these decays has already
been presented at the end of Sec. II. If the factorization
ansatz is made for this decay amplitude, then one couples
the weak transition current of A, and A, as used in the
semileptonic decay, to the pion's weak current:

J„~F q", (4.1)

where q„ is the four-momentum of the pion. Because the
pion will be extremely relativistic, it follows that

V= J
Jo

(4.2)

What is important is that R+iI in this limit blows ug
and is proportional to the helicity-one vector n+inXk.
This implies that the angular-distribution parameters A
and a are maximal and opposite in direction (due to the
RXI term) as required by the necessity of spin fli to
create the helicity of the lepton pair. Inspection of X;
shows it is large as well, as expected.

(R+iI):q
q fc

From (3.3) we again obtain
(3.6)

R+iI=— (4.3)
This yields a large angular asymmetry in this limit. If
measurable, this provides a good test measure of the
V—A structure of the decay.

(b) Back-to-back leptons: q= —k. In this case the hel-
icity of the leptons is unity and the quantity V has the

If, as naively expected, g „/g v = 1, we would have a = —1

and P=O, y=0. This leads to both A, and A spins pref-
erentially oriented along the direction of the pion.
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B. Factorization: A, ~Am ~ and A, ~Am+a+m

Under the factorization hypothesis, we expect
A, —+A+p+ and A, ~A+ 3,+, to have large branching
fractions. The coupling of virtual 8'to p is proportional:

(4 4)

This vector X„is pure spacelike in the rest frame of the p.
When boosted to the A, rest frame the new vector X„' is
proportional to J„, as defined in Eq. (3.1). Then it fol-
lows that

(4.&)

still has a magnitude large compared to unity in the rest
frame of the A„because the boost velocity is not very
large. Furthermore V is real. We may again revert to
the form of Eq. (3.3), with V given by Eq. (4.3). Howev-
er, in this case the orientations of V and of P are not
strongly correlated. The consequences for the observed
asymmetries are not transparent, and are best determined
by a simulation.

The case of A, ~Ad
&
~Am+a+~ is similar. To the

extent that 3 1~p m+ via an s-wave decay, the polariza-
tion of the decay p is strongly correlated to that of the
3 1. It may be again used in the above formalism for the
A, ~Ap+ decay mode.

C. The decay A, —+@X

This mode is an especially favorable mode to detect ex-
perimentally. From the theoretical standpoint it is a
more difticult case; the factorization hypothesis appears
less applicable. One should be guided by the interpreta-
tion of unpolarized data, e.g. , whether there are strong
resonance bands in the Dalitz plot.

Since the spin in the final state is unlikely to be ob-
served, the issue boils down to whether R is likely to be
large or small, and in which direction it is likely to point.
Intuition might argue that, for configurations in which
the K has a large final-state momentum, the kaon
would follow the same pattern that a strange quark
would under the same circumstances. This is the same as
what a fast A would do in semileptonic decays. This is
treated as case (a) in Sec. III, and is in turn the same as
what happens in A, ~A+tr (in factorization approxima-

tion). There we found that the A direction is strongly
correlated with the parent-A, spin, according to Eqs.
(3.6) and (4.3).

V. CONCLUSIONS

Our main point has been to provide what is hopefully a
reasonably simple and intelligible formalism for analyz-
ing spin correlations in weak decays of A, . The main re-
sult is given in Eq. (2.7), where the general distribution is
given in terms of three vectors A, a, 8, and a second-
rank symmetric tensor C,". These quantities depend
upon the final-state momentum variables, e.g., the Dalitz
variables in the case of a three-body final state. For two-
body decays their components, evaluated in a coordinate
system fixed with respect to the final-state decay
configuration, directly reduce to the a, P, y parameters
used in two-body nonleptonic hyperon-decay phenome-
nology. For more than two particles in the final state, it
is still appropriate to consider the quantities A, a, B, and
C, in a coordinate system fixed with respect to the final-
state configuration. They depend upon the spin-
dependent decay amplitude R+ iI defined in Eqs.
(2.9)—(2.13); the dependence is given explicitly in Eq.
(2.&).

Because the helicities of final-state leptons are fixed,
the formalism works for A, semileptonic decays as well.
The expressions for R and I in that case are given in Eq.
(3.3) in terms of yet another vector V, the ratio of space
components to time component of the leptonic weak
current. This is computed and exhibited in Eq. (3.5).

If nonleptonic A, decays can be described in terms of
the factorization hypothesis, the semileptonic formalism
can be extended to them as well. We gave examples for
the decays A, ~Am+, Ap+, and AA,+. However these
are not solid predictions. Even less solid is our specula-
tion that the correlation of fast K with A, spin in
A, ~pK m+ is similar to the correlation of fast A with
A, spin in A, ~Ap+v„and/or A, ~Am
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