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The Abelian Higgs model with a fermionic current nonconserved due to an anomaly is con-
sidered in 1+1 dimensions. The one-loop expression for the rate of the fermionic-number non-
conservation at high temperatures is obtained analytically for arbitrary values of the Lagrangian
parameters.

The non-Abelian nature of the standard electroweak
theory remains a subject of intense interest. The existence
of the 8 vacuum in this SU(2) &U(l) gauge theory leads
to the nonconservation of leptonic and baryonic numbers
which is, however, negligibly small at zero temperature. '

Nevertheless, as was pointed out in Ref. 2 in matter at
high temperatures which took place in the early Universe
anomalous nonconservation of fermionic numbers is not
suppressed. The relevant considerations are usually per-
formed in the Ap 0 gauge. There is a static energy bar-
rier (SEB) between the classical vacua with different
values of the Chem-Simons number. At high tempera-
tures the system has enough energy to pass through the
SEB (Ref. 4) via classical thermodynamical fluctuations.
At temperatures smaller than the height E, of the SEB
the probability I" of the transitions over the barrier is
small and may be evaluated in the semiclassical approxi-
mation I A exp( —E,/T). Here the preexponential fac-
tor A is important. Exact analytical evaluation of the
preexponential factor A in 3+1 dimensions is a serious
problem. ' So the semiclassical calculations in various
toy models are valuable. ' In Ref. 10 the y5 version of
the Abelian Higgs model in 1+1 dimensions was shown- to
reproduce many essential features of the real case. It was
solved analytically in the limit g /A, &) 1 (where g is gauge
and A, is scalar self-coupling constants) for integer values
of the ratio g/4X/2. In this paper we give an analytical
solution for arbitrary values of the coupling constants g
and k.

The theory under consideration is defined by the La-
grangian of the form

and Higgs bosons with masses m„g c and m~ 2X,c .
The gauge-invariant fermionic current J„ Ibtjy„y is not

conserved due to an anomaly:

4n
(2)

Nonconservation of the fermionic number is associated
with the fluctuations of gauge fields which in the Ap 0
gauge change the value of the Chem-Simons number.
The theory has a 8-vacuum structure. "The classical va-
cua with different values of the Chem-Simons number are
separated by SEB, the minimum height of which E, is
nonzero. A statistical system built in the vicinity of one
such vacua is slightly unstable with respect to penetration
through the SEB. The decay rate I of such a state coin-
cides with the rate of anomalous fermionic-number non-
conservation in hot plasma. ' In the one-loop approxima-
tion it is related to the imaginary part of the free energy
cg. 5, 12

I x 1m', (3)

A„' " 0, p' " tanh(mHx/2). (4)

the coefficient x is to be defined later. The relation (3) is
useful because there is a regular representation for the
free energy in tepms of the Matsubara functional integral.
The functional integral for the imaginary part of the free
energy is saturated by the fluctuations around a stationary
point called a "sphaleron. " In the continuum limit this
unstable static solution coincides with the kink

where p, y, and A„are scalar, spinor, and vector gauge
fields, respectively. The particle spectrum contains vector

I

The coefficient x in (3) is determined by the magnitude of
the negative eigenmode co —in the sphaleron background:
x co /(2trT). The sphaleron energy E,~h is just the
height of SEB.

For the preexponential factor one has

Zp p 1/T
ImPexp(E&pp/T) ~ DA&DA(}D&*DpDgDgexp —

J d xL,ff

I eA' Igauge+I Higgs+I mix+ Lghost+I gauge fixing ~

(s)
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L,fr is the quadratic part of the Lagrangian in the sphal-
eron background, g and g are ghost fields, and Zo is the
perturbative partition function. Integration in (5) is per-
formed over the fields periodic on the interval [0,1/T].
From now on we use dimensionless variables z xm/2,
P mH/(2T), and substitution p (pi+i&2)/J2 .It is
essential to use the R~- i background gauge:

v'

1 2g
Lgauge fixing 2

~u+p Psphg2 (6)
NSH

The corresponding ghost term is

4g
Lghcsi -~,X&,X+, espy

PlH
(7)

where

x exP( —PE,ph), (9)

MP» —8 —s;(s;+1)/cosh (z)+a;, i 1,2, 3,4;

s~ 2, s2+1 s3 —1 s4 s;

ai —=2, az a3 a4 a s(s+1) .
(io)

M~"" are the same operators as (10) but with s i 0, Ns„ is
a normalization factor of the translational zero-mode con-
tribution which comes from M ~

"

N„- [E„h/(2~T)] '".
The prime in (9) indicates that the zero mode is omitted.

As the sphaleron solution is static the eigenvalues of the.
operators (10) have a general form

E„, (2nn/P) +ro, n 0, +'1, ~2, . . . , (i2)

where mk are the eigenvalues of the corresponding one-

At this point L,fr has been diagonalized in Ref. 10 by
means, of the rotation J2Ai pi+pz and J2&z-pi p2 in
the limit g ))X,. However, the specific form of psph allows
one to diagonalize L,ff exactly for any values of g and k by
the orthogonal rotation in (A i,pz) plane with angle co:

tan(2') —4mw/mH —= —2a .

Then for the spatial density of the imaginary part of the
free energy ImP one obtains

~vac~ vac~ vac~ sph

ImP TNi, Det'
2 3 4

J(T)- —+le(rok'") —@(~L-)]
k

(i4)

Both discrete eigenvalues and continuum spectrum con-
tribute to the sum in (14). The discrete spectrum of the
operators (10) is given by

a),'P"-Qa —(s; n)'—, 0~n &s;. (is)

Operators Mz 3 have only positive eigenvalues, M~
has one zero mode (corresponding to the translation of the
sphaleron), and operator M3»" has one negative eigenval-
ue co- s+1 or (in terms of dimensional variables)
co- —mH/4+mHmw/2. One can see that the negative
eigenmode does not vanish when gauge interactions are
switched off (g~ 0). The presence of the imaginary part
of the scalar field accounts for the instability of the
sphaleron solution.

For the continuum one has

aisPh(k) ~rovac(k) ~j'a 2+ k 2 —~2(k)

To do the sum over the continuum in (14) one should
impose periodic boundary conditions on the eigen-
functions of the operators (10) at the finite interval
x C [—L/2, L/2]. The general solution of the correspond-
ing Schrodinger equation may be constructed from yk (z)
and y& (z) with eigenfunctions y(z) satisfying the rela-
tions

iigk (z) — exp(ikz),Z~ +O

yi, (z) —A (k) exp( —ikz )+8(k) exp(ikz),

For the potentials (10),

dimensional quantum-mechanical operators. It allows one
to perform the summation over Matsubara frequencies ex-
plicitly in the following expression for the determinants:

(DetMsph/DetMvac) —1/2 Q(Evan/Esph) —exp(J),
n, k

J —g [ProP"/2 Pco—l","/2+ @(cog") —@(coP')], (13)
k

@(col,)=in[i —exp( —Pcok)] .

After the zero-temperature renormalization of the sphale-
ron mass we are left with

r(1 —ik)r(ik) r(1 —ik)r( —ik)
r(1+s)I ( —s) ' I (—ik —s)I ( ik+s+1—) '

&oi

argB(k) 2 g arctan[k/(n+ e)]+ arctan(k/fi)+ —sgn(k)
n 1 2

+ g [2arctan(k/n) —arctan[k/(n+ e)] —arctan[k/(n —e)]j,
n 1

where so; is an integer part of s; while e is a fractional one which is unique for s2, s3 $4.
There are two branches in the spectrum k i 2(n) defined as

2~n Lki(2& —bi(2)(ki(q)), Bi&2~(k) arg8+( —) arcsinf I A/8 I sin(argA)] . (i9)
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So for the continuum contribution to (14) one obtains

JPj' - dk b(k) @(col,), (20)

with

8(k)—:b ~ (k) +h'2(k) 2 argB .

3000

In the high-temperature limit one may use= ln(Prok) and the integral
2500

dkln(k +a )/(k +a ) ln(a+a), 2000

to obtain

Det' '"(~""/m,"-)-4iY,

a &0, a&0 (21)

1500

, , (22)
r(a;+s;+1)r(a; —s;)

r(a;+1)r(a;)
One may obtain the final expression for the spatial den-

sity of rate I of the anomalous fermion-number noncon-
servation at high temperatures using (3), (9), (10), and
(22). In dimensionful units it reads

&/2

J3mH Esph

2K 2KT

&/2

( ) r(a+s+1)r(a —s)
I (a+1)I (a)

& exp( —E,rh/T) .

In the Coleman-steinberg limit' we get

&3mH2 . . . E„h
I (a ee) Ja2' ' exp( —E /T) .

27K 2KT sph

(24)

In the limit a 0 (23) yields

JYmH E„h
~/2

I (a 0) exp( —E,~h//T) . (25)

One may compare the analytical result (23) with the cor-
responding exact numerical evaluations on the lattice'
(see Fig. 1). One can see that the results coincide within

1000

500

0. 07 0.OB

(

0. 09 0. 10

TBMp
I

0 ~ 11

the error bars which imply that both high-temperature ex-
pansion and the semiclassical approximation are efficient.
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FIG. l. Analytical vs numerical results (Ref. 14) for the rate
of the anomalous fermion-number nonconservation as a function
of temperature: curve a, mH/ma 0.5; curve b, mn/mn

0.395; curve e, mH/ms 0.32; curve d, mH/ma 0.264.
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