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The exact solution presented by Wesson and Ponce de Leon [Phys. Rev. D 39, 420 (1989)] is a
specific spherically symmetric .particular case of the general, nonstatic, conformally Hat perfect-Quid
metric. The global and causal structure of this specific solution is discussed.
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The metric (1) is the particular case of (2) obtained from
setting c =1,p= —,', Ho =t /, and L = at / . Wess—on
and Ponce de Leon mention (their Ref. 5) a solution simi-
lar to theirs found by Henriksen, Emslie, and Wesson.
The metric found by the latter authors, which follows
from their Eqs. (6), (8), (9), and (60), is also a particular

The spherically symmetric perfect-Quid, exact solution
recently presented by Wesson and Ponce de Leon' is de-
scribed by the metric [their Eqs. (3a)—(3c)]
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where d Q =—d 0 +sin 8 d(b, and a and P are arbitrary
constants. This solution is a particular case of the well-
known, spherically symmetric, nonstatic subclass of con-
formally Hat, perfect-Auid solutions, ' whose metric has
the general form

case of (2). This is easily verified by rescaling the time
and radial coordinate of (2) as t =(1—C)T and r =2X
where C is an arbitrary constant. Hence, by setting
Ho =T ' and L = T—,one arrives at the metric of
Henriksen, Emslie, and Wesson (with T and X denoting
their time and radial coordinates).

The conformally Aat class of solutions described by the
metric (2) were discovered originally by Kustaanheimo
and Qvist, ' ' and have been used mostly as models of
collapsing stars ' and (less so) as cosmological space-
times ' ' For a survey of their global properties,
singularities, and causal structure, see Sec. IX of Ref. 4.

In their Sec. I Wesson and Ponce de Leon suggest a
cosmological interest in the metric (1) [with a &0 (since
Wesson and Ponce de Leon are concerned mostly with
the case a &0 in (1); the case a&0 will not be con-
sidered)] because in the coordinates they use p=p(t) and
also because it "departs modestly enough from the stan-
dard ones. '* Presumably, they mean a modest departure
from an Einstein-de Sitter spacetime (hence their choice
Ho =t /

) to which their solution is manifestly confor-
mal. However, even if the solution (1) somehow general-
izes the Einstein —de Sitter spacetime [the particular case
of (1) with a=0], and its study merits the work invested
in it, its global and local properties are radically different
from an Einstein —de Sitter model. Wesson and Ponce de
Leon hinted this fact, by remarking that [from their Eq.
(3e)] "pressure increases away from the origin" and,
hence, recommended truncating the solution in order to
use it as a model of a "bubble" matched to a suitable
cosmological background. However, these authors did
not elaborate any further on the asymptotical properties,
nor mention the existence of a scalar curvature singulari-
ty of the "Anite density" type as r ~~ . The latter singu-
larities, characterized by a finite density with a diverging
pressure, appear frequently in many spherically sym-
metric shear-free solutions. '

The global view of the solution (1) can be better appre-
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ciated by using other coordinates. Since the simple time
rescaling t'=3cgt'~ transforms (1) into a manifestly
conformally Aat metric, the conformal compactification
technique presented in Sec. 5.1 of Hawking and Ellis'
can be applied to it in order to visualize its singularities
and its causal and global structure. Taking c =P= 1, and
following Hawking and Ellis, the coordinate transforma-
tion

6t '"=tan[-,'(r)+y)]+ tan[-,'(q —y)],
2r = tan [—,

'
( rl +y )]—tan[ —,

'
( q —y ) ]

brings the metric (1) into the form

ds =@ (r),y)(d g —dy —sin y d Q )

with

(3)
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which is conformal to the section bounded by g=O,
g=0, and g+y=m of the Einstein static Universe. The
(r),y) coordinate representation of this section (displayed
in Fig. 1) is the "Penrose diagram" of the manifold.

Apparently, the Penrose diagram of Fig. 1 coincides
with that of Fig. 21 (iii) of Hawking and Ellis. ' A "big-
bang" singularity, characterized by p~(x), p —+(x), and
R =( —girja)' =0, and marked by t =0 in the coordi-
nates of (1), also appears as the spacelike singularity la-
beled by g=0, 0 &y & m. The locus y=0, 0 & g & m also
marks the only regular symmetry center (r =0). The
world lines of observers comoving with the Quid
(r =const) and the three-surfaces of constant t are
marked by the same vertical and horizontal dotted curves
as in Fig. 21 (iii) of Hawking and Ellis. The former world
lines are seen to "converge" towards the locus
i+ =Irj=m. ,y=Oj (t~ ~, r finite), at which the proper
time diverges [i.e., r= f (g«)' ~ae]. Hence, as in the
Einstein —de Sitter case, this locus can be identified with a
regular (p~O, p~~a~r) "future timelike infinity. "

However, there are significant differences in compar-
ison with the Einstein —de Sitter case. (1) At i+, one has
R ~ 1/~a

~
r as t ~ ae for r )0, which is a different behav-

ior from that of an Einstein —de Sitter spacetime. (2) The
integral J ( —g„„)'~ dr (t fixed) converges as r mao ind—i-

cating that infinite values of r (unlike the Einstein —de Sit-
ter case) correspond to finite proper distances along the
three-surfaces of constant t (orthogonal to the four-
velocity). (3) At the locus r)+y=m (t~oa, r~oo), one
has R —+0 and p —+ Oo, instead of finite p and R ~ 00 as
would be the case in an Einstein —de Sitter spacetime.
Hence, a null singularity of the "finite density" type
seems to replace the regular "spacelike infinity" and "fu-
ture null infinity" depicted in Fig. 21 (iii) of Ref. 17.

The currently accepted criterion defining scalar curva-
ture singularities requires (besides diverging curvature
scalars) that the affine parameter of well-defined causal
curves be finite as the singularity is approached along
these curves. A suitable parameter for this purpose is the
afFine parameter 8 along null geodesics of Fig. 1 whose
tangent vectors are given by d /du =B/Bg+B/By ("out-
going") and d/dw =B!Bq—B/By ("ingoing"). Applying
Eqs. (51) and (55) of Ref. 16 and Eq. (2.29) of Ref. 17 to
"outgoing" null geodesics of the metric (3), leads to the

integral 8= f@(U,w)du, which must be evaluated keep-

ing w fixed. From the metric (3), this integral clearly con-
verges as v~m, so that the locus v =g+y=m does mark
a null singularity of the "finite density" type.

Since R ~0 as null geodesics approach the finite densi-
ty singularity, the latter is indeed a singular point (singu-
lar center of symmetry) following a null world line rather
than a "surface. " Were it not for this strange singularity,
the three-surfaces of constant coordinate time would be
homeomorphic to three-spheres with y=O and y=m
marking two regular centers of symmetry. The spacetime
would have then the S XR topology of a "closed" Fried-
mann universe. However, the existence of this singulari-

Future Timelike infinity
i+ (t = oo, r finite)

Center
of
Sym me~

(r=0)

"Big-bang" Singulatitjj (t = 0) R = 0

FIG. 1. Penrose diagram of the solution described by the
metrics (1) and (3). This diagram is the (g,y) representation of
the conformal compactification of the metric (1) which leads to
the metric (3). Each point represents a two-sphere of surface
area 4mR (g,y), where R = —gqq. "Ingoing" and "outgoing"
radial null geodesics appear as solid straight lines with slopes
+1. World lines of observers comoving with the Quid

(r =const) appear as vertical dashed curves converging towards
a future timelike infinity i+. Radial curves along the three-
surfaces (t =const) are depicted as horizontal dashed curves.
The spacelike "big bang" and null "finite density" singularities
are displayed as jagged lines.
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ty makes these three-surfaces homeomorphic to R, look-
ing (if imbedded in R ) as spheroidal shapes punctured at

Therefore, the full spacetime has an R topology
(see Secs. II and III of Ref. 4), even if it bears more
resemblance to a sort of "closed" Friedmann universe
with a singular point than to an Einstein —de Sitter space-
time.

Even if (from Fig. 1) the world lines of observers
comoving with the fiuid (world lines of galaxies) do not
hit the finite density singularity, there must be other
timelike world lines which terminate there. Besides these
facts, near this singularity one has dp/dp —m ao, and so
one must agree with Wesson and Ponce de Leon's sugges-
tion that this solution should be truncated and somehow
matched to a suitable cosmological background. Howev-
er, conforrnally fiat solutions with metric (2), and this in-
cludes the one studied by Wesson and Ponce de Leon,
cannot be matched smoothly (in the sense of Sec. XII of
Ref. 4) to a Friedmann-Robertson-Walker background,
though nonsmooth matchings (with discontinuous deriva-
tives of the metric) with such a background can be
achieved either along surfaces of constant r, or by means
of the "thin-shell formalism. "' Another possibility is to
fix either one of the functions Ho and L in (2) in order to
match these solutions with a Schwarzschild spacetime,

leading then to models of collapsing spheres in an asymp-
totically Aat background.

The analysis presented here can also be applied if a & 0
and/or t ~ in (1) is replaced by an arbitrary function
Ho(t) If. a (0 the results would be qualitatively similar,
provided Ko(t) has a zero. However, if a) 0 the confor-
mal factor in (3) would not be bounded everywhere, and
so the global structure of the spacetime would change
significantly.

Finally, it is worthwhile remarking that Wesson and
Ponce de Leon found one conformal Killing field associ-
ated with the metric (1) (also Henriksen, Emslie, and
Wesson found such a field in Ref. 5). However, being
conformally Aat, the solutions characterized by the
metric (2) [and hence the particular case (1) and Eq. (60)
of Ref. 5] admit the same G&s of conformal motions as
Minkowski spacetime. ' In particular, in the "radial
direction" [the Lorentzian two-space parametrized by the
coordinates t and r and orthogonal to the orbits of SO(3)],
one can show that these solutions admit three confor-
mal Killing fields. An interesting feature of the metric (1)
which passed unnoticed by Wesson and Ponce de Leon is
the fact that it admits a conformal Killing vector parallel
to the four-velocity of the fiuid (see Ref. 20 for details).
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