
PHYSICAL REVIE%" 0 VOLUME 40, NUMBER 4

Brief Reports

15 AUGUST 1989

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of
scienttjtc quality, does not warrant a regular article (.Addenda to papers previously published in the Physical Review by the same
authors are included in Brief Reports )A .Brief Report may be no longer than four printed pages and must be accompanied by an
abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Gravitational entropy of nonstationary black holes and spherical shells

William A. Hiscock
Department of Physics, Montana State University, Bozeman, Montana 59717

(Received 17 April 1989)

The problem of de6ning the gravitational entropy of a nonstationary black hole is considered in a
simple model consisting of a spherical shell which collapses into a preexisting black hole. The
second law of black-hole mechanics strongly suggests identifying one-quarter of the area of the
event horizon as the gravitational entropy of the system. It is, however, impossible to accurately lo-
cate the position of the global event horizon using only local measurements. In order to maintain a
local thermodynamics, it is suggested that the entropy of the black hole be identified with one-
quarter the area of the apparent horizon. The difference between the event-horizon entropy (to the
extent it can be determined) and the apparent-horizon entropy may then be interpreted as the gravi-
tational entropy of the collapsing shell. The total (event-horizon) gravitational entropy evolves in a
smooth (C ) fashion, even in the presence of 5-functional shells of matter.

The first substantial progress in identifying a geometric
quantity with a measure of gravitational entropy was
made when Hawking' discovered that black holes radiate
particles as if they were blackbodies with temperatures
given by

T=v/2~,

where tc is the surface gravity of the black hole (units are
chosen so that G =c =6=k =1). This discovery
confirmed the hypothesis of Bekenstein that the laws of
black-hole mechanics are actually the laws of thermo-
dynamics expressed for black holes. The second law of
black-hole mechanics, which states that the area of an
event horizon does not decrease into the future (assuming
the weak-energy condition), is thus identified with the
second law of thermodynamics. The entropy of a station-
ary black hale is found to be

SBH= 4 A,
where 2 is the area of the intersection of the horizon
with a spacelike hypersurface. The second law of ther-
modynamics may then be generalized to describe systems
including black holes and matter, by requiring that the
sum of the black-hole entropy and the conventional
matter entropy be a nondecreasing function into the fu-
ture.

Since the recognition that black holes possess an entro-
py which can be quantified, there have been many efforts
aimed at trying to identify some geometrical quantity as-
sociated with non-black-hole spacetimes which can be

identified with the gravitational entropy. Penrose has
suggested that some appropriate measure associated with
the Weyl curvature of the spacetime should be identified
with the entropy. Hawking and Gibbons have extended
the notion of black-hole entropy to spacetimes containing
cosmological event horizons, such as de Sitter space.
Davies, Ford, and Page attempted to establish the ex-
istence of a gravitational entropy for a stationary spheri-
cal shell of matter concentric around an interior black
hole. They examined the changes in the black-hole ther-
modynamics caused by the presence of the spherical shell
and concluded that no gravitational entropy could be as-
sociated with the shell.

Most previous studies have examined stationary states.
Nonstationary states (and, in particular, the irreversible
behavior associated with gravitational co11apse) corre-
spond to nonequilibrium thermodynamics. An essential
step in setting up a theory of nonequilibrium thermo-
dynamics is deciding on a set of rules for identifying a
given nonequilibrium state with a fiducial equilibrium
state (so that the laws of thermodynamics may be ap-
plied to the nonequilibrium state). The purpose of this
paper is to consider how to'define the black-hole entropy
in the nonstationary case. Two possibilities are obvious:
that it be set equal to one-quarter the area of the global
event horizon, or one-quarter the area of the apparent
horizon. In the stationary limit these surfaces coincide.
These definitions are explored in this paper in the context
of a simple model in which a spherical shell collapses into
a preexisting black hole. The freedom of choice in
defining the black-hole entropy here is somewhat similar
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to a situation encountered in setting up theories of rela-
tivistic dissipative Auids: in that case there are several
ways to define the nonequilibrium four-velocity of the
Quid, all of which agree in equilibrium, but which lead to
dynamically different theories of nonequilibrium relativis-
tic hydrodynamics

The most obvious way to extend the result of Hawk-
ing' to the case of a nonstationary black hole is to take as
the entropy of the black hole

Si = 4'A~, (3)

S2 =—'A~, (4)

where A~ is the area of the intersection of the event hor-
izon & with a spacelike hypersurface X. The event hor-
izon is defined as the boundary of the past of future null
infinity it is the actual "edge" of the black hole.

The gravitational entropy defined by Eq. (3) has the ad-
vantage that it is guaranteed to not decrease into the fu-
ture (so long as the weak-energy condition holds; i.e., for
classical matter interactions) according to the second law
of black-hole mechanics. The entropy defined by Eq. (3)
will also evolve smoothly (C ) in time, even when 5-
functional shells of matter are present (as is shown explic-
itly below). Based on these properties, it seems certain
that one-quarter the area of the event horizon should be
identified with the gravitational entropy on X. It is, how-
ever, not clear that S, should be identified as the black-
hole entropy.

Equation (3) is a difficult definition to use in practice,
because the definition of the event horizon is global in na-
ture. The entire future history of the spacetime must be
known in order to find the boundary of the past of future
null infinity, and hence the horizon radius, here and now
on X. If S& is accepted as the black-hole entropy, then
that entropy is essentially unknowable in a practical
sense. It is not realistically possible to obtain data over a
complete Cauchy surface. For example, in terms of the
model considered here, we could be unaware of a very
large mass shell which is currently outside our past
cosmological light cone, and which will collapse into the
black hole at some future time. The possible existence of
such a shell renders the evaluation of Si using Eq. (3) im-
possible; it negates any hope of defining a local, "closed"
system which could be studied thermodynamically. If S,
is taken as the black-hole entropy, it is perhaps also intui-
tively displeasing that the entropy of the black hole con-
tains a contribution, on X, from matter which is still out-
side the hole on X.

In view of the difficulty of calculating the area of a glo-
bal event horizon, it is perhaps worthwhile to consider
another possible geometrical quantity which might define
the entropy of a nonstationary black hole, namely, one-
quarter of the surface area of the apparent horizon A:

where d Q is the metric of the two-sphere. Outside the
shell the geometry is described by the Schwarzschild
metric with mass M:

ds = — 1 — dt+ 1—2= 2M 2 2M
r

dy~+r2dQ2 . (6)

The radial coordinates r in Eqs. (5) and (6) may be
identified since they are defined geometrically using the
area of the two-spheres. The equation of motion for the
shell is then'

2' dR
R d~

2 1/2
2M dR
R d&

the apparent horizon and event horizon are identical, and
so Eq. (4) agrees with the known result' in that limit.

Unlike the event horizon, the apparent horizon can
sometimes evolve in a discontinuous manner, e.g., when a
5-functional shell of matter enters a black hole. There
can even exist multiple apparent horizons" at some
times; in this case it seems appropriate to define the
black-hole entropy as one-quarter the area of the outer-
most apparent horizon.

As discussed above, the second law of black-hole
mechanics strongly suggests that the actual event-horizon
area should be identified with the gravitational entropy,
regardless of how difficult it is to locate the event hor-
izon. However, we can accept this and still obtain a local
thermodynamic description (not involving the entire fu-
ture history of the Universe) if we distinguish between the
total gravitational entropy of;the system (S, ) and the
gravitational entropy of the black hole (S2 ). We are then
led to consider the possibility of identifying the
difference, S, —S2, as the gravitational entropy of the
collapsing shell. In this way it is possible to define, with
only partial Cauchy data on a hypersurface X, gravita-
tional entropies for all components of the system of
which we are aware, viz. , the black hole and the collaps-
ing shell. It is intuitively attractive that the black-hole
entropy thus defined does not contain contributions from
matter which has not yet crossed the event horizori. If
there should exist other shells (possibly currently outside
of our past light cone) which might collapse into the
black hole in the distant future, their inAuence on the glo-
bal event horizon will not affect our ability to calculate
useful entropies for the currently known black hole and
shell.

In order to illustrate these ideas, consider the collapse
of a thin spherical shell into a preexisting Schwarzschild
black hole. The geometry inside the shell is described by
the Schwarzschild metric with mass m:

T

ds = — l — dT + I — dr +r dQ, (5)
T r

where this area is to be measured (as in S, ) on some
spacelike hypersurface X. The apparent horizon is
defined as the boundary of the trapped region, or as the
outermost trapped surface. "The position of the apparent
horizon, unlike the event horizon, can be determined us-
ing entirely local measurements. In the stationary limit,

where R is the radius of the shell, ~ is proper time along
the shell's trajectory, and p is the proper mass of the shell
(for dust, @=const along the trajectory). For simplicity
in integrating the motion, I shall consider a shell of dust
which is marginally bound (i.e., dR /d~~o as R ~ oo );
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for such a shell, p=M —m.
It is most convenient to describe the evolution of the

system as a function of advanced time. Surfaces of con-
stant advanced time are null rather than spacelike, but
have the advantage of providing a natural time coordi-
nate along the horizons (unlike, say, the Schwarzschild
time coordinates T and r). Advanced time coordinates
may be defined in the Schwarzschild interior and exterior
in the usual way:

V= T+ r +2m ln
2m

tH/M,

0
-20 -15 -10

v/M

I

-5

u =t+r+2M ln —1 —uo,

where Vo and uo are constants chosen so that V=u =0
when R =2M. The radius of the event horizon, rH, as a
function of interior advanced time is then given implicitly
by

2m
V=2(rH —2M)+4m ln 2M —m

(10)

The shell radius may now be found as a function of in-
terior and exterior advanced time by integrating Eq. (7)
using Eqs. (5) and (6) and (8) and (9). For the case of mar-
ginally bound dust, all of these integrations may be per-
formed analytically; however, several functions are en-
countered which cannot be inverted analytically [as in
Eq. (10)]. The resulting expressions for R ( V) and R (u)
may then be combined with Eq. (10) to find rH(u).

The radius of the event horizon as a function of ad-
vanced exterior time u, is shown for several values of the
ratio m/M in Fig. 1. The gravitational entropy S„how-
ever interpreted, is equal to 4mrH. The gravitational en-
tropy S2 is 4am for u &0, and 4~M for u &0. If we
choose to identify S2 as the gravitational entropy of the
black hole, then the gravitational entropy of the collaps-
ing shell is SI S2. This dlfT'erence is small, but nonzero,
until close to the time of the shell's collapse into the
black hole. The radius of the event horizon (and hence
its area, and the total gravitational entropy) is a continu-
ous function of advanced time, but only a C function of
advanced time at the point where the shell enters the
black hole; this is a result of using a 6-functional shell:
smooth matter distributions will yield smooth functions
for the matter, hole, and total gravitational entropies.

For times long before the shell reaches the event hor-
izon, the event horizon will nearly coincide with the ap-
parent horizon, making the shell's gravitational entropy
very small. For advanced times u «0 the gravitational
entropy of the shell is approximately given by

S,h, »
——4~m(my)' exp(u/4m ),

where p is the mass of the shell (recall @=M—m). Note
that this entropy approaches zero as either p~0 or
m ~0.

If we adopt the viewpoint that S2 is the gravitational
entropy of the black hole, then some matter
configurations will possess gravitational entropies. This

FIG. 1. The radius of the event horizon divided by the exteri-
or mass, rH/M, is plotted versus exterior advanced time divided
by the exterior mass, U/M, for shells collapsing into preexisting
black holes with masses rn =0.2M, 0.5M, 0.8M. The collapsing
shell reaches radius 2M at U =0. The outermost apparent hor-
izon is at r~ =2m for U &0 and at r& =2M for v )0. The total
gravitational entropy is ~rH; if ~r~ is identified as the black-
hole entropy, then ~(rH —r& ) is the gravitational entropy of the
collapsing shell.

—Io"So =10 (12)

a very small number compared to the ordinary, material
entropy of a solar mass star, about 10 in natural units.
On the other hand, the reason for the smallness of So is
the large amount of time (in units of m) between the
present and the epoch when galactic collapse occurs.
Again using Eq. (11), one finds that the gravitational en-
tropy of a solar mass star will exceed its ordinary, materi-
al entropy about one year before it enters a galactic mass
black hole.

I wish to thank David Samuel and Paul Anderson for
helpful discussions. This research was supported by NSF
Grant No. PHY88-03234.

is in contrast with previous studies, ' which have found
no entropy associated with the gravitational fields of
matter outside horizons. Here, however, only those
matter configurations which eventually enter black holes
(and thus aff'ect the horizon area) will possess a gravita-
tional entropy. One might think that this is an unin-
teresting class of material configurations; surely most
stars have low enough masses that they will not form
black holes after leaving the main sequence. However,
studies of the late evolution of our Universe' ' indicate
that galaxies and clusters of galaxies will collapse to form
supermassive black holes at t =10' yr (assuming the
Universe is open, k = —1; collapse of these structures to
form black holes will probably take place sooner in a
closed universe). Thus, much of the matter in the
Universe today may eventually enter a black hole, and
thus could possess a gravitational entropy even today. If
we assume that our Sun will eventually join a supermas-
sive black hole (the nucleus of which already may exist at
our Galaxy's center), then we may use Eq. (11) to make
an order-of-magnitude estimate of the Sun's gravitational
entropy today. Taking p to be the mass of the Sun, m to
be the mass of supermassive hole, and u the cosmic time
when our Sun enters the hole (10' yr), then
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