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For a pure gauge theory in three dimensions with a compact, semisimple gauge group, we derive

a formula for Creutz ratios of %'ilson loops that is valid in the continuum theory to fourth order in

the coupling constant. For SU(2)3, we compare this perturbative formula, corrected for periodic
boundary conditions, with lattice Creutz ratios that we have measured both in compact simulations

guided by Wilson's or Manton's action and in noncompact simulations guided by the Yang-Mills ac-
tion. The noncompact simulations show no evidence of quark confinement. We also present a cri-
tique of compact lattice methods and discuss the renormalization of both compact and noncompact
simulations.

I. INTRODUCTION

In the strong-coupling limit, quark confinement is a
nearly universal property of Wilson's lattice gauge
theory, ' holding for almost all gauge groups and space-
time dimensions. In this sense, confinement is built into
Wilson s method. In the weak-coupling limit, lattice
simulations of QCD are belieued to converge to QCD it-
self. Hence the open questions: Is the confinement seen
in lattice simulations of QCD at moderate coupling a
relic of the built-in confinemen of the strong-coupling
limit or a reAection of a true property of QCD? Does
pure QCD confine quarks —or are light quarks an essen-
tial part of the confinement mechanism, as recently sug-
gested by Gribov?

It is not possible to answer these questions by perform-
ing the simulations at the very small values of the cou-
pling constant g at which they are believed to be correct,
because the lattice spacing a shrinks with g like

877 /11 2 7/ 2=e . So to study confinement, which is
characterized by a fixed distance scale, near g =0 would
require a nearly infinite computer.

As a way of determining whether pure QCD confines
quarks and of answering other questions in field theory,
Patrascioiu, Seiler, Stamatescu, Zwanziger, Yotsuyanagi,
and Nesic and our group ' have developed Monte
Carlo methods that directly approximate the ratios of
Euclidean path integrals that occur in QCD and in other
continuum gauge theories. These methods may be called
"noncompact" because their basic variables are the fields
themselves rather than the elements of a gauge group as
in Wilson's compact" method. Patrascioiu, Seiler, and
Stamatescu use a discrete form of the continuum action;
we interpolate the fields throughout space-time and use
the continuum action itself. They fix the gauge, we do
not. Both noncompact methods may be closer to the
continuum theory than Wilson's method, and neither has

confinement trivially built in.
To provide a standard against which to compare the

results of compact and noncompact simulations, we have
derived in continuum perturbation theory a formula for
Wilson loops in three dimensions valid to fourth order in

g for any compact semisimple Lie group. We present this
derivation in Secs. II—VI. We use our Wilson-loop for-
mula in Secs. VII and VIII to derive perturbative expres-
sions valid to order g for the potential energy of a heavy
quark-antiquark pair and for the Creutz ratio y(r, t),
which at large t approximates the qq force. In Sec. IX
we modify these perturbative expressions to take account
of periodic boundary conditions.

En Sec. X we present a critique of compact lattice
gauge theory, describing four approximations that collec-
tively cause compact lattice actions to be globally
different from the Yang-Mills action. As a result of this
difference, the distribution of the Yang-Mills action per
plaquette in compact simulations is broader and shifted
to larger values than that of the guiding compact action.
The links of compact simulations thus are less correlated
than those of simulations guided by the Yang-Mills ac-
tion.

In Sec. XI we describe our noncompact method, which
uses the Yang-Mills action, and explain why it is possible
and preferable not to fix the gauge. In Sec. XII we dis-
cuss the Creutz ratios we measured for SU(2) in three di-
mensions both in noncompact simulations and in com-
pact simulations, guided by Wilson's action as well as by
Manton's. '" Before renormalization, the Creutz ratios of
the noncompact method are smaller than those of the
perturbative formula, those obtained with Manton's ac-
tion are larger than both; and those of Wilson's action are
still larger. Although these differences can be partly ab-
sorbed by the renormalization of the two methods, the
following trend remains: the forces predicted by the non-
compact method fall off faster with distance than those of
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the perturbative formula, while those of the compact
method fall o6' slower. The noncompact simulations
show no evidence for a linearly confining quark-antiquark
potential. In Sec. XIII we discuss the renormalization of
the two methods and explain why the unrenormalized
Creutz ratios of the noncompact method are smaller than
those of the perturbative formula.

A summary of the paper and a list of our conclusions
appear in Sec. XIV.

II. GROUP- THEORETIC PRELIMINARIES

The Wilson loop is related to the gauge-covariant
group element G(x,y, I') that satisfies the time-ordered
differential equation 'TD, (x)G(x, y. , l )=0 along a path I
from y to X. If the covariant derivative is taken as

I

D;(x)=8;+igA (x)T„then G is the exponential

r

G (x,y, I ) = 'TP exp ig—f A (x '
)T,dx, '

in which the operators A,'(x) with Euclidean time depen-
dence are time ordered and the generators T, are path
ordered. For a d-dimensional representation of the
group, the Wilson loop W(r, t) is defined as the expected
value of the trace of G (x,x, I }in the physical vacuum:

W(r, t)= —&QITr[G(x, x, l )]IQ&,
1

(2.1)

where the contour of integration I is an r-by-t rectangle.
The expansion of W(r, t) to fourth order in the coupling
constant g is

2

w(r, t)=1— Tr(T, Tb)f dx; f dyj&IIIT[~ (x)~J(y)]III&

+i Tr( T, T„T,)f dx; f dy f dzk & II
I 7]A('(x) A (y) Ak (z) ] I

II &

4
+ Tr(T, TbT, Td) fdx; f dy f dzk f dw(&QI'T[A (x)A~(y)Ak(z)A((w)]IQ& . (2.2)

f,b,
= Tr([T„Tb]T, } . (2.3)

In what follows we shall only need the trace
Tr(T, TbT, ) multiplied by f,b, and summed over a, 5,
and c. This sum is proportional to the quadratic Casimir
invariant e~ of the adjoint representation:

Tr( T, Tb T, )f,b,
=

—,
' [Tr( T, Tb T, )

—Tr( Tb T, T, ) ]f,b,

=
—,'Tr([T„Tb]T,)f,b,

l=
2

Tr(Td T.)f.bdf.b.

The first-order term is missing, even if some generators
have nonzero traces, because the invariance of the action
to the transformation A,'(x)~ —A,'( —x) implies that
the mean values of the gauge fields vanish.

The first of the traces in this expansion is determined
for semisimple groups by the orthogonality relation of
the generators Tr(T, Tb ) =k5,b, in which the normaliza-
tion constant k is related to the quadratic Casimir invari-
ant e = T, and the number X of generators of the group
by k =cd/i(((; The structure constants f,b, are

Tr[( T, Tb )']—Tr( T,'Tb ) = —Tr( T, [T„Tb]Tb )

=i Tr(T, TbT, )f,b,

—eel d2
(2.6)

III. THE WILSON LOOP TO ORDER g

The Euclidean propagator for the gauge field

D,' (x —y)=&QIV'2 (x)AJ(y)IQ&

J ip (x y)g)ab( )—d (3.1)

The group SU(2) has i(i =3 generators. Its defining
representation has d =2, and we may use the Pauli ma-
trices as the generators, T, =o', /2, whence c =

4

k =
—,'. Its adjoint representation has d„=3,and we

may set (T, )b, , e,b„so that c„=k„=2.Thus
for the defining representation of SU(2), these trace for-
mulas become Tr( T, Tb ) =5,b /2, Tr( T, Tb )=—', , and

Tr[(T, Tb) ]=—
—,'. For the adjoint representation, they

are Tr(T, Tb)=25,b, Tr(T, Tb)=12, and Tr[(T, Tb} ]
=6.

ik 2 ik i
faba = (2.4)

To lowest order, the fourth term in the expansion (2.2)
vanishes unless the group indices match in pairs, as in
Tr(T, Tb) and Tr[(T, Tb) ]. The first of these traces is

is given to lowest order in Feynman gauge by

5 5'
D (O)ab( ) f P ip (x —y(

(2m. )

gab
tj

4nIx —yI. (3.2)

Tr( T, Tb ) =Tr(c ) =czd,
and the second divers from it by

(2.5) Since Tr(T, Tb)=k5, b, the second order contrib-ution to
the Wilson loop is
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2

W2(r, t)= — k5, b fdx, f dy D,( ' (x —y)
7g cg

p =pt= (4.2)

= —g 'tt'3dx, tt')dy, . (3.3)

W2(r, t) = U2(r, t)+ U2(t, r)

where

(3.4)

U2(r, t)= — f dx, f dy,
4m o o ~x] —y]

Qt +(x, —y, )

[r arcsinh(r lt) —r ln(r/e)g C

2&

where c =Nk /d is the quadratic Casimir of the represen-
tation. This doubly cyclic integral may be thought of as
the sum of eight ordinary double integrals, in which x
and y run over identical or parallel edges. These eight in-
tegrals are equal in pairs, so that only four are indepen-
dent. Finally two of the four integrals may be obtained
from the other two by interchanging r and t. We may
therefore write 8'2 in the form

Near this pole the formula (4.1) for the propagator can-
not be correct, and so we should use it only for p &&p, .
At such large values of p, we might as well expand the
denominator in powers of the coupling constant g, ob-
taining as the second-order correction to the propagator

~(2)ab(p) 5ab
EJ 1J

P&PJ

p 32p
(4.3)

By using this term to correct D . ' in Eq. (3.3), we

may obtain its contribution to the Wilson loop as

W (r t)= — ' f dx f dy f e'~'"g 6,qk
4 & 2d r i r J (2 )3

)(g)(2)ab(p )V
(4.4)

Since the correction (4.3) has the infrared singularity
1/p, we regularize it by integrating over the space-time
loop I before integrating over the momentum p. The
double line integral around the r-by-t rectangle I is

I(. (p, r, t) =
tt3 rdxf rdy 5; e '

")/r +—t +r +t], (3.5)
1 1 . V & . tP3= 16 + sin sin

p
2

p
2

(4.5)

in which e is an ultraviolet cutofF'required by the singular
color-electric string' generated by the group element
6 (x,y, I ). Since e enters W2(r, t) in a term proportional
to the perimeter of the loop, 2r +2t, it does not contrib-
ute to the Creutz ratio, as we shall see in Sec. VIII.

Because the p, p term in the correction 2)('")' (p) is a dou-
ble partial derivative which does not contribute to loop
integrals, the correction to the Wilson loop is the
momentum integral of K (p, r, t) /p:

IV. THE PROPAGATOR CORRECTION W4(r, t)=—7g &cwk i. d p I(. (p r t)
64d " (2~)3

There are three sources of the fourth-order contribu-
tion to the Wilson loop: the second-order correction to
the propagator of the gauge field and the third and fourth
terms in the expansion (2.2) of the Wilson loop. In this
section we calculate the contribution to the Wilson loop
from the propagator correction.

To one loop the propagator for the gauge field in the
Feynman gauge is' '

g)ab(p) —5ab

P)PJ
IJ

7g cg
P 32 P

P&PJ.

p
(4.1)

which has a tachyonic pole (also known as a Landau
ghost) at

7g Nc~ k
rt .

64md
(4.6)

V. THE THIRD TERM IN THE WILSON-LOOP
EXPANSION

To order g, the third term in the expansion (2.2) of the
Wilson loop is the expected value in the bare vacuum of
six gauge fields, of which three lie on the edges of the
loop and three come from the cubic term in the Lagrang-
ian:

For +r +t ((/p„ this integral is insensitive to mo-
menta p of the order of p, or smaller, where the one-loop
propagator is inaccurate. Only for such small values of r
and t is the formula (4.6) correct.

W4 )(r, t)=i Tr(T, TbT, )fd, f dx; f dy f dzk f d w(0~ & A,'(x)A (y)Ak(z)A() )(w)A&'(w)Ag (w)]~0) . (5.1)

Here A() l(w)—:A&" (w) —A" &(w) is the curl of the gauge field. By using the trace relation (2.4) and the formula
DJ ' (x)=5&5'"/(4vr~x~ ), we may write W4' ' as
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4

a ly
—wl a

'J aw„"ly—wl "aw, "lz —wl "aw, "lx —wl
(5.2)

When i =j =k, the integrand vanishes, being proportional to the derivative of the logarithm of unity. In this section
we reduce this six-dimensional integral to a three-dimensional one, which we have evaluated numerically.

We found it convenient to split this path-ordered integral into terms in which each of the loop coordinates x, y, and z
is integrated along an edge of the r-by-t rectangle. For example, the term with x on the upper horizontal edge, y on the
right vertical edge, and z on the lower horizontal edge, which we denote as R„Tr„is

0 t r 1 a lz —wl (5.3)
x w y w z w Bw3

apart from the factor F =g kNc„l[2d (4m) ]. The three edge integrals are easy because they decouple. For instance,

W3 W3
—t

dy 3
=arcsinh —arcsinh

ly
—wl [( )2+ 2 ]1/2 [( )2+ 2 ]1/2

After using the symmetry of the integrand under the swap of w 3 for t —w 3, we obtain

(5.4)

W3 Wl

W2+ W3

Wl
—r

arcsinh
[(w, —r) +w2+w3]'

Wl —arcsinh
[w +(w3 —t) ]'

w, —r

[W2+(w t)2]1/2

W3 W3
—t

X arcsinh
2 2 1/2 arcsinh

[(w, r) +w—2]'/ [(w, —r) +w2]'/
(5.5)

The analogous term with x on the left vertical edge, y on the upper horizontal edge, and z on the lower horizontal
edge, which we denote as t Ryr is equal to R Tyr, . There are two other terms like these but rotated by 90'; they are
also equal to each other and differ from R T r, by the interchange of r with t.

The remaining terms in Wz' '(r, t) are ones with two loop coordinates on one edge and the third on a perpendicular
edge. For example, the term with x on the right vertical edge and both y and z on the lower horizontal edge is

t r ~1 1T r r, = f dx f dy, f dz, f d (5.6)
x w y w z w Bw3

apart from the factor F. The x integral is given by (5.4). We may write the remaining integrand as G(y, z) —G(z, y)
where G(y, z)= —

ly
—wl 'a3 lz —wl

' and thereby take advantage of the identity

f dyi f dzi[G(y, z) —G(z,y)]=2f dyi f dziG(y, z) —f "dyi f dziG(y, z) . (5.7)

After evaluating these known integrals, we find

W3 W3 W3
—t

T ryr = d w
2 2

arcsinh
2 2 1 /2

arcsinh
W2+W3 [(Wi ) +W2] [(Wi —r) +W2]

Wl w, —r
X arcsinh, —arcsinh

(W2+W, )' (W2+W3)'

(w, r) +w2+W3-
lwl'

w l + lw r

l
w

I [(w r) +w +w —] '

(5.8)

There are three other terms in which two loop coordi-
nates lie on a single horizontal edge with the third on a
vertical edge; all three are equal to T r r, . There is also
a quartet of terms with two loop coordinates on a single
vertical edge and a third on a horizontal edge; they differ
from the preceding quartet by an interchange of r with t.

We have now reduced W'z1 1(r, t) to one complicated tri-
ple integral over space-time, essentially the sum of (5.5)
and (5.8), which we have computed numerically.

VI. THK FOURTH TERM IN THK WILSON-LOOP
EXPANSION

In order to calculate to order g the quartic integral in
the formula (2.2) for the Wilson loop, we found it con-
venient to write the path-ordered exponential in the
definition (2.1) as the product of four path-ordered ex-
ponentials, one for each edge of the rectangle. We then
expanded the path-ordered exponential for each edge in
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powers of g, and kept all terms of order g in the product
of the four exponentials. Each such term contains four
gauge fields and is characterized by the edges along
which the fields are integrated. The vacuum expected
value of a given term consists of three pieces, each with
two propagators and a distinct pairing of the fields in the
propagators. For example, the term with all fields on the
lower horizontal edge,

f du lnu ln(1 —u) =2—
0 6

(6.7)

Then by interchanging the order of the y &
and z

&
integra-

tions in one of the terms, and using the symmetry of con-
volution s,

indefinite integral of x(lnx), which is tabulated, and the
definite integral

Tr(T. T, T, T, )f "dx, f dyi f dz, f
X (Q~'TT A;(x) A, (y) A', (z) A", (w)] Q), (6.1)

f dz f (z)g (y —z) = f dz f (y —z)g (z),
0 0

we find

(6.8)

contributes three terms, according to the order of the
contractions:

Tr(T Ti, )f dxi f dyi f dzi f dlvi

XD „(x—y)D „(z—w), (6.2)

Tr[(T, T&} ]f dx f dy f dz f dw,

X D» (x —z)D» (y —w), (6.3)

Tr(T, T&)f dxi f dyi f dzi f dwi

XDii(x —w)D»(y —z), (6.4)

~here DU(x)=5;, /(4ir~x~). These traces, which are the
only ones to occur in the order-g terms, are evaluated in
Eqs. (2.5) and (2.6).

In order to simplify the computations which follow, it
is useful to recall that for the group U(1) the Wilson loop
(2.1) can be cast into the simple exact form
W(r, t)=exp[W2(r, t)], where W2(r, t) is given by Eqs.
(3.4) and (3.5) with c = 1. More generally for any Abelian
group, the fourth-order contribution W4"'(r, t) to the Wil-
son loop is always just ,' W2(r, t) with —the appropriate c.
Thus if the coefficients of the three integrals (6.2)—(6.4)
were all the same, then they would form —,

' W2(r, t} up to
a numerical factor. So in each term like (6.1) we really
only need to compute the integral analogous to (6.3) with
the appropriate coeflicient obtained from Eq. (2.6):

4

ITr[(T, Ti, ) ]—Tr(T, TI, )I = —
—,'g cc„. (6.5)

In other words, W4 '(r, t) differs from —,
' Wz(r, t) only via

terms in which the order of contractions is that of (6.3).
The multiple integral in Eq. (6.3) has all gauge fields on

the lower horizontal edge r and has x paired with z and y
with w; we shall denote this integral multiplied by (4ir)
by the symbol r„r,r~r~:

rr, rr
= f dxi f dyif dz f dwi

x& z, y& mI

(6.6)

To evaluate this integral, which is finite, we use the

r„r,r~r =sr r /12 . (6.9)

X (Q~'T[A;(x)A, (y)A;(z)A", (w)]~Q) . (6.10)

Letting R stand for the upper horizontal edge, we may
write this term as

4

[Tr(T, T&)R r r, r +Tr[(T, T&) ]R r, r r
(4') d

+Tr(T2T&)R„r r r, I . (6.11)

Once again we only need evaluate the second of these
integrals:

R rory r~

Qx) 8gi Qz] GMi [t'+(x, —z, )']'"

x
y, —w,

(6.12)

We first integrate over x& and ur, and then interchange
the order of the y &

and z, integrations, obtaining

R„rrzr =2r J(r/t),
where

(6.13)

J(v) = f du [u lnu +(1—u) ln(1 —u)] arcsinh(vu)
0

(6.14)

is an integral that we have evaluated numerically.
The term analogous to (6.12) but with three fields in-

tegrated on the upper horizontal edge is in fact equal to
(6.12) itself. There are also two terms like (6.12) but with
three fields integrated on the right or left vertical edge;

The term analogous to (6.3) but with all fields integrat-
ed on the upper horizontal edge is in fact equal to (6.3) it-
self. There are also two terms like (6.3) but with all fields
integrated on the right or left vertical edge; these are
equal to (6.3) with r replaced by t So w. e have now evalu-
ated all terms in which all fields are integrated on a single
edge.

Because the propagator is diagonal in the spin variable,
any quartic term with three fields integrated on one edge
must have the fourth field integrated on the opposite
edge. The term with three fields integrated on the lower
horizontal edge and one on the upper horizontal edge is

Tr(T, Ti, T, Tg) f dxi f "dy, f 'dzi f 'dwi
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these are equal to (6.12) with r replaced by t; So we have
now evaluated all terms in which three fields are integrat-
ed on a single edge.

%'e now consider the quartic term with two fields in-
tegrated on each of the horizontal edges,

Tr(T, TI, T, T&)f dx, f dy, f dz& f dw&

+Tr(T, Tb)R„r~R~r,I . (6.16)

Again we evaluate only the second of these integrals,

Rx rzR& rw

= f 'dx, f 'dy, f 'dz, f 'dw,
r r o o [t +(x( —z))]

1

[t'+(y—
(6.17)

in which the y, and m, integrals are easy. Then by in-
tegrating by parts and using the integral formulas,

f dx [arcsinh(x/t)] =x [arcsinh(x/t)]

—2V'x + t arcsinh(x lt) +2x

and

f dx x [arcsinh(x lt)]

=(x /2+t /4)[arcsinh(x/t)]

(6.18)

—(x/2)(/x +t arcsinh(x/t)+x /4, (6.19)

we may reduce the remaining double integral to the form

X (nl &~ f(x) ~'(y}~'(z) A "(u }]In), (6.15)

which we may write as
4

I Tr( T, TI, )R„Rr,r„+Tr[( T, Tb ) ]R„r,R r
(4m) d

R„r,R r =(r +t /2)[arcsinh(rIt)]

+(2rt r—(lr +t ) arcsinh(rlt)

2t—tlr +t 3r —l2+2t 2r—cP(rlt),

(6.20)

which involves a single integral
1a(U)—= f du[u arcsinh(Uu) —+u +1/v ]

0

Xarcsinh[U (1—u)], (6.21)

which we have evaluated numerically.
The term analogous to (6.17) but with the fields on the

vertical edges is equal to (6.17) with r replaced by t
We shall not evaluate the quartic term with two fields

integrated on the lower horizontal edge and two on the
right vertical edge T T r, r because it does not contain a
term of the required form (6.3), the propagator being di-
agonal in the spin variable. For the same reason, we do
not consider the quartic term with two fields integrated
on the lower horizontal edge and one on each vertical
edge I, T r, r . Similarly we ignore another term with
two fields integrated on the upper horizontal edge and
one on each vertical. edge t T R R, and two analogous
terms R r„TT, and t t R, r which are related to them
by the interchange of- r with t.

Finally let us consider the quartic term with all four
fields integrated on different edges of the loop,

Tr(T, TbT, T&)f dx3 f dy, f dz3 f dw,

Tr[(T, Tb) ]t T,R r„.
(4m. ) d

(6.23)

It has the same order of contractions as (6.3) and is given
by

X(A~V[/13(x)A", (y)/I3(z)A", (w)]~A} . (622)

Because the propagator is diagonal in the spin variable,
there is only one integral

TTRr =f dx3f dy, fdz3f dw, 2+( )2]l/2 [t2+(y w )2]1/2

=4[r arcsinh(r/t) +r +t +t][t a—rcsinh(tlr) +r +t +r] . — (6.24)

This completes the evaluation of the order-g terms in the expansion of W(r, t) If we gathe. r them all, then we may
write the fourth-order term

W (r, t)= W (r, t)+ W' '(r, t)+ W '(r, t)
in the form

W4(r, t) =
—,
' W2(r, t) + U4(r, t)+ U4(t, r)+ W4 '(r, t),

where W4 '(r, t) is the triple integral of Sec. V which we have computed numerically and U4(r, t) is

4

U4(r, t) = — [2m rt +(r +t l2)[arcsinh(r/t)] +2rt arcsinh(rlt) arcsinh(t/r)
32~2

+(4r +2rt —Sr+r +t ) arcsinh(rlt) 6r+r +t-
+(—, +m l6)r +2rt +4r J(rlt) 2r2+(r lt) J—,

which is independent of the ultraviolet cutoff e.

(6.25)

(6.26)

(6.27)
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VII. THE STATIC POTENTIAL

The Wilson loop W(r, t) may be written in the form'

W(r, t) =exp[ t—E (r) D—(r) —C (r, t)], (7.1)

where E (r) is the energy of a static "quark-antiquark"
pair, D (r) represents the overlap between the physical qq
state and the "string" qq state

~q(r)q(0))-q (r)Pexp ig —J A (x)T,dx; q t(0)~A),

(7.2)

and C(r, t) represents the contribution of higher-energy
states. The quantity D(r) diverges and the overlap e
vanishes because the electric ffux of the string state (7.2)
is infinitely intense along the string whereas the electric
Aux in the true qq state is spread out and finite, except at
the positions of the quarks. If, as we expect, the contri-
bution C(r, t) of the higher-energy states has a vanishing
time derivative in the limit t ~ ~, then we may express
the energy of the static qq pair as

E(r) = —lim
f~oo

i) ln W(r, t)
at

(7.3)

= U~(r, t)+ U~(t, r)+ U4(r, t)+ U4(t, r)

Apart from an infinite constant associated with the self-
energies of the quarks, the energy E(r) is the qq static po-
tential V(r), which we shall now compute to order g .

To fourth order in the coupling constant, the Wilson
loop is 8'=1+ 8'2+ 8'4, where 8'2 and 8'4 are given by
Eqs. (3.4) and (6.26). We may therefore expand ln W(r, t)
as

lnW(r, t)= Wz(r, t)+ W4(r, t) ,' Wz(r—, t)—

VIII. THE CREUTZ RATIO

One may avoid the infinite self-energies in the energy
E(r) of static quarks separated by a distance r, by com-
puting the magnitude f (r) of the force between them,

f (r) = —lim
$~ oo

8 lnW(r, t)
Br Bt

(8.1)

A form of this derivative suitable for lattice calculations
has been introduced by Creutz:

y(r, t) = —ln
W(r, t)W(r —a, t —a)
W(r, t —a) W(r a,t)—(8.2)

In terms of this Creutz ratio y( r, t ), the force f ( r ) is the
limit

apart from an additive constant. The linear confinement
exhibited by this formula for the static potential may be
spurious, however, because the tachyonic pole (4.2) in the
one- and two-loop perturbative propagators' ' invali-
dates our formula for W4(r, t) when r or t exceeds
m. /p, =32~/(7g c„).

In checking numerically the formula (7.5) for the po-
tential V(r), we have found that the convergence as
t ~ oo of the time derivative of —ln W(r, t) to its limiting
form (7.5) is surprisingly slow. For example, for g =2 the
value of —8 ln W4' '(3a, t)/Bt is 0.7220 at t =3a, 0.1807 at
t =30a, 0.0287 at t =300a, 0.0037 at t =3000a, and
—0.0001 at t =30000a. These values suggest that to get
accurate potentials from Monte Carlo data on Wilson
loops requires very large lattices in three space-time di-
mensions. However, the convergence of the time deriva-
tive of lnW(r, t) should be much faster in four dimen-
sions.

+ W,"'(r, t) . (7.4) f (r)= lim y(r, t)
taboo g

(8.3)

2C g CCg
V(r)= ln(r l2a)+ r,

2K 8m
(7.5)

The cutoff'e enters ln W(r, t) only through Uz in the form
of a term proportional to the perimeter of the loop.
Hence the Creutz ratio y(r, t) is independent of the cutoff',
as we shall see. However the cutoA does contribute self-
energy terms to E(r).

By studying the time derivative of ln8'analytically, we
have found that the only contributions to E (r) in the lim-
it t —+ oo are those due to the second-order term Uz(t, r)
and the fourth-order propagator correction W4(r, t).
Thus after subtracting the infinite self-energy terms, we
may express the qq static potential to order g as

In this section, we shall use our perturbative formula for
ln W(r, t) to numerically evaluate g(r, t) for small r and t.

In lattice gauge theory it is convenient to describe dis-
tances in terms of the lattice spacing a and to use a di-
mensionless inverse coupling P that is defined, for a d-
dimensional representation of a group with generators
normalized according to Tr(T, Tb)=k5, & in D-di-
mensional space-time, as /3=a 4d/kg . By using Eq.
(7.4), we may write lnW(r, t) to second order in 1 /P as

lnW(r, t)= U(rla, t ja)+ U(t ja, rja)+ W& '(r, t), (8 4)

where with p=rla and r=t ja the function U(p, r) is

U(p, r)= [parcsinh(p jr) —pin(p) —pin(a je) +p +r +p+~]—
2@k/3

ccrc 8 2

[2mpr+(p +r /2)[arcsinh(p/~)] +2p~arcsinh(p/~) arcsinh(~/p)
32m k /3

+(4p +2p~ —5pV p +~ ) arcsinh(pjr) —6p+p +~

+(—,'+fr /6)p +2p7. +4p J(pjr) 2p d(p/~)]— (8.5)
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We may now obtain a formula for the Creutz ratio
g(r, t) by substituting the expressions (8.4) and (8.5) into
its definition (8.2). Since lnW(r, t) depends upon the ul-
traviolet cutoff e only through a term proportional to
r+t, the Creutz ratio is finite and independent of the
cutoff.

We have numerically evaluated our formula for y(r, t)
for the case of small square loops. The results may be ex-
pressed as

summing over n~.
One may obtain the order-g contribution W2(r, t) to

the Wilson loop of the periodic continuum theory by in-
tegrating this propagator over the loop as in Eq. (3.3). At
r =ka and t =ma, the resulting W2(r, t) is

W'2(ka, ma) = — g +cdL 1 1 1

2kPa „n+e n, n3

cd ccgd
y(r, t)= f (r/a, t/a)+

2 s(r/a, t/a),
32m k P

(8.6)

~n] k
X sin

L
&n 3@i

sin
L

(9.2)
where the coefficients are f (2,2)=0.989 73, f (3,3)
=0.57535, f(4,4)=0.40754, f(5,5)=0.31590, f (6,6)
=0.25802 and s(2, 2)=8.791, s(3,3)=8.771, s(4, 4)
=8.766, s(5, 5)=8.764, s(6,6)=8.764.

Our perturbative formula for y(r, t) is only reliable
when g, r, and t are sufficiently small that the fourth-
order term in g(r, t) is smaller than the second-order term
and that W4 (r, t) is insensitive to the tachyonic pole (4.2)
in the gauge propagator. The second of these conditions
is the more restrictive, requiring

[(r/a) +(t/a) ]' (& p .
321Tc

7¹~ (8.7)

For SU(2)3, the range of validity is p ))1 and

+(r/a) +(t/a) much less than 1.8p.
Because of the rotational symmetry of the Euclidean

action, the Creutz ratio, like the Wilson loop, is sym-
metric: y(r, t)=y(t, r).

Other finite ratios, like that of Creutz's, have been con-
sidered' and may be evaluated by steps analogous to
(8.2)-(8.5).

IX. CORRECTION FOR PERIODIC BOUNDARY
CONDITIONS

Monte Carlo simulations must be carried out on finite
lattices, and so require boundary conditions on the sur-
face of the lattice. These boundary conditions, which we
have taken to be simply periodic, have an effect on the
Creutz ratio y(r, t). To estimate this effect, we shall now
calculate these ratios to order g in a version of the con-
tinuum theory on which periodic boundary conditions
have been imposed.

If the fields of the continuum theory are required to be
periodic with period La, then the Euclidean gauge-field
propagator

D (x —y):—(Q~ 7 A (x) AJ(y) ~A )

in the Feynman gauge is

ip. (x —y)

D;; ( —y)='J (La )3 2+ 2 (9.1)

where the vector p is related to a vector n of integers n
„

n„annd, by p =2m.n/(La). We have regularized the
zero mode p =0 by adding to the denominator p a ficti-
tious mass term p, which we shall set equal to zero after

where e =La p/(2m ). By using the identity

2 2
=—coth(ma),1

n +0,'

(9.3)

which may be established by a contour integration, one
may write W2(ka, ma) in the form

W2(ka, ma)

c dL

2kPvr

(n, +n3)'
tanh[n(n f+n23)'~'] n', n3

(n 1, n 3 )W(0, 0)

mn ik
X sin

~n 3m
sin

(9.4)

after setting the fictitious mass p equal to zero. The term
omitted fr'om the sum cancels in Creutz ratios.

We have substituted this expression for 8'2, which is
lnW to order g, into the definition (8.2) of the ratio
y(r, t) and have done the sums numerically. The effect of
this correction for periodic boundary conditions is to
reduce the ratio by a factor that grows with the length of
the loop and shrinks with the size of the lattice. For a
16 lattice, the decrease in g(na, na) to order g is 0.47%
for n =2, 2.30% for n =3, 6.58% for n =4, 14.61% for
n =5, and 28.01% for n =6.

Periodic boundary conditions reduce Creutz ratios be-
cause they in effect create copies of the lattice, so that a
quark sends its color-electric flux not only to its anti-
quark partner but also to the images of that antiquark.
Thus the qq force and the Creutz ratios which measure it
are smaller.

We have estimated the effect of periodic boundary con-
ditions upon each of the fourth-order terms 8 4, 8'4 ',

and 8'4 ' by using the relative correction of 8'2 as many
times as the term contains propagators. Since this esti-
mate is based on little more than a guess, it represents
another theoretical uncertainty, one that grows with the
size of the loop and shrinks with p. On a 16 lattice at
p =60, this theoretical uncertainty runs from about
0.04% for y(2, 2) to about 8% for y(6, 6). The corre-
sponding uncertainties at p= 10 are about 0.2% for
g(2, 2), 6% for g(4, 4), and 15% for g(5, 5).
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With these corrections for periodicity on a 16 lattice,
our perturbative formula (8.6) for the Creutz ratio be-
comes

Cd ccrc d 2

gp(r t)= fp(rla, tla)+ z 2 2 sp(rla, tla)
32m k P

(9.5)

where the coefficients for small square loops are
fp(2, 2) =0.985 06, fp(3, 3)=0.562 10, fp(4, 4)
=0.38072, fp(5, 5)=0.269 75, f„(6,6)=0.185 75 and
sp(2, 2)=8.631, sp(3, 3)=8.016, sp(4, 4)=6.748, sp(5, 5)
=4.812, sp(6, 6)=2.605. Some values of yp(r, r) for
SU(2) are listed in Table II below.

X. CRITIQUE OF COMPACT LATTICE GAUGE
THEORY

In compact lattice gauge theory, the basic variables are
the link variables 1;(x)=exp[ igaA; —(x)Tb] which are

Sir =P g 1 ——Re Tr(Up )
1

(10.1)

For a plaquette in the i-j plane, the unitary matrix
U = Uz =exp(ia gF;. ) is the exponential of a Hermitian
field-strength matrix F;:—F;"Tb which is related to the
gauge fields A; = A; Tb of the links of the plaquette by
the infinite Hausdorff series for the group product
l

~
l , l~ I, :

elements of the compact gauge group and here are la-
beled by the vertex x from which they emanate and the
direction i in which they point. The Wilson action is
made from the sum over all plaquettes of the path-
ordered product U of the link variables around the pla-
quette

A, (x +ae, ) —A, (x) A, (x +ae, ) —A~(x);g
F, = . — ——[A;(x), A.(x+ae;)]——[A;(x+ae~), AJ(x)]

——[A;(x+ae )+A (x), A;(x)+A (x+ae, )]+lg
(10.2)

where e; is a unit vector in the ith direction. When the
fields of adjacent parallel links differ by a quantity of first
order in the lattice spacing, the field strength to that or-
der is

A, (x+ae )
—A;(x) A (x+ae;) —A (x)

LJ a a

ig [A,.(x—), AJ(x)], (10.3)

where A;(x)= —,'[A;(x+ae )+ A;(x)] with a similar for-
mula for A (x). An expansion of the unitary matrix U,"
gives for the Wilson action the series

Sir= g (FJ. ) +
cubes

(10.4)

in which the first term is formally the Yang-Mills action.
In addition to Wilson's structure of links and pla-

quettes, compact lattice gauge theory uses four approxi-
mations that are potential sources of error.

(1) The compactification of the domain of integration
to the group manifold.

(2) The use of the Hausdorff formula (10.2) instead of
the Yang-Mills formula (10.3) as the relation between the
field strength F; and the field 3;.

(3) The use of compact lattice actions that are func-
tions of the plaquette matrices. Such actions sometimes
slough off part of the field strength (10.2).

(4) The inclusion in the Wilson action (10.4) of the
infinite series of terms that comes from the expansion of
U; beyond the quadratic term.

The first three approximations are intrinsic to Wilson's
method. They are the price of exact lattice gauge invari-
ance. Manton's action avoids the fourth approximation.

These four approximations add to the perturbative action
extra terms that contribute to the largeness of the ratio'
of the continuum and lattice QCD scale parameters:
AMoM /Alattice 83

The first approximation is legitimate only when the
fields are small and the group elements close to the identi-
ty. In general the topology and curvature of the group
manifold require an invariant measure dg which adds the
term —ln~dg/dA~ per link to the Wilson action. For
SU(2) the effective Wilson action is

sin(ag~ A; ~/2)
(10.5)

»nks ag At /2

which restricts the fields to the ball ag~ A;~ &2ir. The
first approximation correlates the fields: even at P=0 the
mean value ag ( ~ A; ~ ) of the dimensionless field is ~

We may appreciate the effect of the second approxima-
tion by multiplying both sides of the Hausdorff formula
(10.2) by a g and so expressing the dimensionless field
strength a gF, as a power series in the fields ag A;. Be-
cause of lattice gauge invariance, the mean values
ag(

~ A,. ~
) in our compact simulations do attain the ana-

lytic value of m. for all P. Even after the links have been
gauge transformed as close as possible to the identity, the
mean values of the fields remain substantial —e.g. , at
P=2 Wilsonian simulations give ag(~ A;~)=1.12. So
when the fields do not commute, the cubic and higher-
order terms in the series (10.2) are comparable to the
linear and quadratic ones, and the series is more a
burlesque of the Yang-Mills formula (10.3) than an ap-
proximation to it. Since the relative importance of the
derivatives is thereby diminished, the second approxima-
tion decorrelates the fields.
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errors of the first two approximations, which are valid
only when the fields are small.

The fourth approximation, like the third, also causes
the Wilson action to depend upon the direction of the
field strength in the Lie algebra, thereby adding to the as-
tigmatism of the third approximation. For Wilson s ac-
tion lacks those symmetries that accrue to the Yang-Mills
action by virtue of its being a sum of squares of field
strengths. Some of these symmetries constitute the Eu-
clidean group of space-time rotations. Others are invari-
ances to transformations that rotate the field strengths by
transforming the fields nonlinearly. These latter sym-

metries may not be very pretty; but an action should as-
sign the same weight to fields whose field strengths are re-
lated by a global rotation, which Wilson s action fails to
do in general.

We may illustrate this lack of rotational symmetry by
considering the unitary groups and SU(3) in particular.
For SU(n) one may diagonalize both the plaquette group
element U; =exp(ia gF; ) and the field strength F; by an
SU(n) transformation and so express the eigenphases 0,
ofU, as

0„6„,=a g(F,," )„,(mod2m) . (10.7)

—(1—6i„) (mod2m) .
(i —1)f'

2i (i —1)
(10.8)

One may use this expression to write the Wilson action
(10.6) in terms of the field strengths f

For SU(3) the generators H are just half the Gell-
Mann matrices k3 and A.8.

H, = T3 =
—,
'

A, 3
=

—,
' diag(1, —1,0)

and

H2 = T8 =
—,'A8=(1/2v 3)diag(1, 1, —2) .

Modulo 2a, the angles Ok are

e, =f'+-f', 0,= —f'+ f', ~ d e, = —f'
.

2 2v'3' 2 2v'3' v'3

(10.9)

So the Wilson action assumes the astigmatic form

1 2 1 2

Sii, =13+ . 1 ——cos + — +cos
3 2 2v'3 2 2v'3

+cos v'3 (10.10)

which is generally higher when (f ',f ) = (0,f ) than

The diagonalized field-strength matrix I';" is a linear
combination of the generators H of the Cartan subalge-
bra of SU(n): a gF;""g= g" ', f H . By using explicit
formulas for the H 's, one may express the eigenphases
Ok, which lie between —m and ~, as linear combinations
of the dimensionless field strengths f

n —1

X
; v2m (m +1)

when (f ',f ) =(f,0), as shown in Fig. 2. However, for
small field strengths,

~f ~

~ 1, the difference is less than 3
parts in 80000.

The errors due to the fourth approximation can be
avoided by the use of the Manton action SM which is just
the desirable part of the Wilson action:

d
SM= QTr(lnU, lnU;. )= g g ek .'"

p p k=1
(10.11)

When the dimensionless field strengths f are so small
that the periodicity of the eigenphases 0, can be ignored,
Manton's action is formally equal to the Yang-Mills ac-
tion

aD r

XT (F, )= X X (f")' *

p p m=1
(10.12)

where r is the rank of the gauge group. For SU(3)
Manton's action per plaquette is SM =(p/6)(0, +02+03)
with the 0 s given by Eq. (10.9). Simulations guided by
Manton's action have higher field correlations than those
guided by Wilson's, an effect also seen in SU(2)4 by Lang,
Rebbi, Salomonson, and Skagerstam. '

In Fig. 1 Manton's action and Wilson's are graphed for
SU(2). The maxima of S~ at f = 2m and 4m are more
than twice as high as those of Sii. For SU(3) the astig-
matism of the two actions (10.10) and (10.11) and their
false vacua are evident in Fig. 2 which displays these ac-
tions as functions of the dimensionless field strengths f
The limits on the f 's are four times those imposed on
the dimensionless fields ag~ A, ~ by compactification, to
wit: f ' ~ 8' and f + 4V 3m. Both compact actions are
periodic in the field strength f ' with period 4' and in f
with period 4v'3~ Clearly nei. ther Wilson's action nor
Manton's globally mimics the Yang-Mills action.

To determine the extent to which the four approxima-
tions of compact lattice gauge theory introduce errors
that are statistically significant, we have measured the
Yang-Mills action in compact simulations of SU(2)3 both
guided by Wilson's action and by Manton's on a 16 lat-
tice. For each link variable l, (x), we took the gauge field
to be 3;(x)=i in[i,.(x)]/(ga). As a lattice analogue of
the Yang-Mills action per plaquette, we used S&M
=a Tr(F; ), where the field-strength matrix F, is given"
by Eq. (10.3), not the Hausdorff formula (10.2).

In the simulations guided by Wilson's action, the mean
value (SvM ) of the Yang-Mills action per plaquette was
about 7. 513 for 0.5 ~P~ 10, while that of the Wilson ac-
tion (Sii, ) never exceeded 1.14. In the simulations guid-
ed by Manton's action, the corresponding mean values
were very similar. Thus in our compact simulations, the
mean value of the Yang-Mills action was bigger than that
of the guiding compact action by about an order of mag-
nitude at strong coupling and by nearly 2 orders of mag-
nitude at weak coupling. Figure 3 shows the mean
Yang-Mills action (SvM) per plaquette for SU(2)3 on
successive sweeps from cold starts in compact simula-
tions at P= 10.

However, if one is only interested in measuring quanti-
ties that are invariant under lattice gauge transforma-
tions, then much of this action gap may be considered to
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TABLE I. In compact simulations, the mean value &SvM) and standard deviation of crvM of the
Yang-Mills action per plaquette and of the guiding action, whether Wilson's S~ or Manton's S~, for
various P.

0.5

0.89
0.73

1.0

1.47
1.35

2.0

1.83
1.90

3.0

1.61
1.68

4.0

1.35
1.21

6.0

1.19
1.01

8.0

1.1)
0.95

10.0

1.11
0.91

&S & 0.44
0.25

0.76
0.47

1.09
0.79

1.14
0.88

1.09
0.85

1.05
0.86

1.02
0.82

1.03
0.82

&S,M&

OYM

0.79
0.68

1.16
1.10

1.25
1.22

1.17
1.05

1.12
0.94

1.07
0.88

1.07
0.87

1.04
0.85

&s & 0.52
0.38

0.80
0.80

0.97
0.79

1.00
0.82

1.00
0.82

1.00
0.81

1.01
0.82

1.01
0.82
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FICx. 3. The mean Yang-Mills action &SvM & per plaquette on
the first 20000 sweeps of two compact simulations of SU(2)3
from cold starts on an 8 lattice at /3=10. In the simulation
guided by Wilson*s action, the mean action rises steeply after
about ten sweeps; in the other guided by Manton's action, the
steep rise occurs after about 500 sweeps.

be a lattice gauge artifact. For one may take the view
that the correspondence A, (x)=i ln[l, .(x)]/(ga) between
the links of a compact simulation and the fields of a non-
compact simulation should be made only after one
smoothes the links by a lattice gauge transformation that
brings them as close to the identity as possible. We simu-
lated such a smoothing lattice gauge transformation by
making several hundred sweeps through the lattice with
an algorithm that maximized the sum of the traces Tr(l;)
of the six links of each vertex by a gauge transformation.

After such gauge smoothing, the mean values and stan-
dard deviations of the Yang-Mills action (SvM ) and of
the guiding eompaet action, either Wilson's (S~) or

Manton's (S~), were as shown in Table I. The mean
value (SvM ) of the Yang-Mills action in gauge-
smoothed simulations guided by Wilson's action rose
from 0.89 at p=0. 5 to 1.83 at /3=2 and then declined to
1.11 at p=10. The corresponding mean value (S~) of
Wilson's action in these simulations was 0.44 at p=0. 5,
1.09 at /3=2, and 1.03 at p=10. At p=2, the gap be-
tween the Yang-Mills action and the guiding Wilson ac-
tion, (SvM) —(S~)=0.74, was nearly as big as the
guiding action itself, (S~ ) = l.09; and the standard devi-

ation, o.YM=1.90, of the Yang-Mills action was more
than twice as big as that of Wilson's action, o.~=0.79.
After gauge smoothing, the mean value (SvM ) of the
Yang-Mills action in simulations guided by Manton's ac-
tion rose from 0.79 at P=O. 5 to 1.25 at /3=2 and then de-
clined to 1.04 at p=10. The corresponding mean value

(SM ) of Manton's action was 0.52 at p=0. 5, 0.97 at

p =2, and 1.01 at p = 10. At p =2, the action gap be-
tween the Yang-Mills action and the guiding Manton ac-
tion, (SvM ) —(SM ) =0.28, was about 29%%uo of the guid-

ing action ( SM ) =0.97; and the standard deviation,
ovM=1. 22, of the Yang-Mills action was about 54%
bigger than that of Manton, o-M =0.79.

As these data indicate, the gauge smoothing reduced
the action gaps dramatically but to levels that seem to us
too high, particularly for the simulations guided by
Wilson s action. The distributions of the Yang-Mills ac-
tion are also broader than those of the guiding compact
actions. Figure 4 is a histogram of the actions S~ and

S&M of the gauge-smoothed plaquettes of three indepen-
dent sweeps at p=2.

To estimate the statistical significance of the color as-
tigmatism in compact simulations of SU(3), we have mea-
sured the ratio (Tr[FJ" k3] )/(Tr[F~i" As] ) of the
squares of the two eigenvalues of the diagonalized field
strength of Eq. (10.3) on a lattice consisting of a single
plaquette. At p=6 Wilson's method gave for this ratio
1.9, the noncompact method 1.0. Had we first gauge
smoothed the links, however, the compact astigmatism
ratio would probably have been much closer to unity.

In compact lattice gauge theory, the measurement of
quantities that are not invariant to lattice gauge transfor-
mations seems to require gauge smoothing of the links.
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FIG. 5. A cube of the lattice divided into six tetrahedral sim-
plices.

YM

Plaquette Action S

FEG. 4. For SU(2)3 a histogram of the Yang-Mills action S&M
and the Wilson action S~ on the plaquettes of a 16' lattice on
three independent sweeps of a simulation at P=2 guided by
Wilson's action after gauge smoothing. The mean values are
(SvM ) = I.83 and (Ss ) = 1.09, and the standard deviations are
o.YM=1.90 and o.~=0.79. The tail of the S&M distribution ex-
tends to 28.7.

XI. CUR NDNCGMPACT METHOD

Our noncompact method ' for approximating ratios
of Euclidean path integrals avoids the four Wilsonian ap-
proximations. We tile space-time with sim~plices, linearly
interpolate the fields throughout each simplex from their
values at the vertices, and so define the fields continuous-
ly throughout space-time. We use the action and domain
of integration of the exact continuum theory, unaltered
apart from the granularity of the simplicial lattice. Thus
we give exactly the right weight e to each linearly in-
terpolated field configuration. In the limit in which the
lattice spacing goes to zero and the lattice size to infinity,
the space of linearly interpolated fields over which we in-
tegrate becomes dense in the space of continuous fields.
In this limit the method defines, at least formally, the Eu-
clidean functional integral of the continuum theory. For
it is with such a limiting process and the Trotter product
formula that one derives the path-integral version of the
continuum theory from its temporal-gauge Hilbert-space
formulation.

In applications of this method to problems in three di-
mensions, we limit space-time to a periodic cubic lattice,
each primitive cube of which is tiled with six (tetrahedral)
simplices as shown in Fig. 5. Each space-time point x ly-
ing in a simplex with vertices U„ is of the form
x = g„p„u„in which the four non-negative weights p„
depend linearly upon x, are unique, and sum to unity.
We use this formula to linearly interpolate the field

A (x) to x from its values A (i,a, u„)at the vertices U„as
A (x)= g„p„A(i,a, u„). Since the interpolated fields
are defined throughout space-time, we use the Euclidean
action of the continuum theory. For a gauge theory
without matter fields, we take S(A)= f d x ,'F (x)—,
where F (x) is defined in terms of the interpolated field

A,'(x) as in the continuum theory without gauge fixing.
Thus we approximate the mean value in the vacuum of a
Euclidean-time-ordered operator Q ( A ) by a normalized
multiple integral over the A (i, a, v)'s:

f e ' 'Q(A) Q dA (i,a, u)

& &l&Q(A) I& & =
e '"' Q dA (i,a, u)

i, a, u

(11.1)

This formula suff'ers from only two approximations: (1)
in the multiple integrals the sum is only over linearly in-
terpolated fields, rather than over all fields, and (2)
space-time is limited to a finite cubic lattice with periodic
boundary conditions.

To be gauge invariant, a formulation of a gauge theory
must satisfy two requirements. The first is the fundamen-
tal requirement, called Gauss's law, which is a consis-
traint arising from the absence of the time derivatives of
the fields Ao in the action of the theory. The second is
the technical requirement that the mean values of gauge-
invariant operators be independent of the gauge in which
one quantizes the theory and does perturbative calcula-
tions. After explaining why the preceding ratio (11.1) of
multiple integrals is well defined in our method without
gauge fixing, we shall describe how in our method we im-
plement Gauss's law by integrating over all gauges and
how we satisfy the two requirements of gauge invariance.

It is usual in continuum perturbation theory to fix the
gauge so as to invert the kinetic term in the action. This
reason for fixing the gauge does not apply to our method
since we are approximating ratios of path integrals non-
perturbatively without inverting the kinetic term. We
now show why the ratio (11.1) of integrals is well defined
without gauge fixing and why it is, in fact, better not to
fix the gauge.

Were we somehow analytically performing the full con-
tinuum path integration over all gauges and then taking
the ratio in Eq. (11.1), we would be summing over redun-
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(11.3)

Both the numerator and the denominator have the diver-
gent factor I db which cancels. A Monte Carlo evalu-

ation avoids these divergences by expressing the mean
value ( q (a ) ) as a sum

N

(q(a)) =—y q(a„) (11.4)

over N pairs (a„,b„). This procedure is somewhat
inefficient in that the work done in choosing the N values
of the irrelevant gauge degree of freedom b is wasted.

To see why it is actually better not to fix the gauge in
our method, even if one could avoid the Gribov ambigui-

ty, let us consider the continuum theory formulated in
the temporal gauge. In principle this formulation re-
quires the use of an operator HG that projects onto the
subspace of states that satisfy Gauss's law. This operator
is generally omitted because the operator H z
= lim, e ' that projects onto the physical vacuum
also projects onto this subspace. If we enforce Gauss's
law by redundantly inserting the operator HG at every
time slice, then in the continuum limit we transform ra-
tios of temporal-gauge path integrals into ratios of path
integrals without gauge fixing. In lattice simulations, the
length t =I.a of the time axis is quite limited by practical
considerations, and so the projection operator H v onto
the physical vacuum is not fully realized and does not
guarantee Gauss's law. Thus in lattice simulations it is
necessary either to insert the projection operator H& ex-

plicitly or to integrate over all gauges. Since it is difficult
to implement the operator IIG, we have chosen to in-

tegrate over all gauges in our method.
In the evaluation of the mean values of gauge-invariant

operators, one may wonder how integrating over all

gauges can be any different from fixing the gauge. For
finite cubic lattices with periodic boundary conditions,
the difference is due to the fact that it is not possible to
transform an arbitrary field that is periodic on the lattice
into an arbitrary gauge while maintaining its periodicity.
For instance, in an Abelian theory, if a periodic field

A, (x, t) with period I. is to be transformable into a
periodic field in the temporal gauge, then it must satisfy
the condition

0= I d, Ao(x, t)dt
0

dant fields and encountering in the numerator and
denominator divergences which would cancel. But in our
Monte Carlo approach, we merely evaluate the function
Q ( A ) at successive field configurations A„,

1V

(Q(A))= —g Q(A„), (11.2)

and so the extra gauge copies introduce no divergences.
There is only a small inefficiency due to the use of D fields
where D —1 would suffice with gauge fixing.

We may illustrate these last ideas by means of a toy ex-
ample. Suppose we wished to compute the mean value of
q(a) in a theory in which the action S(a,b)=S(a) was
independent of b:

a dpe q
(q(a)) =

da db e
—s(a)

for i =1,2. So if one fixes the gauge, ones loses some
fields.

Because our method uses the exact gauge-invariant
classical action 5, it assigns the correct weight e to
each 1inearly interpolated field. As noted above, the
method integrates only over fields that satisfy periodic
boundary conditions on the surface of a cubic lattice and
that vary linearly through the tetrahedra with which we
have tiled the lattice. These linearly interpolated fields
seem to us to be distributed throughout the space of all
continuous fields in a very uniform manner. Moreover
since the space of piecewise linear functions is dense in
the space of continuous functions, it follows that as the
periodic lattice becomes infinite and as the lattice spacing
shrinks to zero, the space of hnearly interpolated fields
becomes dense in the space of all continuous fields. In
this continuum limit, we suppose that the method be-
comes exact, at least if the bare parameters of the La-
grangian are adjusted according to a suitable renormal-
ization prescription. If the method does become exact in
this limit, then it will respect Gauss s law and all the
physical symmetries of the continuum theory.

Short of this limit, the domain of functional integration
is incomplete and the accuracy of the approximation
afforded by the method for any particular ratio (11.1) of
Euclidean path integrals will depend on the lattice spac-
ing, the size of the periodic lattice, and the operator
whose mean value is being evaluated. In an actual simu-
lation, Gauss's law and the physical symmetries of the
theory, such as Poincare invariance, will be respected
only up to the accuracy of the approximation.

Gauge symmetry, being a mathematical rather than a
physical symmetry, is not a symmetry of the Hilbert
space of the theory. In temporal-gauge quantization, for
example, the operators representing time-dependent
gauge transformations do not leave the Hilbert space in-
variant. And unlike the case of a physical symmetry,
there is no way to decide whether a formulation of a
theory satisfies the technical requirement of gauge invari-
ance without comparing it with other formulations to see
whether the mean values of gauge-invariant operators are
independent of the gauge in which the theory is quan-
tized. Our method, which is based upon temporal-gauge
quantization with an explicit implementation of Gauss's
law, uses a gauge-invariant action without any gauge
fixing, at least in the continuum limit. Since we integrate
over all gauges, we feel that the technical'requirement of
gauge invariance is less crucial for our method than for
perturbation theory. Moreover for our method, this re-
quirement refers to whether, if we fixed the gauge by vari-
ous gauge conditions, introducing gauge-fixing terms and
their Faddeev-Popov compensations, and if we measured
various gauge-invariant operators in the different gauges,
then we would find equal mean values. Since, as we have
mentioned above, gauge fixing is not always possible on
finite periodic lattices, these gauge-fixing procedures are
of limited validity for our method, except in the continu-
um limit. So we expect that in most cases the mean
values that we might compute without gauge fixing
would be more accurate than those that one might com-
pute in any particular gauge.
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In the continuum limit, the space of linearly interpolat-
ed fields becomes dense in the gauge-invariant space of all
continuous fields. Short of this limit, the space of linearly
interpolated fields is invariant under global gauge trans-
formations, but not under local ones because under a lo-
cal continuum gauge transformation our interpolated
fields lose their linear dependence on space-time. More-
over, because the group of continuum gauge transforma-
tions has continuously infinitely many parameters, no
space of fields invariant under it can be stored in a finite
digital computer. The image 3 ' of a linearly interpolated
field A under a local gauge transformation g(x) varies
nonlinearly with x, but has a unique best linear approxi-
mation AL. The respective actions are nearly equal,
S(A)=S(A')=S(AL), when the gauge transformation
varies little on the scale of one lattice spacing. ' ' " In an
earlier work, ' we compared the Wilson loops of our
method with and without temporal gauge fixing. We
found that the agreement between the two sets of loops
improved as the lattice spacing shrank and as the size of
the lattice increased. We expect that in the continuum
limit the noncompact method completely respects the
technical requirement of gauge invariance. It is worth
noting that both the action and the gauge invariance of
compact lattice gauge theory are also approximations to
the action and gauge invariance of the continuum theory
that become exact only in this same continuum limit.

Actually there are two practical advantages to the fact
that the space of linearly interpolated fields is not exactly
gauge invariant. The first is that the method thereby has
something of the e%ciency of a gauge-fixed method in
that no computation of redundant gauge copies is per-
formed. The second is that the fields are not obliged to
drift out along the directions of gauge transformations to
unmanageably great magnitudes.

The compact method has an exact lattice gauge sym-
metry that is different from the gauge invariance of the
continuum theory. It achieves this exact lattice symme-
try by compromising the fields and action of the continu-
um theory, as we have seen in the preceding section,
whereas the noncompact method respects the fields and
action of the continuum theory. It is not clear which side
of this trade-off is more accurate for non-Abelian
theories. The noncompact method is clearly better for
Abelian theories. For U(1) the noncompact method is ac-
curate at all coupling strengths, ' whereas the compact
method is accurate only at weak coupling.

Compact simulations of Abelian gauge theories exhibit
deconfining phase transitions at weak coupling. It has re-
cently been suggested that this is also the case for non-
Abelian theories. Thus Grady ' has found that the
SU(2) theory in four dimensions is consistent with a
correlation-length exponent v= —', and a critical point
P, =2.47. For SU(3) he found v=1 and P, =6.69. Pa-
trascioiu, Seiler, Linke, and Stamatescu argue that all
zero-temperature lattice gauge theories in three or more
dimensions must undergo a phase transition that is the
limit of the finite-temperature deconfining transition. For
SU(2) on a small lattice, they found /3, =2.3. If these
phase transitions are real and lead to a deconfined phase,
then it is possible that the compact method in that phase

agrees with the noncompact one.
If the compact and noncompact methods both have an

unconfined gauge theory as their continuum limit, then
we may have to adopt Gribov's picture of quark
confinement. In his view pure gauge theories do not
confine quarks. Rather quark confinement occurs be-
cause at moderate distances the gauge-field forces are
strong enough, by asymptotic freedom, to pair-produce
very light quarks. A similar view, involving a condensate
of light quark-antiquark pairs, has been advanced by Gra-
d 21

If the compact method does not have deconfining
phase transitions, then the two methods disagree, unless
on very large lattices the noncompact method should
display confinement. More work is required to tell
whether one, both, or neither method is right.

Other physicists have eschewed Wilson's four ap-
proximations by using noncompact methods with simple,
discrete actions. Because they did not interpolate the
fields or use the continuum action, they had to fix the
gauge to prevent the fields from diffusing to infinity. In
our noncompact simulations, the fields diffuse to infinity
with the number of sweeps only for Abehian gauge
groups. In a run of 10 000 sweeps for SU(2)3 at P=2. 5 on
a 4 lattice, the mean value ( ~gaA; ~ ) was 0.7022 on the
first 150 sweeps and 0.6999 on the last 1700. In our
method we do not need to fix the gauge to prevent the
fields from diffusing to infinity.

The multiple integrals in Eq. (11.1) are of too high a di-
mension () 10 ) to be approximated by classi'cal methods
of quadrature. We use a Monte Carlo algorithm that was
initiated by Fermi, developed by Metropolis, and im-
proved by Creutz. This heat-bath algorithm is feasible
for our action S(A) for SU(2)3, which on a 16 lattice is a
quartic polynomial in 36864 A (i, a, u)'s, because each A
occurs only quadratically in S(A), due to the antisym-
metry of I';; (x), and is co.upled to only 135 other A's in
24 simplices. No matter what the gauge group, Creutz's
heat-bath algorithm requires only the first and second
derivatives of the noncompact action with respect to each
A (i, a, u). We used" MACSYMA to calculate these
derivatives and to write them in FORTRAN. The resulting
source code is about 67 kbytes.

In the noncompact method, since the fields are interpo-
lated throughout space-time, one may approximate the
path ordering in the definition (2.1) of the Wilson loop to
arbitrary precision. We divided each lattice spacing
along the loop into n (/3) subintervals and used an ordered
product of n (/3) exponentials, one for each subinterval.
To determine n(/3), we assumed that the Wilson loops fell
off with loop size according to an area law from the easily
measured smaller loops and required that n (/3) be high
enough to ensure that the error in approximating the
loop W(6a, 6a) on each sweep be less than 1% of average
value of that loop as extrapolated by the area law. We
found that it was sufficient to take n (/3)-150//3 for /3~ 2.
Thus we used 75 subintervals for P=2, 50 for /3=3, 35
for /3=4, 25 for /3=6, 20 for /3=8, but, for good measure,
50 for P= 10 and 60.

However at stronger coupling the larger Wilson loops
are small, and we face three problems in trying to mea-
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sure them accurately. First, we need very small errors
and therefore exceedingly long runs. Second, the number
of subintervals must be large, which slows the code.
Third, we must use double precision when the value of
the Wilson loop is less than about 10 . At /3=1, for ex-
ample, the extrapolated value of W(5a, 5a) is of the order
of 10 . To measure this loop to within 10% would re-
quire about 200000 sweeps with 1SO subintervals. We
therefore ran with 100 subintervals at /3= 1 which is more
than sufficient to measure W(4a, 4a). For similar reasons
we ran in single precision using 100 subintervals also at
P=O. 5 and 0.25, which is more than sufficient to measure
W(3a, 3a) and W(2a, 2a), respectively.

The noncompact method as described here is about an
order of magnitude slower than the compact method.
This slowness limited the number of thermalizing and
measurement sweeps that we could run, and may limit
the ultimate usefulness of this version of the method, at
least until faster machines become available. For our
work in four dimensions, we have relaxed somewhat the
interpolation of the fields and have much increased the
speed of the code.

XII. MONTE CARLO MEASUREMENTS
OF CREUTZ RATIOS

To measure Wilson loops and their Creutz ratios y(r, t)
by means of the noncompact method, we used a 16
periodic lattice and began from cold starts in which all
fields were initialized to zero. We allowed 900 sweeps for
thermalization at /3=0 25, 400 a. t /3=0. 5, 1750 at /3= 1,
400 at /3=2 and 3, 500 at /3=4 and 6, 600 at /3= 8, 2100
at /3= 10, and 1600 at /3= 60. We measured Wilson loops
on every sweep, except for P=10 and 60 where we
skipped every other sweep. We made each measurement
of the Wilson loop W( r, t) by averaging the 24 576
different r-by-t loops that occur in a 16 lattice, including
periodic translations and rotations by m/2. We made
1300 measurements at /3=0. 25, 1550 at /3=0. 5, 1100 at
/3= 1, 800 at /3= 2, 700 at /3= 3, 600 at /3=4 and 6, 500 at
/3= 8, and 400 at /3= 10 and 60.

We have also measured Creutz ratios by doing com-
pact simulations, both guided by Wilson s action and by
Manton's. We ran these simulations on a 16 lattice, us-
ing codes based on those of Otto et al. For the case of
Wilson's action, we used a heat-bath algorithm and al-
lowed 1500 sweeps for thermalization at P=0.5, 2200 at
/3= 1, 2100 at P=2, 8050 at P=3, 3000 at /3=4, 4000 at
P=6, 3000 at P=8 and 10, and 10000 at /3=60. After
these thermalizing sweeps, we measured Wilson loops on
every third sweep. We made 700 measurements at
/3=0. 5 and 1, 1400 at /3=2, 750 at /3=3, 300 at /3=4, 200
at /3=6, 8, and 10, and 800 at /3=60.

For the case of Manton's action we used a simple
Monte Carlo algorithm and allowed 1500 sweeps for
thermalization at /3=0. 5, 1850 at /3=1, 1900 at /3=2,
3200 at /3=3, 3000 at /3=4 and 6, 8000 at /3= 8, 7250 at
/3=10, and 10000 at /3=60. After these thermalizing
sweeps, we measured Wilson loops on every fifth sweep
for /3~ 8 and every tenth sweep otherwise. We made 600
measurements at P=0.5, 1400 at /3=1, 500 at /3=2, 400
at /3=3, 300 at /3=4, 200 at /3=6, 8, and 10, and 500 at

/3= 60.
Some of our values for the Creutz ratios y(r, r) are list-

ed in Table II. For the measured ratios, /3 is unrenormal-
ized; for the perturbative ones it is renormalized. Our er-
rors are indicated within parentheses; for instance,
1.72(25) means 1.72+0.25. In estimating these errors, we
assumed that the loops of successive measurements were
independent. These errors are purely statistical and do
not include any systematic errors due to the insufficient
thermalization or measurement. By examining the varia-
tion of the Wilson loops as the number of sweeps in-
creased, we judged that we had allowed a sufficient num-
ber of thermalizing sweeps to compensate for any critical
slowing down, even at /3=60. Because the noncompact
method is slower, we allowed fewer thermalizing sweeps
in our noncompact simulations than in our compact ones.
But noncompact simulations are free of false vacua and
so probably require fewer thermalizing sweeps. More-
over at weak coupling the loops we measured are all
much smaller than the correlation length and so we ex-
pect that critical slowing down is not important in our
measurements.

Our perturbative formula for gl, (r, t) is plausible only
when the fourth-order term is smaller than the second-
order term. Thus by formula (9.5), the limits of validity
for yp(r, r) are /3 greater than 1.4, 2.4, 3.2, and 3.8 for
r/a =2, 3, 4, and 5, respectively. Only values of gp(r, r)
within these bounds are displayed in Table II. However,
because of the tachyonic pole in the one-loop gauge prop-
agator (4.1), our perturbative formula is reliable only for r
and t that satisfy the inequality (8.7). For such r and t,
the theoretical uncertainty in our estimate of the order-g
correction for periodicity on a 16 lattice is small.

At equal values of P, the noncompact INC's are smaller
than those of the perturbative formula, for reasons that
we shall explain in the following section on renormaliza-
tion. The y's of the compact simulations are larger than
the perturbative yz's, probably because the links of the
compact simulations are overly decorrelated. The Wilson
g~'s are larger than the Manton g~'s probably because
Manton's action avoids the fourth approximation of
Wilson's method. Our values for gNc differ from those
reported by Yotsuyanagi. Our results for the case of
Wilson's action agree with prior measurements. The
differences Xw XNc and XM XNc are commensurate
with the action gaps (SYM ) —(Sii, ) and (SYM )—(SM ). Published results ' ' ' and our preliminary
data suggest that the hierarchy gNc &y~ (yM also holds
for SU(2)4.

By using Eq. (8.3) with t =6a instead of infinity, we
crudely measured the qq force of the noncompact method
at /3=10 in units of a to be f (1.5a)=0.0281(10),
f (2.5a) =0.0139(16), f (3 5a)=0.0081(22), f (4.5a)
=0.0053(29), and f (5.5a)=0.0040(45), which resem-
bles a r ' force law. At p=60, again with r =6a,
we found f (1.5a)=0.0053(2), f (2.5a)=0.0030(3),
f (3.5a) =0.0020(4), f (4.5a) =0.0015(5), and f (5.5a)
=0.0011(8), which resembles a I/r force law. To really
determine the force law it would be necessary to measure
Wilson loops with t ))6 with high statistics.

Our noncompact simulations, like Nesic's but unlike
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TABLE II. Creutz ratios from the noncompact method, from the order-g" perturbative formula
corrected for periodicity, and from the compact method guided by Manton's action and by Wilson's
with errors in parentheses. For the Monte Carlo data, the values of P are unrenormalized.

0.25

r t
a'a
22

Noncompact

1.72(25)

0(g ) Pert. M anton Wilson

0.5 22
3,3

0.651(7)
0.36(28)

1.41(10) 2.79(165)

1.0 22
33
4,4

0.319{2)
0.136(9)
0.067{55)

1.047(9) 1.462(52)

2.0 22
33
44

0.1694(8)
0.071 3(29)
0.028 1(72)

0.399 1 0.512(3)
0.491(27)

0.766(3)
0.608(110)

3.0 22
33
4,4
5,5

0.1173(6)
0.052 9(18)
0.022 3(42)
0.008 9(79)

0.229 7
0.157 1

0.280(1)
0.244(6)
0.195(31)

0.408(2)
0.365(11)
0.203(122)

4.0 2,2
33
44
5,5

0.090 0(4)
0.041 8(14)
0.0190(31)
0.008 7(56)

0.158 6
0.105 2
0.077 5

0.184(1)
0.149(4)
0.144(13)

0.237(1)
0.199(6)
0.192(22)

6.0 22
33
4,4
5,5

0.062 7(3)
0.030 3(10)
0.015 5(21)
0.008 2(37)

0.096 6
0.061 7
0.044 5
0.031 6

0.106 6(7)
0.078 6(25)
0.067 8(67)
0.061 5(146)

0.121 7(9)
0.090 2(29)
0.078 9(77)
0.072 2{183)

8.0 2,2
3,3
4,4
5,5

0.048 3(3)
0.024 4(8)
0.012 8{17)
0.006 4(29)

0.069 0
0.043 1

0.030 7
0.021 8

0.074 0(6)
0.049 9(19)
0.040 5(49)
0.038 8(108)

0.080 9(5)
0.056 0(17)
0.045 2(40)
0.040 0(83)

10.0 2,2
33
44
5,5

0.039 1(3)
0.020 3(8)
0.011 5(16)
0.006 3(33)

0.053 6
0.032 9
0.023 3
0.016 5

0.057 1(4)
0.038 5(12)
0.030 5(26)
0.027 5(50)

0.060 9(4)
0.040 8(15)
0.032 3(34)
0.028 0(67)

60.0 22
3,3
44
5,5
6,6

0.007 18{4)
0.004 09(13)
0.002 60(28)
0.001 73(50)
0.001 09(80)

0.008 02
0.004 64
0.003 17
0.002 25
0.001 53

0.008 35(4)
0.004 93(11)
0.003 42(25)
0.002 64(44)
0.001 98{71)

0.00842(3)
0.004 98(9)
0.003 43{19)
0.002 74(35)
0.002 23(57)

Yotsuyanagi's, show no evidence of quark confinement.
However, to settle this question it would probably be
necessary to measure very large loops because of the slow
convergence of the time derivative (7.3) to the static po-
tential (plus the self-energies). It might also be necessary
to work at stronger coupling.

XIII. RENORMAI. IZATION

Like any way of calculating quantities in field theory,
the noncompact method requires renormalization. Be-
cause the method approximates ratios of the Euclidean
path integrals of the continuum theory, its renormaliza-
tion is similar to that of the continuum theory.

The ratio of multiple integrals (11.1) which is approxi-
mated by the noncompact method is the mean value in
the bare vacuum of a product of the arbitrary operator
Q ( A ) being evaluated, the projection operator IIG on the
subspace of gauge-invariant states, and the projection
operator II& —=lim, exp( —tH) on the physical vacu-
um. Without any renormalization, the Hamiltonian H of
the continuum theory, being a sum of squares of Hermi-
tian field strengths F,", is positive and divergent. With
the cuto8'provided by the lattice spacing a, the H of the
noncompact method is positive but too big. Since the
probability distribution exp[ —S(A)] of the method
essentially represents the exponential exp( —tH), this dis-
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tribution is overly damped before renormalization. Thus
the fluctuations of the fields are too damped. Since large
Wilson loops are more sensitive to Auctuations than small
ones, the Creutz ratios of the unrenormalized noncom-
pact method are too small, as we have seen in the preced-
ing section.

There is one instructive exception to this conclusion:
namely, the case of the free field theory U(1) for which
the unrenormalized Hamiltonian differs from the renor-
malized one merely by a divergent constant. In this case
the probability distribution exp[ —S( A)] is overdamped
by a constant factor, independent of 3, which does not
affect ratios such as (11.1). This is why the noncompact
method without renormalization gives for U(1)3 the
correct values of the Creutz ratios for arbitrary cou-
pling. '

In a renormalizable theory, one may keep physical
quantities finite while removing the cutoff either by sub-
tracting counterterms or by redefining the constants in
the unrenormalized Lagrangian. In a pure gauge theory,
there are two adjustable constants, the coupling constant
and the scale of the fields, apart from ones that refer to
gauge fixing. Thus for SU(2) in the noncompact method,
there are two parameters that we must adjust as the lat-
tice spacing a tends to zero: Zg and Zz. Wilson loops
are independent of Z~, however, so to renormalize our
computation of them, we need only adjust Z or
equivalently the unrenormalized inverse coupling Po.

Since there are no experiments in three-dimensional
space-time, we have chosen to renormalize the noncom-
pact method by comparing its Creutz ratios for small
loops at weak coupling with those given by our perturba-
tive formula. We have made such comparisons by using
our Monte Carlo data at Po = 10 and 60 and by varying in
each case the value of P in our perturbative formula (9.5)
until the 3-by-3 Creutz ratios matched. We denote such
P as P(Po). We then examined how much the noncom-
pact and perturbative Creutz ratios differed for smaller
and larger loops. For 130=10, we found P(10)=15. At
Pa=10 and P= 15, respectively, the ratio yNc(2a, 2a) was
16% higher than y~(2a, 2a), while yNc(4a, 4a) was 19%
lower than gp(4a, 4a). Now the perturbative formula is
only valid when the size of the loop in lattice units
+(r/a) +(t/a) is much less than 1.8/3. For the 4-by-4
loop at P=15, the former is 21% of the latter; so for that
loop the formula is only marginally valid.

It was to avoid this theoretical uncertainty in the per-
turbative formula for P~ 15 that we also renormalized
the noncompact method at Po=60. We found P(60) =68
for which value the formula is probably reliable even
for the 5-by-5 loop and possibly for the 6-by-6 loop as
well. At Po =60 and P=68, respectively, the ratio
yNc(2a, 2a) was 1 4% higher than yp(2a, 2a), while
yNc(4a, 4a) was 6.9% lower than yp(4a, 4a), yNc(5a, 5a)
was 12% lower than yt (5a, 5a), and gNc(6a, 6a) was 19%
lower than yz(6a, 6a). As the size of the loop increases,
yNc falls off faster than y~.

We have also renormalized the compact method using
data at 130= 10 and 60 from our simulations guided both
by Wilson's action and by Manton's. For the case of
Wilson's action we found P(10)=8.4 and P(60)=56. At

Po=10 and P=8.4, respectively, the ratio pic, (2a, 2a) was
7.1% lower than gp(2a, 2a), while pic (4a, 4a) was 1 l%%uo

higher than gt, (4a, 4a). At Pa=60 and P=56, respective-
ly, the ratio pic (2a, 2a) was 2.7% lower than yp(2a, 2a),
while pic, (4a, 4a) was 1.8% higher than yt, (4a, 4a),
yz, (5a, 5a) was 15% higher than g~(5a, 5a), and
pic, (6a, 6a) was 35% higher than yt, (6a, 6a). As the size
of the loop increases, y~ falls off slower than g~.

For the case of Manton's action, we found P(10)=8.8
and P(60)=57. At 130=10 and P=8.8, respectively, the
ratio yM(2a, 2a) was 8.1% lower than yp(2a, 2a), while
yM(4a, 4a) was 11% higher than gt, (4a', 4a). At Pa=60
and P=57, respectively, the ratio gM(2a, 2a) was 1.9%
lower than yt, (2a, 2a), yM(4a, 4a) was 1.3% higher than
yt, (4a, 4a), yM(5a, 5a) was 11% higher than yt, (5a, 5a),
and yM(6a, 6a) was 22% higher than gt, (6a, 6a). As the
size of the loop increases, yM falls off slower than g~.

Despite the marginal accuracy of the perturbative for-
mula and of the data in some of these comparisons, there
is a trend that is so consistent as to be probably true: the
forces predicted by the noncompact method fall off faster
with distance than those of the perturbative formula,
while those of the compact method fall off slower than
both.

Cornwall, Hou, and King have found approximate
nonperturbative solutions to the Schwinger-Dyson equa-
tion for a version of the gauge propagator corresponding
to an infinite set of Feynman diagrams. Their solutions
avoid the tachyonic pole (4.2) and exhibit dynamically
generated masses, m =15c„gg/(32m. ) for g greater than
about 1.96. The forces predicted by their propagator
presumably fall off faster with distance than those of the
perturbative formula, in agreement with the noncompact
method.

In our noncompact simulations, however, we measured
correlations of spatially separated a-by-a Wilson loops
and found a value for the gluon mass that was consistent
with zero. But Nesic found m -0.4g/a by measuring the
transverse gluon propagator.

XIV. SUMMARY AND CONCI. USIGNS

We have described and applied to SU(2)3 a Monte Car-
lo method that directly approximates the ratios of Eu-
clidean path integrals that occur in continuum gauge
theories. The basic variables of this "noncompact"
Inethod are fields rather than elements of a gauge group
as in Wilson's "compact" method. This noncompact
method uses the continuum action, may be closer to the
exact theory, and does not have confinement trivially
built in.

The compact method has an exact lattice gauge sym-
metry that approximates the gauge invariance of the con-
tinuum theory. But it achieves this exact lattice symme-
try by compromising the continuum fields and action,
quantities that are respected in the noncompact method.
The noncompact method functionally integrates over
linearly interpolated fields and gives the correct weight
e ' ' to each such field A, where S ( A ) is the exact
gauge-invariant, continuum action of the field A. Be-
cause the space of linearly interpolated fields is gauge in-
variant only in the continuum limit in which it becomes
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dense in the space of all continuous fields, it is not clear
which side of this trade-off is more accurate for non-
Abelian theories.

To provide a standard against which to compare the
results of both compact and noncompact simulations, we
have derived in continuum perturbation theory a formula
for Wilson loops in three dimensions valid to fourth order
in the coupling constant for any compact, semisimple Lie
group. We have also developed a version of the formula
that incorporates a correction for periodic boundary con-
ditions.

We have presented a critique of compact lattice gauge
theory, describing four approximations that collectively
cause compact lattice actions to be globally different from
the Yang-Mills action. As a result of this difference, the
distribution of the Yang-Mills action per plaquette in
compact simulations is broader and shifted to larger
values than that of the guiding compact action. The links
of compact simulations thus are less correlated than
those of simulations guided by the Yang-Mills action.

We have measured Creutz ratios of Wilson loops in
noncompact simulations and in compact simulations both
guided by Wilson's action and by Manton's. Before re-
normalization the Wilson loops of the noncompact simu-
lations fall off slower than those of the compact simula-
tions as the area of the loop increases. Before renormal-
ization the Creutz ratios of the noncompact method are
smaller than those of the perturbative formula, while
those obtained with Manton's action are larger than the
perturbative ratios, and those with Wilson's action still
larger. Although some of these differences can be ab-
sorbed by the renormalization of the two methods, the
following trend remains: the forces predicted by the non-
compact method fall off' faster with distance than those of
the perturbative formula, while those of the compact
method fall off slower. The noncompact simulations

show no evidence of quark confinement.
We have offered evidence that suggests that the

confinement signal in compact lattice gauge theory may
be an artifact of that method. This evidence is not com-
pelling, however, for various reasons: our work was in
three rather than four space-time dimensions; it was done
on a 16 lattice, rather than on a much larger one; and
our noncompact method may have Aaws. Yet our pre-
liminary noncompact simulations of SU(2) in four dimen-
sions as well as those of other groups ' also show no sign
of confinement. Perhaps the most interesting theoretical
interpretation of our findings is provided by recent work
of Gribov's in which he argued that confinement occurs
only in @CD with quarks that are light compared to the
strong-interaction scale A and not in pure or heavy-quark
QCD.
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