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A simplified treatment of the Becchi-Rouet-Stora (BRS) Lagrangian theory is presented. With
this treatment we show that the BRS Lagrangian theory in general, and the Feynman-gauge field
theory in particular, are effective theories, not the physical theory, and the Feynman gauge is not,
strictly speaking, a gauge. The relationship between the quantum states in the BRS Lagrangian
theory and those in the physical theory is explicitly given. We also show that one may obtain ma-
trix elements of gauge-invariant operators in the physical theory by calculating corresponding ones
in the BRS Lagrangian theory. The formulas which equate such matrix elements are called
correspondence formulas. The correspondence formula for the S matrix enables us to equate the
scattering amplitudes in the physical theory with those in the BRS Lagrangian theory, thus a proof
of the unitary of the Feynman-gauge (as well as other covariant gauges) Feynman rules is rendered
unnecessary. This treatment can be applied to various gauge field theories and the examples of the
pure Yang-Mills theory and a gauge field theory with a Higgs field is explicitly worked out.

I. INTRODUCTION

The Feynman gauge' is perhaps the most convenient
gauge to use in a perturbative calculation of scattering
amplitudes in gauge field theories. The physical meaning
of this gauge is also among the most obscure. In quan-
tum field theories, it is not;able that Fermi's formulation
of QED in the Coulomb gauge preceded the formulation
of the Feynman-gauge QED (Refs. 1 and 3) by 16 years.
History essentially repeated itself in the development of
non-Abelian gauge field theories. In 1962, Schwinger al-
ready successfully formulated non-Abelian gauge field
theories in the Coulomb gauge. In 1963, Feynman
correctly guessed the Feynman-gauge Feynman rules,
which contain the contribution of ghosts. Two years
later Faddeev and Popov deduced the general existence
and the interactions of ghosts, using the approach of path
integration and group-theoretic arguments. However,
the Faddeev-Popo v formalism remains to this day a
heuristic one. The heuristic nature of the formalism is il-
lustrated by the incorrect answer it yields when it is ap-
plied to the quantization in the Coulomb gauge. It is
also demonstrated by the necessity in this formalism to
verify unitarity, which is especially cumbersome for non-
Abelian gauge field theories with a spontaneously broken
vacuum symmetry. Indeed, the original diagrammatic
proof by 't Hooft of the unitarity of the Feynman-gauge
(as well as other covariant gauges) Feynman rules in this
theory was fairly elaborate. ' '" The task of proving uni-
tarity in the Feynman gauge was simplified by Kugo and
Ojima, ' who treated canonically the Becchi-Rouet-Stora
(BRS) Lagrangian theory. '

The work of Kugo and Ojima depends, however, on
the validity of two postulates. Furthermore, their work
still leaves many important questions unanswered. For
example, the BRS Lagrangian involves unphysical ghost
fields, while the gauge-invariant Lagrangian does not.
Indeed, the equations of motion in these Lagrangian

theories are different. The work of Kugo and Ojima does
not say if the scattering amplitudes in these two theories
are the same. One may also ask (i) can one obtain any
other physical quantity in one theory by calculating a
corresponding one in the other? (ii) In particular, can
one obtain the energy spectrum of one theory by calculat-
ing the energy spectrum of the other theory? (iii) Are
these two quantum theories equivalent to each other and
does there exist a unitary operator which connects the
quantum states and operators in these two theories?

In a previous Letter' we have found that there exist
formulas which enable us to obtain the matrix element of
gauge-invariant operators in a guage theory by calculat-
ing a corresponding quantity in the BRS Lagrangian
theory. In this paper we shall give a complete yet simpler
presentation of our arguments. The present formulation
enables us to conclude that the relation between these
two theories is quite different from that between the
gauge theory in the temporal gauge and the gauge theory
in the Lorentz gauge, for example. We recall that, to
quantize in the temporal gauge, we set 30=0 in the
gauge-invariant Lagrangian and impose the Gauss law on
the quantum states as a supplementary condition; and to
quantize in the Lorentz gauge we add a term —

—,
' (B„A")

to the gauge-invariant Lagrangian and impose the supple-
mentary condition B„A"=0on the quantum states. The
Hamiltonians and the quantum states in these two quant-
ization schemes are related by a unitary transformation
together with a separation of variables. Thus these two
theories are equivalent and we shall call them the physi-
cal theory. In contrast, the Hamiltonian and the quan-
tum states in the BRS Lagrangian theory and those in the
physical theory are not so related. In short, the BRS La-
grangian theory in general and the Feynman-gauge field
theory in particular are e+ectiue theories, not the physical
theory. Indeed, the Feynman gauge is not, strictly speak-
ing, a gauge. For, unlike other gauges, the Feynman
gauge does not impose a condition on the components of
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A„and does not even exist in the classical theory. We
have found that, given a physical wave function g in the
temporal gauge, it is useful to construct a wave function

ff in the BRS Lagrangian theory by setting

e
ff
—=e f

where 8 is given by (2.16) below. This is because the ma-
trix element of &,ff (the BRS Hamiltonian) between two
states of the form of (1.1) is equal to that of &„(the tem-
poral gauge Hamiltonian) between the two corresponding
states in the temporal gauge. This does not, however,
mean that e is the operator which transforms quantum
states in the physical theory into the quantum states of
the BRS Lagrangian theory. The reason is that

Feynman-gauge Feynman rules, for one, are consistent
with the Coulomb-gauge Feynman rules. The validity of
the correspondence formula dwells on no assumption,
nor is it plagued by the difhculty of the Gribov ambigui-

The formulation in this paper is readily applicable to
any specific gauge field theory. As an explicit example,
we shall treat, in Sec. III, the quantum theory of the BRS
Lagrangian with spontaneous broken vacuum symmetry.
We shall show that there exists a correspondence between
such a theory and the BRS Lagrangian theory. Since the
former is unitary in the physical sector, so is the latter.
Thus the proof of unitarity of the Feynman-gauge Feyn-
man rules in theories of spontaneous broken symmetry is
rendered unnecessary.

& ffg,~e & f (1.2) II. THE CANONICAL FORMALISM
a result which will be proved in Sec. II.

One of the implications of (1.2) is that, if f is an
eigenstate of &, f,ff is not necessarily an eigenstate of
&cff Indeed, H,ffg, ff is not even in the form of ( 1 .1).
Rather, we have, as will be shown in the next section,

ffg,ff=e9t' f +Qp,

where Q is the BRS charge given by (2.12) below and P is
some wave function the precise form of which can be
easily calculated but is unimportan. Mathematically,
(1.3) implies that &,ff cannot be defined if we restrict our-
selves to the Hilbert space of wave functions of the form
(1.1).' Physically, it implies that a quantum state initially
in this Hilbert space does not remain in this space as time
evolves. Thus we need to expand this Hilbert space into
the space of wave functions of the form of

(1.4)

This expanded space is closed under time evolution, but
is not isomorphic to the Hilbert space of the physical
theory. Indeed, this expanded space is not even a Hilbert
space, as the inner product is sernipositive definite, not
positive definite.

This is not to say that the BRS Lagrangian theory is
not useful, especially if one is content to restrict oneself
to the consideration of certain matrix elements Quite.
the opposite, the BRS Lagrangian theory is perhaps more
useful than it has been generally given credit for. It can
be used not only for the calculation of the S matrix,
which is the transition amplitude of infinite time dura-
tion, but also for the calculation of transition amplitude
of any finite time duration. As a matter of fact, one can
obtain the matrix elements of a gauge-invariant operator
in the physical theory by calculating the corresponding
ones in the BRS Lagrangian theory, with the wave func-
tions in these two theories related by (1.1). We call such
formulas equating matrix elements in these two theories
correspondence formulas. A correspondence formula is
exact, valid for all values of the coupling constant.
Indeed, no reference to perturbation is necessary. If and
when the coupling constant is small so that perturbation
can be used, the correspondence formula implies that the

Consider a general non-Abelian gauge field theory with
the Lagrangian

L = —,'F„'g" '—+(D„Q)(D"P) V(ggt)—. (2.1)

D„P= (8„+igA „'T')P, (2.2b)

where T' is an infinitesimal group generator in the repre-
sentation of P. Also included in (2.1) is a possible poten-
tial term V. We may also add to (2.1) a Lagrangian term
for fermion fields. This extension is straightforward and
for the sake of simplicity of presentation will not be ela-
borated on.

The Lagrangian (2.1) is gauge invariant and, as it is in-
dependent of 3 o, the dynamical variable conjugate to Ao
cannot be defined. A way to get around this is to choose
the temporal gauge 30=0. The usual procedure of
canonical quantization can then be applied. In particular
the Hamiltonian density, denoted by H, is

+rr~yrrp+(DP) (DP)+ V(/gal) .

(2.3)

The Gauss law is missing, and one imposes it as a supple-
mentary condition on the quantum state:

(2.4)

where

G'=(D m)'+p',

with

(2.5)

p'= —ig rr& T'P+ c.c.

As H commutes with G', (2.4) holds at all times if it

(2.2a)

with A „' the gauge field of group index a and polarization
p, g the coupling constant, f' ' the structure constant of
the gauge group, and P a scalar field which may belong to
any of the group representations, with



1248 HUNG CHENG AND ER-CHENG TSAI

holds at the initial time. The Schrodinger equation is pro= —l ', vrq= —i (D g)', vrg=ir'i',

where

m. =—fH„d'x . (2.7)

l '= 2 o+h'( A, g, gt), (2.8)

with h' any real-valued functional of A, P, and P . With
this addition, m~ can be defined. While the Lagrangian
L —

—,'(l ') is not gauge invariant, it is possible to prove,
after imposing the supplementary condition l '=0 on the
quantum states, that this Lagrangian theory is exactly the
same as the physical theory. This is is done by eliminat-
ing the extra degree of freedom 3 o in the former theory
by separation of variables.

In this paper we shall pursue the theory obtained by
adding to the Lagrangian L —

—,'(l '} a term to make it in-
variant under the BRS transformation of

We shall call the theory defined by (2.3)—(2.7) the physical
theory and states satisfying (2.4) the physical states.

Another way to quantize this non-Abelian gauge field
theory is to add to the Lagrangian (2.1) a term —

—,'(l '),
where

Q2 —0 (2.14)

Note that Q is actually independent of the choice of h'.
The variation of a field under a BRS transformation can
now be alternatively expressed as the commutator (for a
field with bose statistics) or anticommutator (for a
Grassmann field) of this field with Q. For example,

and

5A"'=i [Q, A"']

With this definition, 6 of any operator vanishes. For in-
stance, let R be a bosonic operator; we have

[ir'„(x),il (y)]+ = [~&(x),g"(y)]+= i—5'"5' '(x y—) .

(2.13}

[Note that (2.13) implies that ir„and ir& are anti-
Hermitian operators. ] It is well known that Q is a
Grassmann operator satisfying

and

5 ~ pa (Dpg)a gpga gf abc' pbgc (2.9a) as can be proved by writing out all the terms in the ex-
pression above and making use of (2.14). The Hamiltoni-
an corresponding to L,& is given by

5p = —ig g'T'p,
where P is a Hermitian Grassmann field' with group in-
dex a. The variation of P under the BRS transformation
is chosen to be, as usual,

H, s =H +i [Q, 6]+,
where H„ is given by (2.3) and

6 = r4 O7Tg+ lh YJ +—l &OX/

(2.15)

5/a —1 gf abcgb(c (2.9b)

As is well known,

5'A "=5'P=0 .

i.e., the BRS variation of a BRS variation vanishes. One
then introduces another Hermitian Grassmann field'
the BRS transformation of which is

The derivation of (2.15) is presented in Appendix A. The
particular form for 6 appears immaterial. The important
point in (2.15) is that H,& difFers from H by a BRS vari-
ation.

Let ~p ) be a physical quantum state in the physical
theory, hence satisfying (2.4), and let us denote

Then the Lagrangian

L —
—,
'

( l ') +i g'5 l '

(2.9c)

(2.10)

where
~
A, P, P* ) is an eigenstate of the field operators

(the group indices have been omitted for brevity). We
shall construct from this physical wave function a wave
function f,rrin the BRS Lagrangian theory:

is invariant under the BRS transformation.
Instead of the Lagrangian (2.10) we shall define

L,rr=L —
—,'(l ') iq'(D g)'+i—ri'5h', (2.1 1)

where

0=0]+02,

k'9)= e0 (A4'0— (2.16a)

(2.16b)
which differs from the Lagrangian of (2.10) by a total
time derivative.

The Lagrangian L,~ is the BRS Lagrangian with the
conserved quantity

Q = f d x(g'G'+irr'„no+ ,'gf' 'mg~P), —(2.12)

with

O, =i f d x g'5I'( A, P, P*)

and

92= ,' f d x(3—0 iI')+ —7 (2—0 iI'), —

(2.16c)

(2.16d)

where where I' may be any real-valued functional of A, P, and
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Note that, unlike f„which is a functional of A, P,
and P' but not of g, g, and Ao, f,s is a functional of all
of these fields. This wave function satisfies

8 +8=28]+03+Q4,
where

QP.(r=o (2.17) 0:—Jd x 3'+—7 A' (2.27)

which will be proved in Appendix B. Equations (2.15)
and (2.17) give

and

Q4—= —f d x I'+ 7 I—' . (2.28)
H, rrg, ~=H~Q, (r+iQb g, (2.18)

Thus, as operators on P,(r, H,a arid H are not equal.
Indeed,

(H (r) Pe(r=(H )"P,(r+QP„, n =1,2, . . . , (2.19)

where P„ is some wave function the precise form of
which does not matter. [Equation (2.19) is easily proved
by using (2.14) and the fact that H is gauge invariant
and hence commutes with Q. ] As a consequence of (2.19)
we have

'
V.(r=e 4.ir+Q4 . (2.20)

Indeed

&(H.n)4.(r=f (H )f.ir+Q4'

where f is any analytic function.
While H, a operating on g, (r cannot be replaced by H,

the matrix elements of H,z and H„are equal, To wit, we
have from (2.18) that

(2.21)

which is a consequence of (2.17) and the fact that Q is
Hermitian. Similarly, we have from (2,20) that

&y"'~e
' '~~q"'&=&y")'~e ' " ~@'"& (222)

Therefore, H, z can be replaced by H, if matrix elements
between effective wave functions are taken.

Equation (2.22) is not yet in the desired form, as &
operates on e f and not directly on P„, as is the case in
the physical theory. It will be proved in Appendix C that

e e P =e e. f„+QP (2.23)

and thus, together with (2.20), we have

8 ~ g E&
(2.24)

Equation (2.24) shows that, while a wave function of the
form of e g does not remain in this form as it evolves in
time, it difFers from this form only by a term of the form
of QP. Indeed, a wave function of the form of

(2.25)

remains in this form at all times. We shall call the quan-
tum theory with the Hamiltonian &,)r in the space of
(2.25) the effective theory. The left side of (2.22) is a tran-
sition amplitude in the effective theory. Substituting
(2.23) into (2.22) we get

& y())~ di ~@(~2) & &
y())~ee +()e iq(2) & (2 26)

The only factor on the right side of (2.26) which is depen-
2(9(+Q3

dent on Ao, g, and g is e, as Q4, &, and g are
independent of these variables. Thus the functional in-
tegrations over Ao, g, and g which one performs in tak-
ing the matrix element of (2.26) can be explicitly carried
out. The function Q3 is negative definite if Ap is imagi-
nary. Thus we integrate over the imaginary values of Ap,
which is just using the indefinite metric. The integral is a
constant, which can be set to unity if the quantum states
are properly normalized. The functional integrations
over g and g can also be carried out, and give a deter-
rninant which can be interpreted as the contributions of
ghosts. The right side of (2.26) can then be reduced to
the transition amplitude of the physical theory, as will be
shown in more detail in Appendix C. Thus we have

&q",,'I. ' ~iq"'&=&q'."I. ' .ly(.2'&„, (2.29)

where the subscript outside of the angular brackets indi-
cates that the matrix element on the right side of (2.29) is
that in the physical theory; i.e., it involves functional in-
tegrations over A, P, and P* but not those over g, r), and
A p with a weighting factor originated from gauge fixing.
The precise form for this matrix element is given by (C5)
in Appendix C. Equation (2.29) is the correspondence
formula for the transition amplitude. We remind the
reader that the functional integral in (C5) is not a path in-

tegral.
Similarly, we may derive correspondence formulas for

other gauge-invariant operators. More precisely, let M
be an operator in the efFective theory which is in the form
of

M=M +[Q,O]+, (2.30)

where M„. is a gauge-invariant operator in the physical
theory (i.e., it is gauge invariant and depends only on A,
p, p', and their conjugates but not on A 0, g, g, and their
conjugates) then the matrix element of M between
effective states e f i and e f 2 is the same as that of M
between physical states f, and g 2. The proof will be
given in Appendix D. Examples of such operators are
the elements of the Poincare group: time translations (al-
ready specifically discussed), spatial translations, rota-
tions, and Lorentz boosts. There also exists a correspon-
dence formula for the Wilson loop. '

While the matrix elements in the two quantum theories
have a precise correspondence, the same cannot be said
for the quantum states without modification. As we re-
call, the wave function in the effective theory is of the
form of (2.25). It is straightforward to prove that

Referring to (2.16) we have e~g +QQ=O e $„=0 and QQ=O . (2.31)
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This is because the norm of QP is zero, while the norm of
e g is the same as that of P„ in the physical space, the
latter being zero only if g =0. Because of (2.31), the
decomposition of a quantum state in the effective space
into a sum in the form of (2.25) is unique. The part QP
never contributes to the matrix elements of gauge-
invariant operators, and the only physically useful part of
the wave function is e g . Consider therefore the map-
ping which maps all of the wave functions e g +QP
which are of the same e g and diFerent QP into the
same point. The linear space obtained from such a map-
ping is called a quotient space of the effective space. The
operator in the quotient space which performs the same
mappings as those of &,s in the efFective space will be
called %',tr. Let a point in the quotient space be an eigen-

state of &',s; then

(2.32)

for some P, P, and P'. By (Dl) and the uniqueness of
decomposition, g must be an eigenstate of & with ei-
genvalue E. We may also prove that the converse is true.
Therefore, the quotient space is isomorphic to the physi-
cal space, and the energy spectrum of % in the physical
space is the same as that of %',s in the quotient space.

We may further show that, for operators of the form of
(2.30), a complete set of states in the effective space is
esp'"', where f'"' forms a complete set of physical states.
More precisely, we have

(2.33)

Equation (2.33) can be proved by using the correspon-
dence formulas for the matrix elements of MiM2 Mi,
and M2 and the fact that g'"' forms a complete set of
states in the physical space. That the scattering ampli-
tude in the effective theory is unitary within the physical
sector is an easy consequence of (2.33). Of course, in our
formalism, such a result hardly needs a proof: the
scattering amplitude in the effective theory is equal to
that in the physical theory, which is unitary.

III. APPI.ICATIGNS

tt' tr=e t('„( A, P, P ),
where

8=8(+02,

with

0,:— i f d x—il' (V Dg)',1

V2

92 = ,' f d x—(A 0 i A I )+——V ( A o i A I' )—,

(3.3a)

(3.3b)

(3.3c)

(3.3d)

In this section we apply the formalism developed in the
preceding section to specific cases. This is done by mak-
ing definite choices of h' and I' introduced in (2.8) and
(2.16c), which, in our formalism, can be any real-valued
functions of A, P, and P . (They can even be, for exam-
ple, nonlinear functions of these fields. ) While different
choices give the same scattering amplitudes as those in
the corresponding physical theory, they represent
different gauges, some of which may be more convenient
to use than others in a specific situation.

A. The Feynman gauge

h ~=~—V21~= V. ~~ (3.1)

and hence

5h'= —(V Dg)' .

The efFective theory in the Feynman gauge is obtained
by choosing

AL
—= (V A') .

1

—V
(3.4)

If we want to calculate the on-shell scattering ampli-
tude with the effective Lagrangian (3.2) and the wave
function (3.3a), we turn oF the coupling g adiabatically in
the distant past and the distant future. Then lit is in-
dependent of AL. Also

6)
1e '~exp i f d x ri'& —V~@

is the ground-state wave function for the ghost fields, and
02

e ' is related to the ground-state wave function for the
longitudinal modes of the gauge field by a unitary trans-
formation

e '= Uexp —,
' d x A'+ —V' A'0

——' fd x A'+ —V A'

The Lagrangian (2.11) is then equal to

——'&' F" '+(D„p) (D"p),
(3.2)

with

U =exp —i d x A~ —V' Al'

which is indeed the Lagrangian in the Feynman gauge.
The wave function is given by

After making the unitary transformation of U, we find
that the Feynman rules for the scattering amplitude are
precisely those in the Feynman gauge. In particular, the
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I

gluon propagator is equal to

lgp~6ab

k +l6
(3.5)

2 7 (3.7)

The i@ in (3.5) for the longitudinal modes (as well as for
the ghost modes) are obtained as the initial and the final
states are in the ground state of these modes.

The treatments in this subsection can be easily extend-
ed to cover the case of the a gauge.

~ ~a gpva+ & (D y)T(Dpy)+ & m 2yTy

( QTp )2 (3.8)

where the components P, are Hermitian. The Lagrang-
ian is

B. Gauge 6eld theories with Higgs mesons The Hamiltonian in the temporal gauge is

In this section, we treat non-Abelian gauge field
theories with Higgs bosons. '

It is usually thought that the Higgs field P(x) has a
nonzero vacuum expectation value. This value is as-
sumed to be a constant, defining a preferred direction
which breaks the vacuum symmetry. As a consequence,
some or all of the gauge mesons acquire masses.

We believe that such a view is erroneous. The quan-
tum states in the physical theory satisfies the Gauss law
(2.4). Since 6 in (2.4) is an infinitesimal generator for
gauge transformations, all physical quantum states are
gauge invariant, i.e.,

—
—,'m P P+ —(P P) (3.9)

and G' of the Gauss law is

G a p a+ abc Ab c+. &abc'
b (3.10)

0

Any field configuration j A'(x), P, (x) I can be gauge
transformed into one with

g ( A, P)=P„(A', P'), (3.6)
(3.11)

as long as ( A, P) is related to ( A', tI)') by a gauge trans-
formation. As a consequence of (3.6), p(x) has no pre-
ferred direction and its vacuum expectation value cannot
be in any given direction. Furthermore, (3.6) implies that
quantum states in the physical theory are not normaliz-
able, and vacuum expectations are not defined until we
factor out the group volume by the choice of a gauge.
Indeed, the field P is gauge dependent, and the vacuum
expectation of P depends on the gauge adopted. The vac-
uum expectation value of P referred to in the literature
should be identified with that in the unitary gauge, and
the masses of the gauge mesons are determined by the
Hamiltonian in this gauge.

To give an explicit example, consider the Lagrangian
gauge field theory in which the gauge group is SU(2) and
the Higgs meson is an isovector:

We may therefore study the gauge field theory in the uni-
tary gauge in which P is in the direction of the positive I3
axis. The vacuum expectation of P3 in this gauge is natu-
rally positive. The classical Hamiltonian in the unitary
gauge is equal to H with p~ and $2 set to zero and with
m. and m replaced by the roots of O'=G =0. The

quantum Hamiltonian in the unitary gauge diA'erp from
this classical Hamiltonian by operator ordering. ' As it
turns out, this means that we simply insert J and J
into quadratic forms of m, e.g.,

where J is the Jacobian in the unitary gauge. Thus we
obtain the Hamiltonian in the unitary gauge as

+ —,'(g$3) [V m'+g( A m Am. )] + ,'(g$—3) [V n +—g(A' ~' —A' n. )]

+ ~~ Jm~ + —,'(Vpi) + —,'g p3( A' A'+ A A ) ——,'m $3+—
p3 .

The infinitesimal gauge transformation for P at
=$2=0 is

—0

0

J =det =(detg$3)
c)

We note that the Gauss law of a =3 has not been utilized,
hence the wave function in the unitary gauge is required
to satisfy

where 0„02, and 03 (not shown) are the group parame-

ters. Thus the Jacobian is where
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(3.13)

and choose

l =B~a„' —My', a=1,2
(3.14)

=8"A„', a =3 .

The reason for such a choice is that the crossed term
MA„'5"g' in —

—,'(l ') cancels out such a term in L, and
in the weak-coupling limit, I.,ff is the free Lagrangian of
uncoupled fields. In addition, we choose

Ia A ~a
L

where

Ar"—= ( —My'++ —V AL), a =1,21

&M' —V'

(3.15)

G =V m +g(A'. m' —A m')

As in the literature, we may put

(f'3—=U+X3 r

where U =m/&A, is the classical vacuum expectation
value of P3 in the unitary gauge. In the limit g~0 with
M =gv fixed, it is justified to set g$3 to M, set g to zero
everywhere else, and replace P3 in J by U (hence J be-
comes a constant). We then easily find that the two
gauge mesons of a = 1 and 2 both acquire the same mass
M, while the gauge meson of a =3 remains massless, as is
well known.

In the effective theory we put

0
0= 0 +X. (3.12)

U,

We shall denote

ACKNQWLEDGMENTS

One of us (H.C.) wants to thank S. Y. Wu for a discus-
sion on the quotient space. This work was supported in
part by National Science Foundation under Grant No.
PHY-8708447.

APPENDIX A

In this appendix we derive the expression (2.15) for
~.a..

Our goal is to express the difference of H,~ with H as
BRS variations of operators. First, we list the BRS varia-
tions of the m's below. We have

5m~() =i [Q, mo] =0

and similarly

a gf abc—gb c

5mb= ig PT'r.r~,
a G a+gf abc bgc

6m'„=0 .

(A 1)

(A2)

(A3)

(A4)

(A5)

where e'",a, b = 1 or 2, is antisymmetric with e'
= —e '=1. It has been so chosen that, in the limit of g
and A, going to zero with M fixed, it is the free Lagrang-
ian in which there are uncoupled fields A", y", q', and
P, a=1,2, of mass M, uncoupled fields A, ri, and g of
zero mass, and a free field y of mass &2m. In addition,
G' becomes, in this limit + V—rrL'. Thus this case can
be treated in exactly the same way as in Sec. IIIA and
Appendix C with AL replaced by AL . In particular, the
propagator for the vector meson is

lg p~6ab

k —M (1 —53, )+i@

with

0=3,

Ag= (V A') .
1

V2

(3.16)

(3.17)

Also, if C& is a bosonic operator, we have

5(C, C2 )= (5C, )Cq+ C, 5C2
/

and, if C, is a Grassmann operator,

5(C, C2)=(5C, )C~ —C, 5C2 .

(A6)

(A7)

We shall also define

(+—V y'+MAL ), a =1,2
1

&M' —V'

The Hamiltonian corresponding to the Lagrangian in
(2.11) is given by

H, fr= A ox~()+ A' rr'+rr~cti+ rr~P +j'sr~

Q =3
Note that, if we set M=O, the primed and the unprimed
fields become the same.

The efFective Lagrangian so chosen is given by (2.11),
(3.15), and

5h '= —(V.Dg')'+M (gy3+M)p

+Mge'bybg3, a =1,2

+ri'm'„L+ —,'(pro) +—ii)(Dog)' —i''5h' .

Making use of (A6), (2.9c), and (Al) we get

5(i mo(pi') = —(~o)

Also

5(ih 'g') =i (5h ')q'+ih '5g'

(A8)

(AS)

= —(V Dg')', a =3, (3.18) i r)'(5h ') —h 'n~(—
) . (A 10)
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Adding (A9) to (A10) we get

5(imo&&g'+ih'q')= i—g'(5h')+ A pro . (Al 1)

(810), (85) is reduced to

Qexp —,'fd x AOV —V' Ao g =0. (811)
We further observe that the sixth and the ninth terms on
the right side of (AS) cancel each other and that Next we have

A' n'+m~P+mtP . L=—H + AOG', (A12) =m~f =0, (812)

as the left side of (A12) is the Hamiltonian corresponding
to the gauge-invariant Lagrangian L. Also, a little calcu-
lation gives Gg~ =0 (813)

as f ( A, P, P" ) does not depend on g or g. We also have,
by (2.4),

g(ga a) ja a+gaGa

Thus (2.15) is proved.

APPENDIX 8

In this appendix we shall prove (2.17).
Referring to (2.16c) we have

e, =0,+02,
where

0, ,
= f d x [Q,g'I']+

and

A2 =——fd x~oI'.
Then

A 0 0

(A13)

(81)

(82)

(83)

(84)

By (2.12), Q is a linear superposition of G, m„,— and n.
&.

Since all these three operators commute with Ao, (811) is
easily proved.

APPENDIX C

In this appendix we shall prove that the right side of
(2.26) is the transition amplitude in the physical theory.

The physical wave function satisfies the Gauss law
(2.4). Since G' is an infinitesimal generator for time-
independent gauge transformations, the physical wave
function is gauge invariant and a gauge can be chosen.
Let us choose the gauge to be

I'( A, g, gt) =f (x), (C 1)

where f is any function of x. Under an infinitesimal
gauge transform of group parameter g',

5I'= . ( DX) + —- ( igT g —P)
5I b

5I' . b b

n~~b
As is seen from (82), Q, is a BRS variation, thus it com-
mutes with Q. Therefore, (2.17) is reduced to Ia+ t (AT'X'0')

02 62
Qe 'e 'g =0. (85) ~ahab (C2)

The next step involves the use of the formula

e '"'f(I,e)e""=f(p ig' e»—
where p and q are conjugate to each other with

b»el = —i

and where f may be any function and g is differentiable.
By identifying A0 and —w0 with p and q, respectively, it
is easy to prove that

Thus, the phase space with the gauge fixed by the relation
(Cl) is

2) A'2)P2)P 5(I' —f')det(M) (C3)

fg) A g)p g)ptf3(I f )det~p ae (C4)

and the physical transition amplitude from the state
~

g'„') to the state
~

g" ') after a time duration t is

OI

n, e, —n,
e 'e 'e '=exp ,' fd'x A—o+—V'&0

Q2 B2 Q
e 'e '=exp —,

' d3x gaQ iv2ga e 2

(87)
Since the amplitude in (C4) is independent of f we
may multiply (C4) by exp( —Jd x f'+ V f') and in-—
tegrate over all f '. The result is

Aa + (1)e u (2) 4d

Now, since g ( A, P, P*) does not depend on Ao, we have

6
~op = —i g =0 .

0

It follows from (89) that

(89)

02e '1' =0, (810)

where A2 is given by (83). With the help of (88) and

On the other hand, if we carry out the functional in-
tegrations over Ao, g, and g for the right side of (2.26),
we also get the expression in (C5). Thus the result.

Finally, we mention that there is no difhculty with the
Gribov ambiguity in the gauge fixing of (Cl) as long as
we integrate over all A, P, and P (Ref. 16). The point is
that while the number of Csribov copies may vary from
one orbit to another, this number is either odd for all or-
bits or even for all orbits. Furthermore, contributions
from Crribov copies cancel pairwise. Thus the integral
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APPENDIX D

In this appendix we shall prove the following theorem.
If M is an operator which is in the form of (2.30), then

Me P =e Mg„+Q1t . (D 1)

over all A, P, and P* is either identically zero (when the
numbers of copies are all even), or exactly equal to the
contribution of one copy for all orbits (when the numbers
of copies are all odd). Since the integral in (C5) is not
zero, the latter is the case.

(0, )"M e 'e 'itj, n = 1,2, . . . ,

are of the form of Qg. Thus

n, o, e, n, n, e,M e 'e 'e 'f =e 'M e 'e 'g +Qg.
Next, we have from (B8) and ~0$„=0that

T

M e 'e '/~=M„exp —,
' f d x Ao+ —V Ao

L

=exp ,'f—d xA0+ —V Ao M f
a ~2=exp —,

' d x Ao+ —V Ao e 'M g

(D2)

and

M (Qi)"e 'e 'f, n =1,2, . . .

Equations (2.23) and (2.24) are special cases of (D 1).
First of all, we may ignore the term [Q,O]+ in (2.30).

This is because OQe g is equal to zero and QOe g is
of the form of Q f

Next we note that both

(D3)

the last two steps are obtained as M is independent of mo

and Ao. Equation (Dl) follows readily from (D2) and
(D3).

Finally, we mention that if M is an operator which
commutes or anticommutes with Q and is not dependent
on Ao and mo, then M also satisfies (D 1).
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