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The fundamental parameters g„, gs, and aH can be independently determined by measurement of
the energy correlation function I{E„,Es) where g' is the Michel polarization parameter for

vv, g„=(lgL I' —lgs I')/(lgL I'+ lgs I ) is the chiral polarization parameter for ~ ~A v,
and a~= —2a, U /(a +U,) where a„u describe Z —+~+~ at the tree level. In contrast, measure-
ment of I(E&) by the ~-polarization technique only determines gzaH. For 10' Z events and for
sin 8~=0.23, the ideal statistical percentage errors in the determination of the Michel parameters
are for g, 2.6%; for 5, 3.5%; and for p, 1.0%; and of the chiral parameters are for g, 1.4%; for g'e,

3.0%; and for g' ~, 18%. For aH, the ideal statistica1 error is cr(aH) =0.005 (3.3%). Equiva1ently,

for sin 0~ it is 0.3%%uo. Explicit formulas for the full sequential decay correlation function
I(E,E„cosg„,) are given for arbitrary Z mass and for I(E„,Ee) for arbitrary Michel parameters.
These results can be used for analyzing the decay of a Z' boson and for qq modes.

I. INTRODUCTION AND DEFINITION
OF w COUPLING PARAMETERS

The first round of experiments at the SLAC Linear
Collider (SLC) and the CERN e+e collider LEP will
use unpolarized beams in e+e collisions at the peak of
the Z . Our primary objectives in this paper' are to pro-
vide (i) explicit formulas and plots of the tree-level energy
correlation functions I(E„,Eti) for the Z sequential de-
cay

zo~~+~

QCD corrections, and finite-width Z, A +, and/or B
resonance corrections.

Before giving the sectional contents of this paper, we
define the necessary quantities to describe the ~ s elec-
troweak coupling. For describing the Z ~~+~ cou-
pling, we introduce the usual a, and U coupling con-
stants so

It + I' —It+

It +I'+It+
—2a,v, [l —(2m, /M) ]'
v2+a, [1—(2m, /M) j

= A+X 2Q v ——0.1591,
U~+a~

(1.3)

for arbitrary Z mass and arbitrary chiral structure in the
~ couplings, and (ii) associated "ideal statistical errors"
(for definition of this term, see Sec. VII} for determina-
tion of the ~ coupling parameter cxH for describing
Z ~~+~, the Michel parameters ($,6,p} for

—+8 vv, and the chiral polarization parameters

Igg I' —Igg I'

lgi I'+ Ig~ I' (1.2)

for ~+ —+ A +v where, respectively, A =m, p, K *. We
hope that in the context of ~-pair Monte Carlo simula-
tions this will enable readers to evaluate the merit of us-

ing this technique for the measurement of these ~ cou-
pling parameters by some of the A+B sequential de-
cays of Eq. (1.1). To do this, this information must be
supplemented with that about (a) the measurement limi-
tations, systematic errors, and background distributions
for specific modes for detectors at SLC/LEP and about
(b) the important theoretical contributions, ' omitted
here, from electroweak and QED radiative corrections,

JR(r ~~ v)=k u y (v —ay5)u,

for A =~,K and similarly, for A =p, K*,a, ,

(1.4)

JN(w ~p ,v)=p u y (v —ay&)u (1.5)

and define gL =v+a, gz =v —a. Equivalent to Eq. (1.2),

2Re(v„a„*)

lv~ I'+ la~ I' ' (1.6)

where t& & are the usual helicity amplitudes describing
1 2

the couplings of the Z to ~+ and ~ . The numerical
value in Eq. (1.3) assumes lepton universality so
r =a, /u, =(1—4sin Oii, ) '. We use sin On, =0.23
throughout this paper. At the tree level a definition of a
distribution parameter in terms of helicity amplitudes is
equivalent to a definition based on effective coupling pa-
rameters in the covariant coupling approach. The
Michel parameters are defined as in polarized-muon de-

cay. For w decays ~ —+A v, suppressing the A sub-

scripts we introduce the covariant amplitudes
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where g„=1 for a pure V —A eff'ective coupling. '

By measurement of the energy correlation function
I(E~,E&) for a definite A B sequential decay mode,
Eq. (1.1), the basic parameters g„, gii, and aH can be in-
dependently determined. [This is evident for the p+e
mode from Eqs. (3.17) and (3.18) below and can be used
to test p~e universality of the Michel parameters g in r
decay. Similarly, for the lepton-hadron I(E,E&) from
Eq. (5.10) below; and for the hadron-hadron I(E„,Es)
from Eq. (6.5).]

In contrast, the elegant w-polarization technique' ' '"
determines the combination g„aH since only the single-
particle energy distribution I(E~) is measured. If pre-
cision experiments find g~H from I(E„)and, for exam-
ple, gzaH from I(E&) to be equal within errors, then
presumably one would assume g and g are equal; how-
ever, the further assumption that g =g equals 1 would
be required before a value for a~, i.e., sin 0~, would be
available for testing the standard model and alternatives
for "new physics. " On the other hand, given the
significance of a precision measurement of sin 0~, it is
very important to use the energy correlation function
I(E„,Es) to test these assumptions about the value of
the g's.

In Sec. II, we brieAy review the relation of w-coupling-
parameter values to expectations for "new physics. " In
Sec. III, the muon-energy —electron-energy correlation
function I(E,E, ) for massless final leptons p+ and e isp0

0obtained for arbitrary Z mass in terms of $, 5,p. In Ap-
pendi~ A, we give explicit formulas for the full sequential
decay correlation function I(E,E„c sgo) where P, is
the angle between the p and e momentum. In Sec. IV
formulas for the harder lepton's energy spectrum I(xH)
are obtained. In Sec. V, the lepton energy-hadron energy

correlation function I(EI,E&) is obtained, and in Sec. VI
the purely hadronic energy correlation function
I(E„,Ea ).

In Appendix B, formulas for energy-energy correla-
tions I(E,E, ) and I(Ez,Ez) in the nonrelativistic re-
gime are listed which would be needed if there were a
second neutral boson Z' and charged spin- —,

' fermions
from a fourth family.

In Sec. VII for a 10 event Z sample we list in Table II
the "ideal statistical errors" for aH and for the Michel
parameters g, 5, and p for the various A+B modes of
Eq. (1.1).

The next three sections compare the I(E„,Es ) tech-
nique with the ~ polarization technique. They are com-
pared for determination of n~ in Sec. VIII, for deter-
mination of the Michel parameters in Sec. IX, and for
determination of the chiral polarization parameters g,
g, and/ + in Sec. X.

The principal conclusions are listed in Sec. XI.

II. BRIEF REVIEW OF SIGNATURES
FOR NEW PHYSICS

In Table I are tabulated the shifts in a~ expected from
some of the schemes of "new physics. " We refer the
reader to the Refs. 17—21 and to recent investigations
of how results from high-precision measurements might
be combined to identify the origin of any small discrepan-
cy versus the predictions of the standard model.

The significance of the Michel parameters is well
known. It is manifested that g and g, g, and g, of
Eqs. (1.4) and (1.5) are all sensitive to right-handed
currents. As with a potential discovery of a reliable small
discrepancy in aH, there are more than a few origins:

TABLE I. Summary of sensitivities of the Z ~~+~ coupling parameter o,& to "new physics. "
These estimates follow (Ref. 1) using the approximate relationship aH = —Ag~" where Agz" is the
initial-state longitudinal-polarization asymmetry in muon pair production by a longitudinally polarized
e beam in e+e annihilation.

New physics

m~=10 —' GeV
m, =110+20 GeV

Additional Higgs bosons
M, =Mo~ =M M'") 300 GeV

Extra Z
mz & -700 GeV

Fourth generation and/or
superparticles

Heavy-quark (or -squark)
pair (large splitting)
Heavy-lepton (or -slepton)
pair (large splitting, m =0)
8-inos (M «100 GeV)

Technicolor
SU(8) X SU(8)
O(16)

+0.009
+0.005

& 0.02

0.01-0.04

0.02

0.012

0.005

0.04
0.07

)0.005

0.01

0.006

0.0025

—0.018
—0.032

Reference

17
17

19

20

20

20

20
20

Ideal statistical error
p+(m, K) mode
Sum of modes

0.010
0.005

From

Table II
Table II
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There may exist nonconserved currents, or other than
combinations of V and A couplings. Both left-right-
symmetric models and massive-neutrino models
(motivated in part by the missing-light, i.e., dark-niatter,
puzzle and the solar-neutrino puzzle) frequently contain
right-handed currents. In particular, by modification of a
left-right-symmetric model of Zee, recently Fukagita
and Yanagida, Babu and Mathur, and later Mohapa-
tra have considered models with a singlet charged
Higgs field and used the muon's g' measurements to con-
strain the couplings. Unfortunately, in spite of the large
mass splittings between the families and current notions
about nonzero neutrino masses, without decisive empiri-
cal data about the (lack of?) couplings of right-handed
currents to the particles in the third family, it continues
to be very difficult to assess the importance of competing
ideas about the chiral structure of nature.

The g' parameter in polarized-muon decay is known to
a few tenth's of a percent level. We find ideal statistical
errors for the g's describing r decays to be at the few per-
cent level.

The results listed in Table I can be compared with
those expected ' from instrumentation of longitudinally
polarized beams. In particular, the 0.3% ideal-
statistical-error level for sin Oii from I(E~,Ett ) measure-
ment can be compared with the current world average
3% error and also with the 0.13% precision level expect-
ed from A~~ measurement at LEP I after instrumenta-
tion of polarized beams.

III. NIUON-ENERGY —ELECTRON-ENERGY
CORRELATION FUNCTION I(E„,E, )

We consider the sequential decay
0 +Z +7

$ T2

e2v2v2

(3.1)

= p& vjvi

Assuming that the Z ~~+~ decay helicity amplitude
t& &, defined by

(B,@,A, k, IJM) =D' (c&,B, c)t— (3.2)

where y&~ is the CP quantum number of the Z system.
By Lorentz invariance, the density matrices describing
~——+ 8—vv are, respectively, of the form

p, &2, &2(0;,E )=R(x ) g;cosO;S(x; ), i =1,2, (3.4)

for the decay of a fully polarized v (r ) at rest with
x'=E'/A' where @=(m,+p )/(2m, ) is the maximum
8+ (8 ) energy in the r rest frame with p the charged-
lepton mass. In Eq. (3.4), g is the Michel polarization pa-
rameter. The argument x; in R and S here (and in f and
g below) is to be understood to label the quantities for

~p vV versus those for ~ ~e vv. It then follows

where A, =A,
&

—A,2 and J= 1 are invariant under the CP
operation, we obtain

(3.3)

where

+ A o(Oi, E i, 02,Ez )cosP, (3.5)

and

A 0
= o 7'ct k,S(E i )$2S (Ez )sinO;sinOz

C =o S(E i, 0;;E2,0i)+rT(E;, 0;;E2,02)

+v U(E;, 0, ;E2,02)

(3.6)

(3.7)

with

S(E",', Oi', Ei,02)=R(E;)R(E2)—g,S(Ei )/AS(Ei )

X cosOi cos02,

T(E;,0;;Ei,02) =R (E i )R (Ei )+giS (E i )$2S (E2 )

X cosOi cos02, (3.8)

U(Ei, Oi, Ez, Oz)=giS(E;)R (E2)cosO;

+R (E2 )$2S (E z )cos02

and the 0.,~, v coe%cients are given below.
In the ri+ rest frame 0; and Pi are the polar and azi-

muthal angles of the p+ in the usual helicity coordinate
system and E i is the p+ energy. Correspondingly 02, Pz,
and E2 specify the e in the v.

2 rest frame. The impor-
tant azimuthal angle p between the r+lJ, + momenta plane
and ~ e momenta plane in the Z rest frame is defined
by

(3.9)

While the dependence of R and S of Eqs. (3.6) and (3.8)
on the other Michel parameters is of course implicit, we
are emphasizing explicitly the dependence of the polar-
ization parameter j. Assuming (i) lepton universality so
g, =gz=g, and (ii) almost a V —A charged-current cou-
pling so g almost is + 1, we see that both the T and the U
term of the "standard decay correlation function" are
sensitive to g. The U term and T term, as we discuss
below, dominate in the limit of small p, e, and ~ masses
versus the Z mass because of approximate helicity con-
servation in the Z ~~+~ amplitudes.

Because of the kinematics of the sequential decay, the
Ao term in Eq. (3.5) which is proportional to cosP will
not contribute to the muon-energy —electron-energy corre-
lation function I(E,E, ). [This fact is easily seen to fol-
low from the P independence of Eqs. (Al) and (A2) of
Ref. 2.]

The remaining coefficients o', r, and U in Eqs. (3.7) and
(3.8) are quadratic functions of four ti i amplitudes for

l 2

Z —+~+~ and are given by

(3.10)

by Lorentz invariance that the "standard decay correla-
tion function" for this sequential decay, Eq. (3.1), is

&(Oi, E;;02,E),p) =C(0;,E;;0;,E;)
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A. Tree-level evaluation of Eq. (3.5)

At the tree level, these quadratic functions describing
Z ~7 7 can be expressed in the standard model in
terms of the ratio of the axial-vector to the vector cou-
pling coeScients

45.93
T{Ep,Ee)

a, =(1—4sin Otr) (3.11)

so

2cr ™
Ee

[GeV]

r= —,'[(1+r )M 4r m, ]-,

U= —rM Ql —(2m, /M)

(3.12)

with the important ~ coupling parameter for
sin Ogr =0.23,

where M is the Z mass and m, is the ~ mass. Since

(m, /M) =3.8X 10, the tr-dependent terms in Eq.
(3.5) can be neglected and

I(O;,E;;O E~2/) =rT(E;, O;;E2, 82)

U(E;, O'E2, O2)
X 1+a~

T(E;,Ot;Ez, Oz)

(3.13)

0.00
0.00

I

Ep [GeV] 45.93

FIG. 1. The coritour plot of the T(E„,E, ) factor in the
muon-energy —electron-energy correlation function I(E„,E, )

=T(E„,E, )[1+A (E„,E, )] in the Z rest frame, for Zo
—+~+~ ~p+e X for a Z mass M=91.9 GeV. For the pre-
cision level of current interest at the SLC and LEP the final p+
and e mass corrections can be neglected so I is symmetric in
E ~E,.

y )y (1+p) 2, we obtain from Eqs. (3.8) using the gen-
eral lepton-number-conserving, four-fermion couplings
for& ~E—vvthat

2
= —0. 1591 (3.14)

—2a, v,

/t +/'+/r+ J' a', +v',

and there is no dependence of the right-hand side of Eq.
(3.13) on the azimuthal angle P. However, there is sensi-
tivity to aH and to g, and g2.

B. Muon-energy —electron-energy correlation function

Because of the four missing neutrinos, the ~+— rest
frames are not directly accessible, but it is straightfor-
ward and simple to analytically obtain the E -E, energy-
energy correlation function

and

y 'P 'm, [f(x)f(y)+g(x)g(y)] (3.17)
64

45.93
A(Ep, Ee)

T(E,E, )= y P m [f(x)f(y)+gtgzg(x)g(y)]

I(E,E, ) = T(E,E, )[1+3 (E,E, )] (3.15)

in the Z rest frame for massless final p and e leptons
where E:—E„and E, —:E2 are their respective energiesP
in the Z rest frame. It is convenient to introduce the
scaled lepton energies

Ee
[GeV]

x:E /E, „, y:E—, /E,„. — (3.16) 0.00
0.00

Ep [GeV]
45.93

With y and p the relativistic boost variables connecting a
rest frame to the Z rest frame (y =M/(2m, ),E,„=m, /[2y( 1 P) ] ) is the rn—aximum available

charged-lepton energy in the Z rest frame.
For E and E, both greater than EI =m, /[2y(1

+P)]=0.0173 GeV, equivalently for both x and

FIG. 2. The contour plot of the A (E„,E, ) term in the E„
and E, correlation function for sin~gs =0.23, /=+1. At the
tree level A (E„,E, ) is proportional to the ~ couplings' parame-
ter guH where g is the Michel polarization parameter for

vv, and aH ——2a, u /(a +U, ) where a, U describe
g ~z+z at the tree level.
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45.93

T(Z~ T~~P,eX), 'P&e =180'

45.93

T(Z ~7~ ~peX), 'P&e =176.51

Ee
[GeV]

Ee
[Gev]

0.00
0.00 45.93

Ep [GeV]

FIG. 3. For p+ and e back to back, the contour plot of the
T term in the "standard decay correlation function"

I(E„,E„cosg, ) =T(E„,E„cosg„,)[1+A (E„,E„cosg„,)] in

the Z rest frame where 1(„, is the opening angle between the
p+ and e momenta.

0.00
0.00

I

Ep [GeV] 45.93

In these expressions, with f (x) =ct (x)+ pb(x),

f (x)=1—3x +2x + —,'p( —1+9x —Sx )

FICx. S. The T term for g„,=176.51' (Z =cosl(„,
= —0.998 142).

U(E„,E, ) = -Z p m, [gg (x)f(y)+gQ(x)g(y)]

& 'p 'm'k[g(x)f(y)+f(x)g(y)1
64

—X +—X5 3 2 2
6 2 3

and withg(x)=c(x)+5d(x),

(3.20)

SO

45.93
A ( Z ~ T: x ~ PeX ), 'Ppe = 180

U(E, E, )
A (E„,E, ) =crH

pl

g(x)f(y)+ f(x)g(y)
f(x)f(y)+g(x)g(y)

(3.18)

(3.19)

+—'5[1—12x +27x —16x

+(1—P)6x(1 —x)(1—2x)] I

~—[——,'+ —,'x ——', x +(1—P)2x (x —1)],2

(3.21)

45.93

A ( Z ~Tx ~ P,eX ), 'Ppe = 176.51

g(x) =—
I
—

—,'+2x —3x +—', x 3 —(1—p)x(1 —x )~
1

Ee
[Ge Ee

[GeV]

0.00"
0.00

Ep [GeV] 45.93 000 L

0.00 Ep [GeV] 45.93

FIG. 4. For p+ and e back to back, the contour plot of the
A term in the "standard decay correlation function" in the Z
rest frame. Note A is positive for E„and E, &(-M/4) where

M is the Z mass

FICJ. 6. The A term for f„,=176.S'. Note that as the open-
ing angle g, decreases the A term remains positive in the re-

gion approximately bounded by E =E, =M/4.
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45.93
T(Z ~ ~~ ~P.eX), 'Ppe = &75.06 A. For p+ and e back to back, Fig. 3 shows the con-

tour plot of the T term in the standard decay correlation
function

I(E,E„cos1(„,)

Ee
[GeV]

0.00
0.00 Eg taeV]

45.93

FICy. 7. The T term for f„~= 175.06' (z =cosg„,
= —0.996 283 }.

45.93

A ( Z ~ z z ~ PeX },'P&e = 1 75.06

where p and 5 are the other Michel parameters
(p=5= —,

' for a V+ A charged-current coupling). The
(1 —P) =0.00075 terms in g (x) could be dropped.

The second (arrowed) lines follow in Eqs. (3.17)—(3.21)
assuming lepton universality and a V+ 3 charged-
current coupling. The two functions, T(E,E&) and the
"analyzing power" A (E,E, ), are displayed in Figs. 1

and 2 for a V—A coupling (/=+1) [for a V+A cou-
pling the sign of A (E,E, ) is opposite]. Note that as thep7
p+ or e approaches its maximum energy,
A (E,E, )~aH.

In the Z rest frame, the opening angle 1( between

the p+ and e can be measured so we have also analyti-

cally obtained the full distribution I(E,E„cosf, ) for

the sequential decay of Eq. (3.1), for massless final leptons
p+ and e . The explicit formulas are listed in Appendix

I(E,E, )=To(E,E, )[1+gB(E,E )+(2C(E E )]

with

(3.24)

Tp(E E)= 7 P —rn,f(x )f(y ) (3.25)

U(E„,E, )
gB(E,E, ) =aH

p, ~ e H

g(x)f(y)+ f(x)g(y)
f (x)f(y)

I" ~ g (x)g (y)T2(E,E, )

To(E,E, ) f (x)f (y)

(3.26)

(3.27)

These three functions To(E,E, ), B(E,E, ), and
C(E,E, ) are discussed further and plotted in Sec. VIII.

=T(E„,E„cosf„,)[1+A (E,E„cosy, )] (3.22)

and Fig. 4 shows the A term which is proportional to the
r couplings' parameter gaH. Figures 5 and 6 show these
distributions for 1( =176.51', and Figs. 7 and 8 show

them for 1tj =175.06'. These figures show that as 1(,
decreases, A remains positive in the region approximate-
ly bounded by E =E, =M/4 so usage of the simpler

E E, en-ergy-energy correlation function I(E,E, ) of
p e pP

Eq. (3.15) instead of the full distrinution I(E,E„cos1(t,)

of Eq. (3.22), has insignificantly reduced the gaH signa-
ture.

The deviation of the magnitude of g from 1 is a signa-
ture for other than a pure V —A lepton-number-
conserving, four-fermion coupling for describing
~Z~vv, i.e., for the presence of right-handed currents.
This is discussed in Sec. II; ~(~&1 is predicted for an ar-
bitrary mixture of V and A components, instead of either
V+ A. To determine g from I(E,E, ), we write, from

Eqs. (3.17) and (3.18),

T(E,E, )=To(E,E, )+g T2(E,E, ) (3.23)

F-e

IGeg

0.00
0.00 Ep [GeV] 45.93

IV. THE HARDER LEPTON'S ENERGY
SPECTRUM I(x )

Since I(E,E, ) is symmetric in E ~E„eve t nfrosm

SLC/LEP can be folded about the diagonal E =E .
p

Then to obtain a simple single variable distribution, the
energy of the softer lepton can be integrated out. The re-
sulting harder lepton's energy spectrum can be compared
with the theoretical prediction obtained' from Eqs. (3.15),
(3.17), and (3.18) that

I(xH )= T(xH )[1+A (xH )], xH =EH/E, „, (4.1)

FIG. 8. The A term for g„,= 175.06'. where, for arbitrary Michel parameters p, 5, g,
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T(x)= E—,„y x(1—x)I[x —2x +2+—,'p( —2x +3x —I)][—2x +x+1+—,'p(8x —x —1)]

and

+—', g (1—x) [x —1+—', 5( —4x+1)][—4x +5x —1+—', 5(16x —iix+1)]] (4.2)

A (xH ) =aH U(xH ) /T(xH )

with

(4.3)

U(x)=g E—,„y x(1—x)I2(l —x) [x —1+—', 5( —4x+1}][—Zx +x+1+—',p(8x —x —1)]

+[x —2x +2+ —', p( —2x +3x —1}][—4x +5x —1+—', 5(16x —1 ix+1)]I . (4.4)

Corrections of order y =0.0015 relative to the leading term have not been kept. These expressions are for
EH &&EI-0.0173 GeV; in the soft Hmit E~—+F1 the neglected y terms are important. These and the following ex-
pressions have factors of (1 —x) explicitly displayed to enable easy assessment of the hard limit EH ~E

For p =5= —,', as for an arbitrary V and A charged-current coupling, the remaining g-dependent distribution I (xH ) is

in terms of

T(x)I s 3«= E „y x(1—x)[25+25x —35x —10x +17x —4x +g (1—x) (I+3x —6x —16x )] (4.5)

and
7T

U(x)I s 3«=g' E,„y x(1—x )
36

X( —10—10x+62x'+7x' —47x "+16x') .
(4.6)

Plots of T(xH ) and A(xH ) for g'= 1 are given in Ref. l.
&n Eq. (4.5) the g term's coefficient vanishes at x =0.42
and at 1, and U(x) of Eq. (4.6) vanishes at x =0.52, 0,
and 1. The relative importance of the terms in I(x) for
determining their respective coefticients is indicated by
the average of their absolute value: for a&,
IU/TI, „,=0.0546; with T(x)—:To(x)+g T2(x), for g,

To display the 5 dependence, we set p = 3 and (=+1

in Eqs. (4.2) and (4.4) which gives

Finally, for completeness we set 5 =—', and g = + 1 to
display the p dependence:

I(xH)= E,„y (J+Lp+Mp ),
36

(4.9)

where

J=x(l —x)[(1—x)(37+74x —45x —64x +52x )

+ 3aH( —4—4x +28x +3x

—33x +16x )],
L =—', x(1—x)[ —3(4+4x —28x —3x3—33x —16x )

+ZaH ( 1 —x ) ( 1+3x —6x —16x )],
(4.10)

I(xH ) = E,„y (D+E5+F52),
36

(4.7) M =—"x(1—x) (1+3x—6x —16x ) .

where

D =x(1—x)[29—'7x +53x' —122x'+85x' —20x '

+ZoH (1 —x )( —10+25x + 12x'
—26x +8x )],

E =
—,x ( 1 —x)[2( 1 —x ) ( —2+ 19x —32x )

+uH(10 —80x+88x +83x
—115x +32x )],

F= —", x ( 1 —x ) ( 1 —15x +60x —64x 3
) .

(4.8)

The average of their absolute value is ,' IE /D I,„,=0.0506—
and —,', IF/D l„.=0.005 27.

For determination of both g and 5 their linear, not
their quadratic term, is more important.

Since as xH~l, J—+18aH(1 —x) with L~24(l —x)
and M =0, the I. term dominates over the J term. There-
fore, I(xH ) is quite sensitive to p. The average of the ab-
solute values ,' IL /J I,„,=3.8 an—d —,', IM/JI, „,=0.026.

V. LEPTON-ENERGY —HADRON-ENERGY
CORRELATION FUNCTION I(Ep Eg )

In this and the following section we incorporate mea-
sured two-body r decays ~+~h „+V, ~ ~hz v, into our
energy-energy correlation analysis of Z —+~+~ sequen-
tial decays. In the Z rest frame, the angle between such
a charged hadron's momentum and its associated w's

momentum is determined by measurement of the charged
hadron's energy E~. Consequently, E~ and cosO& are
equivalent sequential decay variables where 0~,
0 ~ 0„~n., is the helicity polar angle of the charged had-
ron in its ~'s rest frame. This linear relationship is
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0
4E~m ~(m' —p' )

A
P A )(~ —4m )'~

1.0
( P'~' K-')

(5.1)
M

We find it s'simpler to use cosi9' instead f E
anal ysis and in the accompanyin fi

ea o „ in our
'ng gures.

For the sequential decay

Z ~~~+~20

cos 8

0.0—

5 4
t

h~ V2,
+=Pi &i~&

(5.2)

the standard decay correlation function is

I(Oi, E;;Oui', P) =C(8',E'8' )+ A (8'
I& I& B 0 1&El &OB )c

-1.0
0.00

Ep [GeV]
45.93

(5.3)

where 8;,E; are as in Eq. (3.5) and z~ is
e e ween the ~ p momenta plane and the ~ h~ mo-

menta plane in the Z rest frame. In Eq. (5 3'~ )

Ao cT1 cpg&S(E i )g~/~sinO& sinO& (5.4)

where gii was defined in the Introduction in E
and (1.6), and

ion in qs. 1.2)

C oS(E, , O„—Oi.i )+rT(E; 0'8' )+ U(E' 8'8'
1~ l~ 8

FIG. 9. The contour plot of the T(E„„,cosO') factor in the

, cos „)muon-energy —pion-energy correlation function I(E,
in t e Z rest frame for= T(E,cos8')[1+ A (E cos0')] '

h Z r

Z ~r+r with the r+~ +v v+ ~p v„v„r ~m v, . The pion ener
E in the Z rest frame by E . (5.1)

' 1'

where 0 is the ola
q. . is inearly related to cosO'

w ere 0„is the polar angle of the ~ momentum in the ~ rest
' '

y coordinate system. In general, E~
\

and cosO& are equivalent sequential decay variables for two-

body r decays. Note that cosO =1 ( —1) correspond, respec-
ive'y, to E& maximum (minimum).

with

(5.5) and again there is no dependence of the right-hand side
on the azimuthal angle P. The associated E. Eii correla--

tion function is

S(E;,0;;Oui ) =R (E;)+g,S(E;)g, g, cosO;cosO;g cost9, cosOg

T(Ei, Oi, O~ ) =R (E;)—g,S(E;)g~S~cosOtcosO~ 7

(5.6)

(5.9)I(E,cos0& ) =T(E,cosO& )[1+A (E,cosO& )

GeV,
where, for E„greater than EI =m, /[2y(1+P)] =0.0173

U(E;, 8;;8~ ) =g,S(E;)cosO; —R (E;)g~/zcosO~

where, as in Sec. III, R and S describe t+ ~
cien s are quadratic functions of the four heli-

city amplitudes for Z ~~+r . Thee normalized parame-
er ~ partially characterizes the deca der

'
e ecay ensity matrix

~ &with

1.0
I

1

cos8-

A(Ep, cos8~- )

1 for B=m, K,
g =, m, —2m2 2

for B=p, E *,a &.
m, +2m'

(5.7) 0.0——

The A termerm wi11 not contribute to the muon-
energy —hadron-ene-energy correlation function I(E,cosOii ).

Proceeding as in Sec. III, at the tree level,

1(0' E)i,'0 $)~=rT(E;, 0;;Of )

1+&H T(E;,0;;8~ )
(5.g)

-1.0
0.00

Ep I'GeV]
45.93

FIG. 1

E an E
G. 10. The contour plot of the A (E„e „,coso') term in the

„an E„correlatiori function. In th f 1

term at the tree level the analyzing power 3 is ro orti
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1.0

cos 8

0.0—

T(Ep, cos8 ~}
P

5 4

approaches its m'ts maximum energy, A (E,cos8'
~—a

+
Figures 11 and 12 show these distrib utj.ons for the

+ h
and p masses are almost de

or the p+a
&

mode, 4, =0.0 so

e a $ energy.

VI. HADRONIC-ENERGY COR RELATION
FUNCTION I(E„,E )

-1.0
0.00 Ep [GeV) 45.93

For the decay sequence

Z ~7~ &2
0

~h~ v2

(6.1)

FIG. 11. The T(E„(E„,cosO') term in the „and E correlati

T(E,cos8~ )=-T „-, ~ =—y P m, [f(x) gg(x)g~S~—cos8+8 s 8

U — =— E,[gg( ) f(x)g 4 —8'],

U(E, cos')
(E„,cos8& )=a~

T(Eicos&)

where f (x) and g (x) are iven
'

th pn es t mnor as t e m approaches
'

„, osO„g aH, and that as the

I(8;;82,$)=C(8'8")+ A (8'8' c (6.2)

where in the Z rest frame is the g
e ~ A momenta plane and the ~ h

plane.
e 'Tg g momenta

The hadronic helicity polar angles 0& and t9' in
rest frames are, respect' l, l

) an 2 n thew

1

c ive y, related to the hadr
„as in q. .l . In Eq. (6.2),

~p= o')'cpgg+ggg+gsin8 sm8z (6.3)

C=crS(8i', 82)+rT(8'8')+ U(8'8'1~ 2

'where

(6.4)

=h vA 1

the ststandard decay correlation function
variance is

a ion unction assuming CP in-

A(Ep, cos8 ~)
P 1.0

T(cos8 1~, cos8 2~)

cos

0.0—

cos 8~2
10

-1.0
0.00

I

g[GeV] 45.93
cos8 1~

1.0

FIG. 12. The anal ziny I power A(E, cose') i h
correlation function.

in t e E„and
FIG. 13.

correlation
E ~E

The T cos 'os ~, cos8'&) term in the
function. By CP in var'y - invariance I is symm t '

e rlc ln
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1.0
A(cos8 1~, cos8 2~)

1.0
A ( eos 8« ~, cos 8 2

~ )

COS

COS Hpp

'9/
)

1

l

COS 8 1.0 I

cos8 1~

FIG. 14. The analyzing power 3 (cosO'&, cosO 2) in the E i

and E 2 correlation function.
FIG. 16. The analyzing power 3 in the E and Ep correla-

tion function.

g( 0;;Oz) = 1 —g„k„g~/~cosO&cosOz,

T(0&,'Oz) = 1+gw Sag&$&cosO&cosOz,

U(0;;02) = —g„S~cos0& —g&S~cos02

(6.5)

in the same notation as previously. As before, at the tree
level neglecting the o. terms,

I(0;;02;p) =~T(0;;02)[1+A (0;;02)]

with

(6.6)

U(0;;02)
A (0;;0~)=aH

T(0;;02)
(6.7)

and Eq. (6.6) is the desired hadronic-energy correlation
function I(E~E~). Note that A of Eq. (6.3) depends
only on sin0; 2, whereas C of Eq. (6.4) and the following
deAned functions depend only on cosO& 2. In discussing

I(0„0~)=r(1 a~g~A'~co—sO~) . (6.8)

Obviously, these hadronic-energy correlation functions
are extremely simple.

specific hadronic sequential decay modes we often will ex-
plicitly write T(cos0;, cos02), etc.

For the ~+~- mode Figs. 13 and 14 show
T(cos0'&, cos0 2) and the analyzing power
A (cos0'&, cos0'2). As either pion approaches its max-
imum (minimum) energy in the Z rest frame,
A(cosO'„cosO'2)~+aH. Figures 15 and 16 show the
distributions for the ~+p mode. When the pion energy
is maximum (minimum), A (cos0', cos0') ~ + aH. Fig-
ures 17 and 18 for the p+p mode show the eFects of the

factors in T and A. The distributions involving EC "s
P + +are similar to those for the p's. For h~, the a, meson,

since S„=0.0,

1.0
T ( cos 8«~, cos 8&2

~ ) 1.0
T{COS8 1~, COS8 2~)

COS 8 2~

10

COS 8
10

-1.0
-1 0 COS 8~1

-1.0
-1.0 COS 8 1.0

FIG. 15. The T term in the E and Ep correlation function.
FIG. 17. The T term in the Ep& and Ep2 correlation function.

By CI' invariance, I is symmetric in Ep] ~Epp.
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1.0
9%

06o/

A ( cos ep $
cos e 2 )

I /2

2 [Z, (x, ,y~)]
lJ pj

(7.4)

In the case of a parameter which appears quadratically,
so

I(x,y) =Zo(x,y)+aZ, (x,y)+a Z, (x,y), (7.5)

COS

the ideal statistical error is instead given by

1
[Z, (x;,y, ) +4aZ, (x;,y )Zz(x;,yj)

EJ V

1/2
+4a'Z~(x, ,y) ) ] (7.6)

-1.0
-1.0 cos Op~

1.0

FIG. 18. The analyzing power A in the E~& and E~z correla-
tion function.

VII. IDEAL STATISTICAL ERRORS
FOR A 10 -Z -EVENT SAMPLE

%'e consider a 10 -Z -event sample and assure a
Z ~r+r branching ratio of 3.31%. For other choices
any of the ideal statistical errors listed here can be re-
scaled by the relation

T ' 1/2
3.31X10'

XB(Zo r+r )- (7.1)+hereother

We take all ~ into one-charged particle branching ratios
from the tabulation of Hayes and Perl, except for the
branching ratio for 7 ~ a, v with a;" ~m.
which is the "formal average" listed by Gan and Perl in
Ref. 36. For other choices of branching ratios, a simple
rescaling of the o's in the tables can be easily performed.

For clarity, we explained how the o's given in the
tables were determined: Given Nzz events, we want to
know the "ideal statistical error" o., for a least-squares-
fit measurement of the parameter a from the energy-
energy correlation function for the sequential decay

0 +Z +7 i (7.2)

=A+X
1

We distribute the Ã„~ events for this mode ideally over a
two-dimensional ij grid according to the corresponding
theoretical tree-level formula from earlier in this paper,
for example, using

I(x,y) =Zo(x,y)+aZ, (x,y) (7.3)

with the standard model's value for the parameter a.
Then, the "ideal error" in bin ij is

;.=+I(x;,y )

and the "ideal statistical error" in the measurement of a
is o., where

For the case of the single variable distribution I(xH ) the
summation in Eqs. (7.4) and (7.6) is only over i. Since the
distribution giving o.; is assumed ideal, we take an arbi-
trarily large number of bins in the summation in Eq. (7.4)
and (7.6).

To sum over modes, where o. ~ is the error for the Ath
mode, we use cr =[g„(1/o „)]

These procedures, though simple and clear, are ideal.
In assuming an ideal distribution of the N~~ events ac-
'cording to Eq. (7.3) or (7.5) instead of, for example, that
generated by a Monte Carlo program, we do not incorpo-
rate the statistical error from a presumably Poisson dis-
tribution of data in each ij bin. Second, to reduce the er-
rors on the parameter of interest, for instance, a~, we
must sum over several modes. Before doing such a for-
mal average, the Particle Data Group's method is to
first combine the systematic and statistical errors in quad-
rature. Such improvements are indeed desirable to make
and, of course, will have to be incorporated once actual
data is available.

In Table II are tabulated the ideal statistical errors for
measurements of the fundamental parameters aH, and g,
5, and p by the energy-energy correlation functions for
the decay sequence Z ~~+v. with ~+~ A +X and

~B X. These were computed using the tree-level
formulas of the preceding sections. Because of the
sequential factorization property ' of such sequential
decay distributions, we expect corrections only of 0.1%
in size due to electroweak radiative corrections' in
SU(2) X U(l).

These radiative corrections must be included to pre-
cisely measure these fundamental parameters. The mag-
nitudes of the ideal statistical errors should only be
changed in the third significant figure, and so Table II
can be used to assess the importance of measurements of
aH and of g, 5, and p by the diff'erent sequential decay
modes, whether separately, or in combinati. on.

In the table, a;" denotes the expectation for
v assuming that it is dominated by the a,

resonance, as expected. There are significant di6'erences
between ~ decay experiments which measure this mode
and in the branching ratio they obtain. We refer the
reader to Refs. 36 and 40. The a& is a very broad reso-
nance. The tree-level energy-energy correlation functions
in this paper do not include the efFects due to a finite res-
onance width which must be included for both the p reso-
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TABLE II. Ideal statistical errors for measurements of the fundamental parameters aH, g, 5, and p
by the energy-energy correlation functions for the sequential decay Z ~~+~ with ~+~A X and~B X. Double underlined entries denote the smallest ideal statistical error for a single decay
mode. Square brackets denote percentage errors.

Sequential
decay mode

Number
of events

Ideal statistical error
olg) ~(6) a(p)

p+e
p+(m. ,K)
p p
p+K*

+a ch-

(m.,K)+(m.,K)
(-', K) p-'

(~,K)+K*
(~,K)+a'"
p p

+Kg+-

+ ch-
K*-'K-
K++a&

41 246
26 874
S2 579

3 272
15 657
4 377

17 129
1 066
5 101

16?57
2 085
9 980

65
621

0.0155
0.0101
0.0128
0.0595
0.0348
0.0205
0.0124
0.0511
0.0241
0.0213
0.0684
0.0379
0.4634
0.2083

0.0428
0.0391
O.OS93
0.2969
0.2188

0.0486
0.0374
O.OS 85
0.2937
0.2182

0.0116
0.0186
0.0141
0.0568
0.0261

Sum of
above modes

Sum of modes
without a &"

196808

165 450

0.00532
[3.34%]

0.00558

0.0257
[2.57%]

0.0259

0.0262
[3.49%]

0.0263

0.00764
[1.02%]

0.00799

nance and the a, , as has been done, e.g. , in analysis of po-
larization effects in top quark decays into a real 8 boson.
Since the parameter S„=—0.0105 almost vanishes, the
t~ 8'b analysis indicates that the Gnite-width effect here
is at the few percent level.

%'e emphasize that the present a;" results using an
energy-energy correlation function, assume a two-body ~
decay, and therefore are not directly applicable for that
part of the m ~++ v channel due to an n-body, n )2,
decay. Conversely, as we have emphasized before,
sequential decay correlation functions can be powerfully
used to test resonance dominance hypotheses (cf. issues
raised'in Ref. 41), and to eliminate possible background
efFects.

All sequential decay modes with one-charged-particle ~
decays have been tabulated in Table II except for
a~&"+a&" which for 1486 events has o(aH)=3. 01. A
listing labeled p+e has, of course, summed over" the

combinations p+e, e+p, p+p, and e e . The
separate contributions for the pseudoscalar modes can be
separately obtained by the reader since the branching ra-
tio for r —+m v is (10.8+0.6)% and for r ~K v is
(0. /+0. 2)%.

In Table III the ideal statistical errors for measure-
ments by the harder lepton's energy spectrum are com-
pared with those for measurements from energy-energy
correlation functions for the decay sequence Z ~~+~
with ~+~ 3+X and ~ ~8 X. For the determination
of aH and p there is, respectively, only a 4% and 3% im-
provement. However, for both g and 5 the percentage of
improvement is over 30%%uo, in which case it should be
worthwhile to either directly analyze the energy-energy
correlation function I(E,E, ), or else some other one-
dimensional distribution which contains the same degree
of sensitivity to g and 5 as does the energy-energy corre-
lation I(E,E, ). The necessary starting formulas for

TABLE III. Comparison of standard-model values (Ref. 43) for the Z ~~+~ coupling parameter u~ and for the Michel parame-
ters describing r+ ~p+vv with "ideal statistical errors" for measurements {Ref. 44) by the harder lepton's energy spectrum I(x&)
and by the energy-energy correlation functions for the sequential decay Z —+~+w with w+ ~ A +X and r ~B X.

Quantity
Standard-

model value
Ideal statistical error

From I„,(x) From I(E„,E, )

Percent
better

From "Sum of
Modes" of Table II

Factor
better Measurement

—0.1591
1.0
0.75
0.75

0.0161
0.0632
0.0734
0.0119

0.0155
0.0428
0.0486
0.0116

4%
32%%uo

34%
3%

0.0053
0.026
0.026
0.0076

3.0
2.4
2.8
1.6 0.73+0.07'

'DELCO Collaboration, W. Bacin et al. , Phys. Rev. Lett. 42, 749 (1979); CLEO Collaboration, S. Behrends et al. , Phys. Rev. D 32,
2468 (1985);MAC Collaboration, %'. T. Ford et al. , ibid. 36, 1971 (1987).
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VIII. DETERMINATION OF a&.
COMPARISON OF I(E„,E~ )

WITH v-POLARIZATION TECHNIQUE

The ~-polarization technique for determination of aH
uses a single r decay s energy distribution I(E„)in the
Z rest frame in order to measure g'z aH. For instance,
for r+ —+p, +vv, using Eq. (5.9),

1I(E ) = d(cosO~ )I(E,cosO~ ), (8.1)P P

or Eq. (3.15),

I(E ) = f dE,I(E,E,), (8.2)

we obtain

(8.3)I(E ) =f(x)+gaHg (x),x =E /E, „.
Similarly, for v ~8 v, from Eq. (5.9),

I(E~)=f dE I(E,cosO~) (8.4)

or, from Eq. (6.6),
1

I(E& ) = J d(cosP'„)I(cosO'„, cosO& )—1
(8.5)

the energy distribution of particle B is

I(E& ) = 1 g~ aH t~c—osO& (8.6)

aH from measurements by the energy-energy
by the single-particle energy distribution

Ideal statistical error o.(aH)

studying possible projections and/or projections of mo-
ments of I(E,E, ) and of other energy-energy correla-
tions have been explicitly listed in the preceding sections
of this paper.

Along with the ideal statistical error for the case that
there is a sum over modes as in Table II, we have listed
the "factor of improvement" versus usage of I(xH).
From increased statistics alone, an improvement factor of
2 would be expected so the larger factor indicates that for
e~ the "analyzing power" is greater for modes other
than p+e . This more than statistics improvement is
also clear by the entries for cr(aH) in Table II for the

p, (nK), JM p, (~,K)+p, and (m, K)+(nK) modes.
[For determination of g and 5 it is more appropriate to
compare the result of using a sum over modes with the
ideal statistical error for a measurement by I(E,E, ) in-

stead of by I(xH ). Then the respective improvement fac-
tor is 1.65 for g and 1.87 for 5.j

From the entries in Table II, the "relative sequential
decay analyzing power" of the various modes for aH, g,
5, and p can be easily worked out. These strengths would
be useful in consideration of other applications of sequen-
tial decay methods, but in the present context since the
relative total number of events in the ABth mode cannot
be adjusted, the entries listed in Table II for the "ideal
statistical errors" is what is relevant.

From Table II we see that the p (m, K ) mode has the
smallest ideal statistical errors for aH, and g and 5. The
p+e mode has the smallest o'(p).

TABLE IV. Comparison of ideal statistical errors for
correlation functions I (E&,E& ) with measurements
I (E; ) =I (cos8'}, that is by the ~-polarization method.

Sequential
decay mode From I(E„,E& )

From I(E; ) =I (cosO,- )

i =better, o.(aH ) j =worse, o(aH)

p e
p+(m, K)

p p
+Kg-
+gch—

(a,K}+(m,K)
(-,K) p-

(m, K)+K
(~,K)+a'"

0.015 5
0.010 1

0.012 8
0.059 5
0.034 8

0.020 5
0.012 4
0.051 1

0.024 1

(~K)
p
p
p

(a,K)+
(m, K)+
(-,'K).

0.021 5
0.010 5
0.016 5
0.076 2
0.034 8

0.026 0
0.013 1

0.052 7
0.024 1

p
p

Q ]
ch—

P

ch-
a&

Same
0.0266
0.0190
0.0908
1.3122

Same
0.0289
0.1590
2.2990

p p+K�-

gp+g�c—

~4+ ch—K a&

0.021 3
0.068 4
0.037 9

0.463 4
0.208 3 KQ+

0.029 2
0.082 8
0.037 9

0.644 6
0.208 4

Same
K* 0.1137
g ch —

1.6436

Same
a'" 6.5891

Sum of
above modes 0.005 32 0.006 05

Factor worse
= 1.4

Sum of only
(mK) modes 0.007 36

Factor worse
= 1.38
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IX. DKTKRMINATION OF g, 5, AND p:
COMPARISON OF I(E„,E~ )

WITH r-POI.ARIZATION TKCHNIQUK

The Michel parameters g, 5, and p can be measured by
both techniques from the sequential decay modes

45.93
Tp (E|i, Ee)

[E~ and cos8~ are equivalent, see Eq. (5.1)].
Without real data one does not know whether or not it

is realistic to assume that the Michel parameter g= 1 for
~+—~P—vv and/or that the chiral polarization parame-
ters g, gi„g,g, are all equal to one. However, our ob-

jective in this section is to compare the determination of
a// from the energy correlation function I(E„,E~) with
its determination from the ~-polarization technique
which uses I(E ) or I(E~ ), so we will assume all the g's

are one.
In Table IV the ideal statistical errors for a& from

measurements by I(E„,E~) and by I(E; ) are compared
for the Z ~r+r +(A+—X') sequential decay modes
considered in this paper. This table shows that there is
14% to 38% decrease for the ideal statistical error cr(aH )

in not using the energy correlation function I(E„,E~).
Discussions in the literature of the ~-polarization tech-
nique have emphasized the m energy distribution. From
comparison with Table I, we conclude that is is very im-
portant to analyze how much direct application of the
I(E&,E~) technique in r pair Monte Carlo simulations
will reduce systematic errors such as due to the
p

+—~m —
m background to ~—+—+~—v. Can background

from Bhabha scattering and e+e —+p+p with large
initial- and final-state QED radiation be controlled so
that the Zo~~+r ~(e+vv)(e vv) or (/t vv)(p vv)
modes be used to measure +II? Some combination of
both techniques will probably give the largest statistics
and most reliable measurements.

45.93 .
,

—
B (EP., Ee)

-24%
~~-& 8of

'i
t-12%

-6%

pof ~~ 3%

Ee
[GeV]

0.00,
0.00

I

[GeVJ 45.93

FIG. 20. Contour plot of the 8 (E„,E, ) term, the coefficient
of g, in the E„and E, correlation function I(E,E, ).

Z —+(r+v )~(8+vv)(8 v) and (A+X)(P vv). This
occurs for in Eq. (3.20), f (x) depends on p and in Eq.
(3.21), g(x) depends on 5. The polarization parameter g
appears in I(E,E~ ) in Eqs. (3.17), (3.18), and (5.10), and
in I(E ) in Eq. (8.3).

Table V compares their ideal statistical errors. For
cr(g)and a'(5) the ~ polarization technique is a factor of
about 2.8 worse.

For the p+e mode, for instance, the origin of this
large effect is apparent from Figs. 19—21. The analytic
origin is transparent since

I(E,E, )=To(1+$8+/ C)

=f(x)f(y)+g[f (x)g(y)+g(x)f(y)]

+$2[g(x)g(y)], (9.1)

where, from Eqs. (3.20) and (3.21),

E

[GeV]

45.93
/

/
/

-10%~~

/

-5%

C (Ep, Ee)

Oof0

0.00,
0.00

l

E [GeV] 45.93
/
/-t0%

/

FICz. 19. Contour plot of the To(E,E, } factor in the muon-e
0energy —electron-energy correlation function in the Z rest

frame, I(E„,E, }=(1+$8+/'C), where g is the Michel polar-
ization parameter for r P/ vv. For a pure V —A coupling,
=1.

0.00
0.00 E — [GeV] 45.93

FIG. 21. Contour plot of the C(E„,E, ) term, the coefficient
of g~, in the E„and E, correlation function I(E„,E, ).
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TABLE V. Comparison of ideal statistical errors for the Michel parameters g, 5, and p from mea-

surements by I(E„,E& ) with measurements by I(E„).

Sequential
decay mode

p+e
p+(n, K)
p p
p+K'
p+a Ch—

I(E„,E~ )

o (()
0.0428
0.0391
0.0593
0.2969
0.2188

I(E„)
o(g)

0.1349
0.1671
0.1195
0.4790
0.2190

I(E„,E~ )
o.(5)

0.0486
0.0374
0.0585
0.2937
0.2182

0.1345
0.1667
0.1192
0.4777
0.2184

I(E„,E~ )

~(P)

0.011 6
0.018 6
0.014 1

0.056 8
0.026 1

I(E„-)
0(P)

0.016 1

0.0199
0.014 3
0.057 2
0.026 1

Sum of above
modes

0.0257 0.0733

Factor worse
=2.86

0.0262 0.0731

Factor worse
=2.80

0.007 64 0.008 75

Factor worse
= 1.15

f(y ) = —', ( 1 —y )( 1 —0.525y )( 1+1.52y ),
g(y) = —

—,'(1 —y)(1 —2. 37y )(1+3.37y ),
(9.2)

and the quadratic term g C dominates the ideal statistical
error for cr ( g ) in I(E,E, ). The zeros at
xo=yo=(1/2. 37) in TcC=g(x)g(y) are responsible for
the sign behavior shown in Fig. 18 for C(x,y). After in-
tegrating out the E, energy (i.e., the y dependence), this
term does not contribute to I(E ) since Jdyg(y)=0.

P
[In fact, only the a(y) term in f(y)=a(y)+pb(y),
g(y)=d(y)+5c(y), of Eqs. (3.20) and (3.21) contributes
upon integration of E, from Ei to E~. The c(y) term
upon integration contributes (1 —P) corrections; b (y) and
d (y) both vanish. ]

X. DETERMINATION OF CHIRAL POLARIZATION
PARAMKTKRS g'~ gp, AND f i: COMPARISON

OF I(E„,Eg ) WITH r-POLARIZATION TECHNIQUE

The ~-polarization technique for the mode w+~ A+X
uses the energy distribution I(E„) to determine the

TABLE VI. Comparison of ideal statistical errors for the

chiral polarization parameter g from measurements by

I(E,E~ ) with measurements of g~H by I(E„). From I(E ),

aH must be given to obtain g, whereas I(E,E~) can be used

to independently determine g ga, g~H, and g~aH {see text).

For the standard V —A coupling, g = 1. Square brackets

denote the percentage error.

product g„aH of r coupling parameters. To determine

g~, the value for aH must be assumed. For Tables

VI—VIII we have used sin 0~=0.23 so aH= —0. 1591.
Instead, as discussed in the Introduction I(E~,E+) can

be used to independently determine g„gz, g„aH, and

gzaH, therefore, g„, g~, and aH can be independently

determined from I(E„,E~ ). [The o (g„) values for

I(Ez,E~) in these tables, of course, do depend on the

values sin 0~= —0.23.j
In Table VI as throughout this paper, we have com-

bined the ~~~v and ~~Kv modes. Here if only the
+nv mode—is used the numbers for o(g ) should be

multiplied by 1.03. [For (m. ,K) (m.,K) to get n+m, it.
should be multiplied by 1.06.j

Tables VI and VII show that g and g can be deter-
mined from the energy-energy correlation functions

I(Ez,Ez) to the few percent level. Even if aH were

known, I(E&,E& ) provides a factor of about 3 improve-

ment over the ~-polarization technique.
Table VIII shows that g + can be determined to about

the 20% level.
XI. CONCLUSIONS

(1) The explicit formulas for the energy correlation
functions I(E„,E~ ) at the tree level are extremely simple

TABLE VII. Comparison of ideal statistical errors for the
chiral polarization parameter g from measurements by

I(E~,E&) with measurements of g~aH by I(E~). From I(E~),
aH must be given to obtain g . For the standard V —A cou-

pling, g,= l.

Sequential
(~,K)+B

mode

B particle

p
(m, K)

P

ch-al

I(E„,E~ )

o(g )

0.0363
0.0157
0.0410
0.2086
0.1512

I(E„)
o(g )

0.0660
0.1634
0.0823
0.3312
0.1515

Sequential
+B—

mode

B particle
LM

(m, K)
P

ch-a,

I (Ep, E~ )

o'(Cp)

0.0596
0.0472
0.0517
0.3344
0.2378

I(Ep)
o(gp)

0.1037
0.1816
0.1835
0.5204
0.2382

Sum of above
modes 0.0135

[1.35%]
0.0463

Factor worse
=3.43

Sum of above
modes 0.0297

[2.97%]
0.0757

Factor worse
=2.55
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TABLE VIII. Comparison of ideal statistical errors for the
chiral polarization parameter g ~ from measurements byK
I(E ~,B) with measurements of g ~aH by I(E „). From

I(E „), aH must be given to obtain g „. For the standard

V —A coupling, g „=1.
Sequential
x'+a—

mode

8 particle:
p

(~,E)
P

ch-al

Sum of above
modes

ICE g, Eg)
a(g +1

0.3293
0.2646
0.3734
1.474
1.309

0.178
[17.8%]

«(E~)
o(g g)

0.5707
0.9994
0.7146
4.052
1.310

0.387
Factor worse

=2.18

and easily derived. Since I(E&,E~) depends indepen-
dently on g~gti, g„aH, and gtiaH, the fundamental pa-
rameters g„, g~, and aH can be independently deter-
mined by measurement of I(E~,E& ). In contrast, mea-
surement of I(E„)by the r-polarization technique only
determines g„aH. Because of a factorization property,
radiative corrections to I(E~,E~) are as tractable as for
AL~, however, I(E~,E~) does not require longitudinal
beam polarization. '

(2) Using I(E„,E~) for 10 Z events the ideal statisti-
cal percentage errors in the determination of the Michel
parameters for v —+8—vv are for g, 2.57%; for 5, 3.49%;
and for p, 1.02%. The present world average for p only
excludes more than 47% of a V+ A coupling at the 95%%uo

confidence level.
In the determination of the chiral polarization parame-

ters in ~+~ir~ v, they are for g, 1.35%; for g, 2.97%;
and for g +, 17.8%. These chiral parameters equal the
value "one" in the standard model. Right-handed
currents, only approximate conservation of the leptonic
axial-vector current, etc. , could produce deviations from
one.

(3) The Z ~~+. ~ coupling parameter
aH = —2a, v /(a, +v, ) can also be determined from
I(Ez,Ez). From Table II, the ideal statistical error for
107 Z events is o(aH)=0. 0053, or a percentage error
3.34% for sin 0~=0.23. Usage of the ~-polarization
technique for the (m, E) modes, gives instead
o.(izH)=0. 0074 which is almost 40% worse. It is very
important for specific SLC, or LEP, detectors to study
how much direct application of the I(E~,E~) technique
in ~ pair Monte Carlo simulations can reduce systematic
errors. Some combination of both techniques will prob-
ably yield the largest statistics and most reliable measure-
ment of Q.H.

(4) Explicit formulas for the full sequential decay corre-
lation function

I(E,E„cosg, ) =T(E,E„cosg, )

X [1+3 (E,E„cosg, )]
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computer analysis. He thanks Noel K. Yeh for several
discussions, and thanks the members and visitors in the
theory groups at Brookhaven and Cornell for intellectual
stimulation. This work was partially supported by U.S.
Department of Energy Grant No. DE-FG02-
86ER40291.

APPENDIX A: EXPLICIT EXPRESSIONS
FOR T{E)yE2 z) AND U(Ei E2 z)

FOR @+e MODE

The integral expressions for I (Ei,Ez, cosf) for
Z ~&+~ +(p+vv)(e —vv) are the same as those listed
in Appendix A in Ref. 2. They enable analytic evaluation
in the Z rest frame of the standard decay correlation
function I(E„E2,cosg) under the assumption that the
final muon and electron masses are set equal to zero. The
allowed phase space is divided into the four regions 3, B,
C, and D shown in Fig. 22. These regions are separated
by EI =m, /[2y(1+p)] and the maximum lepton energy
is Ez=m, /[2y(1 —P)] where y =IVI/(2m, ) and P are
the relativistic boost variables connecting a r rest frame
to the Z rest frame. For a Z mass M=91.9 GeV,

z=cos V
Ei EF

A

C

E)
AFixedz=cos V Slice

FICx. 22. An illustration showing a fixed z =costt, z slice of
the available El E2 phase space. For analytic evaluation of the
full sequential decay correlation function I(E„E2z), the phase
space is divided into four regions: A, 8, C, and D.

are given for arbitrary Z mass, and for I (E„,Eh ) for arbi-
trary Michel parameters. These results can therefore be
used for analyzing the decay of a Z' boson and for qq
modes such as tt.

(5) Measurement of the g and the other chiral polariza-
tion parameters g~ will enable precision measurement of
sin 0~ to a 0.3% ideal-statistical-error level from unpo-
larized e+e collisions at the Z . This can be compared
with the 0.13% precision level expected from a later mea-
surement of ALz at LEP I after instrumentation of polar-
ized beams. ' Measurement of charged-particle energy
correlation functions I(E„,E&) for various one-prong r
modes in Z —+~+~ might also be a helpful constraint in
solving the w missing one-prong modes puzzle.

ACKNOWLEDGMENTS
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El =0.0173 GeV and EF=45.9 GeV so the 3, 8, and C
regions are important here for checking the longer and
more complicated expressions for the D region. If m, lM
were significantly larger, these other regions could be of
physical interest.

The following explicit expressions are in terms of the
Z rest frame observables E] =E, the p &+ energy;

I

E2 ——E„the e2 energy; and z =cosi/ where g=g is the
opening angle between the p+ and e momenta. Often,
we use in place of these charged-lepton energies the re-
scaled inverses

(Al)

For the A region, we find

T (Ei,-E2,z)= E—
&EARP y ( —",,

' ——",'(y&+y2)+40yiyz+z[ ——",'+ —', (y&
—yz) —

—,y&y2]+z —'„

+ 3 I )g +
g (y 1 +y2 ) 4y ly2+z[ g g (yl +y2 )+ 12y ly2] z

7T
U —(E„E~z)= E&E2—Py ( —"'—-—'" (y & +y2)+24y &yz+z [——",'+ —", (y 1 +yz ) —Sy,yz]+z —'„

+y 'I —",", +—",'(y, +y, ) —24y, y, +z [64——", (y, +y, )+Sy,y, ]—z' —",,
'

I

+y I
—", ——,'(y, +y~)+z[ ——", +8(y, +y2)]+z —",, I ),

where the power of p is one less in (A3) vs (A2).
For the 8 region, for the Tz term

T~(E„E2,z) = — E,E2py—S(1—p,y2),

(A3)

(A4)

where the polynomial

&(q,p) =a (q —p)+ —(q' —p')+ (q' p')+— (q—' p')+——(q—' —p')
2 3 4 5

with the coefficients

a =2P y ye[2 —y, +z(4 —y, )+2z +y ( —3+y& —2z+z )],
b =2P I

—Sy2+10y, yz+2zy2( —8+5y, ) —8z y2

+y [—4+2y, + 14y 2
—10y, y& +z (

—8+2y, + 10y &
—Sy &y z ) —4z (1+y& ) ]

+y [6—2y, —3y2+2z(2+y2) —z (2 —3yz)]J,
c =2P I 8 —8(y, +yz)+2z(8 —4y&+Sy2 —5y, yz)+Sz (I+3yz)

+y [ —16+8y, +5yz+z( —4+4y, —14y2+9y, y2)+3z (4—5y2)]+y (2—4z —2z )I,
d =2P I8+4y2+8z( —2+y&) —12z (2+yz)+y [—2 —3y2+6z(2 —y&)+3z (2+3y2)]],
e =4P [—2+6z +y (1—3z )] .

For the Uz term, we obtain

U (E„E,z)= -E,E Py S(1——P,y ), —

where the coefficients of the polynomial S(1—p, y2 ) are

a =2P 'y y2[2 —3y, +z(4 —3y, )+2z +y (
—1+z )],

b =2P 'I —Sy~+6y, y2+2zy2( —8+3y, ) —Sz y2

+y [ —4+6y&+12yz —3y&y2+z( —8+6y&+2yz+3y&y2) —2z (2+6y2)]+@ "(2—2z )I,
c =2P 'I 8 —8(y, +y2)+2z(4 —4y, +Syz —3y,y2)+Sz (1+3y2)

+y [ —12+2y& —y2+2z(2 —3yi —3yz)+z (16+3y2)]]
d =4P '[4+2yz —4z(2 —y, ) —6z (2+y2)+y (1+2z —3z )],
e =SP '( —1+3z ) .

(A5)

(A6)

(A7)

(A8)
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The D region is divided into four subregions as explained in Appendix A in Ref. 2: For the 8'subregion,

T- (E&,Ez, z) = — E—&EzPy $(1—P, Y;„(z,y& )),
2

U (E-„Ez,z)= — E—,EzPy S(1—
/3, Y;„(z,y, )),1 2

(A9)

(A 10)

where the coefficients of the polynomials S are, respectively, given in Eqs. (A6) and (A8), and where

Y',„(zy, ) = 1+Pcos(g —0, ), Y;„(zy, ) = 1+Pcos(/+ 0, )

with the angles 0, 2 defined by

c, z=—cos9, z= 1/P(1 —y, z), s, z—= sin8, z=(1 —cos 9, z)'

For the X subregion, for the T~ term

(A 1 1)

(A12)

T~(E, , Ez,z) =E,EzP y ~0( —z —c, )I[—cos(/+8, )]—cos ' . I(cz)+J+IC
szsln

(A13)

where the three functions I, J, and K are given in Appendix 8 in Ref. 2. They depend on the coefIicients

f =12—Sy, —12yz+10y, yz+4z ( —1+yz)+y [—8+2y, +6yz —y, yz+4z (1—yz)],

g =P[ —24+ 16y, + 12y, —10y,y, +z (16—8y, —16y, +10y,y, )+4~'(2 —y, )

+y [10—
2y&

—3yz+2z( —2+yz)+3z (
—2+yz)]I,

h = 8 —Sy, +4yz+z( —32+16y, +16yz —10y,yz)+4z (2—3yz)

+y [—10+8y, —4yz+z(32 —14y, —14yz+9y, yz)+6z (
—1+2yz)]+y (2—4z —2z ),

i =PIS —4yz+Sz(2 —y, )+12z (
—2+yz)+y [ —6+3yz+6z( —2+y, )+9z (2 —yz)]I,

j=2[ —2+6z +y (3—9z )+y (
—1+3z )],

(A14)

k =2/3[ —6+2y, +6yz —3y,yz+y (2 —yz)],
l =24 —Sy, —12yz+6y, yz+12z( —1+yz)+y [—26+Sy, + 1 lyz —6y, yz+12z(1 —y, )]+@ 4,
m =P[ —12+4y&+12z(2 —yz)+y [10—4y&+9z( —2+yz)]I,
n = —12z+y 18z —y 6z .

Similarly, the U~ term is given by

Uz(E&, Ez,z) =[right-hand side (RHS) of Eq. (A13)]

(A15)

(A16)

except the coefticients needed for I, J, and K are

f =P '[l2 —8y, —12yz+6y, yz+4z ( —1+yz)

+y [—14+Sy&+13yz —6y&yz+z (6—5yz)]+y [2—yz+z ( —2+yz)]I,

g = —24+ 16y, +12y, —6y, y, +~ (16—Sy, —16y, +6y, y, )+4Z'(2 —y, )

+y [22—10y
&

—10yz + 3y &y z +z ( —12+6y &
+ 10yz —3y &y z ) +2z (

—5+2yz )]+y (
—2+ 2z ),

h =P[8—Sy, +4yz+z( —32+16y, +16yz —6y, yz)+z (8 —12yz)

+y z[ —6+2y& —yz+z(16 —
6y&

—6yz)+z ( —2+3yz)]I (A17)

i =8—4yz+Sz(2 —y, )+12z ( —2+yz)+y [—10+4yz+4z( —5+2y, )+6z (5 —2yz)]+y "(2+4z —6z ),
j=p[ —4+ 12z +y (4—12z )],
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k = —12+4yi+12y2 —2yiy2+y (10—4yi —9y2+2yiy2),

1 =PI 24 —8y, —
12y2+2y iy2+ 12z (

—1+y2)+ y [—14+4yi +6y2+3z (2 —yz )]J,
m = —12+4y, +12z(2—y2)+y [16—4y, +6z( —5+2y2)]+y ( —4+6z),
n =P( —12z+y 12z) .

For the Y subregion, the Tz term is

T (E„E2,z)=E,Ezpzys mg( —z —ci )I[—cos(/+Hi)] vrO—(z —ci)I(cz)+J'+E' ——p S(yzi I'm«(z~yi))

(A18)

(A19)

U~(E „E2,z) = [RHS of Eq. ( A19)] (A20)

except the coefficients are those of Eqs. (A17) and {A18).
Finally, for the Z subregion of D,

where the new functions J' and K' are also given in Ap-
pendix B in Ref. 2, and where the necessary coefficients
are given above in Eqs. (A14) and (A15). For the Ur
term,

for instance, here El=0.0173 GeV. However, these re-
gions might be of interest, e.g., if there were a second
neutral boson Z' and charged spin- —,

' fermions from a
fourth family. Note that for EI ~

—,'EF, the y boost pa-
rameter between the M rest frame and a spin- —,

' fermion
frame satis6es 1 ~ y ~ —,

' so this is a nonrelativistic regime

[y =M/(2m, )].
In place of Eqs. (3.17) and {3.18), for the A region,

Tz(Ei, Ez,z) = E,E213y—S(y2, I';„(z,yi ))
2

/

with the coefficients of Eq. (A6), and

Uz(E„Ez,z)=[RHS of Eq. (A21)]

(A21)

(A22)

T„(E,E, )= -y P m, [f,(x)f, (y)

+g&g&g, (x)g, (y)], (81)

U„-(E,E, )= y P m, [pig, (x)f (y)

except the coefficients are those of Eq. (A8).
These expressions, which are somewhat lengthy, were

evaluated numerically in order to obtain Figs. 3—8. In
some of the expressions for the D region, in particular
near the "phase-space edge" we found significant cancel-
lations among the terms which required usage of "quad-
precision" variables in the numerical computation.
While this could be avoided by appropriately rewriting
the expressions, in the present form we found that pro-
gramming errors were relatively easy to ferret out by sim-
ple tests. Tests included varying the I,/M ratio while
checking that T ~ 0, that

~
U/T~ ~ 1, and for continuity

between the A, 8, D regions and between the various D
subregions. For some E„E2 points in the D region,
T(E„E2,z) and A(Ei, Ez, z) were also numerically in-
tegrated and found to agree, respectively, with T(E„E2)
and A(E„Ez) for Figs. 1 and 2. If requested for a
reader's research, a down-loaded copy of the numerical
program will be supplied by the author.

From the above expressions, simpler expressions for T
and U can be easily worked out in the extreme relativistic
limit where y =M /(2m, ) is large as was done for
pi@= 180' in Ref. 3.

APPENDIX B: FORMULAS
FOR ENERGY-ENERGY CORRELATION I (E„-,E, )

AND I (Ep, Eg ) IN NONRKLATIVISTIC REGIME

Since the Z mass M is much greater than 2m, the A
and B regions of Fig. 9 are not relevant to Figs. 1 and 2,

+42f, (x)g. (y) l (82)

Since helicity conservation would not be expected to be
a good approximation in the t~ & amplitudes, the o.

1 2

terms in Eq. (3.7) cannot be dropped so one also needs

Sz(E,E, )= y P m, [f (x)f (y)

—kikg, (x)g, (y) l (83)

I(E„,E,3)=oS(E„,E, )+rT(E~,E, )+vU(E, E, ) .

co =(1—P)/x-p P
In Eqs. (81)—(83), letting

=m, /(2yE ) and similarly for co„

2 1 16f, (x) =2P ' —8+6co+ + —p 64 —36co-
y2 9 y'

8 - 2 1—+2P +3'+ CO
3 3 y'

g, (x)=4P [—', —co+ ~25( —16+9co)]/co

~2P (a) ——,
' )/co',

(85)

where the arrowed lines follow for a VV A coupling.
Note that the co's are rescaled inverses of the charged-

and in place of Eq. (3.15), the final-lepton energy correla-
tion function is
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lepton energies.
For the 8 region, since E2 =E, & EI whereas

Et =E &Et (or co, (m, /2@Et) and co )m, l2yEt the
p I e 7 I p

analogous expressions are

S (E-,E, )= 1' p m', [f,(x)f (y) —
KA~g, (x)g(y)],

64

(B7)

Ts(E-,E, ) = y P m, [f,(x)f (y)+g&$2g, (x)g (y)],

U (E,E, ) = y 2p m, [gg, (x)f (y)+gzf, (x)g (y)] .

(B9)

For the D region since Eq. (B4) involves the S term, be-
sides the expressions in the text one needs

I(E,cosOI3 ) = o S(E,cos8is )+rT(E, cos6tt )p p p

+v U(E, cosOIs ),p
(Bl 1)

where besides the just obtained analogues of Eqs. (5.10),

S(E„-,cosog ) = y'p—'m'[f, (x)+gg, (x)$~$~cos8s] .

(B12)

S(E„-,E, ) = 64)"P 'E'„-E,'[f(x)f (y) —kikg(x)g(y)] .

(B10)

As noted in the text, the Ao term in Eq. (3.5) does not
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