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Canonical formalism and the Leibbrandt-Mandelstam prescription d'or noncovariant gauges
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A very simple and elegant approach to the Leibbrandt-Mandelstam regularization is given within
the canonical formalism. For any value of n with no and n different from zero, it consists of intro-
ducing the hyperbolic operator n* Bn B=(n80) —(n.B)' inside the field equations. The Cauchy
problem is solved in the free field theory leading to a propagator regularized by means of the
Leibbrandt-Mandelstam prescription. In the non-Abelian theory, these gauges are now on the same
footing as relativistic gauges but the contribution of ghost loops vanishes.

I. INTRODUCTION

Since the advent of non-Abelian gauge theories, some
special attention has been paid to axial gauges' because of
the possible ghost decoupling. In addition, the light-cone
gauge plays a special role in string theory. In the case of
non-Abelian gauge theories, the ghost decoupling is ob-
tained at the cost of the introduction of an unphysical
pole at n. k =0. This pole was first assumed to be regu-
larized by the principal-value prescription. This regulari-
zation can be justified in the case of n =(1,0,0,0) but the
violation of the Gauss law does not guarantee that such a
gauge really describes the non-Abelian gauge theory. In
contrast with this, Wilson-loop calculations actually
showed the principal-value prescription to be incorrect.
During the last years, a large amount of work " has
been devoted to this question of pole regularization in the
temporal gauge.

In the light-cone gauge the principal-value prescription
is also incorrect. Leibbrandt' and Mandelstam' in-
dependently suggested the following regularization for
the pole:

1 k.n*
)fck nk n*+ie

where n =(1,0,0, 1) and n*=(1,0,0, —1). All the calcu-
lations using this prescription were successful and it has
been claimed that such a regularization could result from
the canonical formalism. ' However, in this approach,
the vector n* is not present in the starting Lagrangian
and only appears, in an artificial way, in the course of the
momentum-space expansion of fields.

In the spacelike axial gauge the principal-value
prescription does not seem to lead to any difhculty, but
the canonical theory is far from being consistent. ' There
are only physical degrees of freedom but the metric is not
positive definite. Attempts' to remedy this situation
have only been partially successful.

A year ago, Leibbrandt' proposed to use the regulari-
zation (1) for all values of n, the dual vector n * depend-
ing on the value of n . He computed the gluon self-
energy using this prescription and got encouraging re-
sults. Moreover, the regularization (1) also implies time

II. THK FREE FIELD THEORY

A. Canonical quantization

Let us start with the Lagrangian

'F F" +Sn* t—)n —~ A ——'aS
4 pv

where

F„=B„A (3)

S is a Lagrange multiplier, the so-called Nakanishi-
Lautrup field ' and a a parameter which, in the usual axi-
al gauges, will be set equal to zero. The vectors n and n *

are, respectively,

factorization in the Wilson loop. ' Similar proposals
have also been made by other authors. ' *

The aim of this paper is to present, within a strictly
canonical framework, a formulation of the axial gauges
automatically giving rise to the Leibbrandt-Mandelstam
prescription for any value of n . This is done by rewrit-
ing the field equations in terms of the operator n*.Bn 8
in such a way that the latter takes the form of a hyperbol-
ic second-order di6'erential operator. This condition is
imposed in order to solve unambiguously the Cauchy
problem for the commutation relations. The causal prop-
agator is then uniquely defined. The choice
n =( non), n*=( no~ )nwith no and n%0 is particular-
ly suited for time evolution and leads to
n' Bn B=(noBO) —(n.B) . This operator is not very
di6'erent from the d'Alembert operator and part of our
discussion actually consists of translating properties of
the solutions of S =6 in terms of n * Bn BS=G.

In Sec. II the relevant aspects of free field theory are
developed. In Sec. III the non-Abelian theory is dis-
cussed. Since the theory actually consists of replacing
the operator 8 in the covariant gauge-fixing term by
n* Bn, a .ghost term is present in the Lagrangian. The
ghost propagator is well defined and it is easy to show
that any ghost loop vanishes. Section IV involves some
remarks and conclusions. The Appendix summarizes the
properties of the various special functions which are in-
troduced in Sec. II.
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8"I„—n * Bn S =0 .

n *.Bn ~ A =aS .

(4)

After some elementary algebra, they may be shown to
lead to

ri * Bn-BS =0,
n* an aa A=[aG —n'(n* 8)']',
GA =8 A+n*-Bn S .

(7)

(8)

In the following, the operator anal n(n—*.B) will often
be denoted by K.

The canonical equal-time commutation relations are

n =(no, n), n'=(no, —n)

and it is crucial for our discussion that no and n be
different from zero. There is no need to distinguish be-
tween the different values of n . It is clear that the La-
grangian (2) involves four independent fields, Sno being
the variable canonically conjugate to A o.

The field equations are

lno
D„(x)= f d k 8(ko)5(n' kn k)

(2m )'
—ik.x ik x)

is introduced. It corresponds for the operator n * Bn 8 to
the usual D function for the d'Alembert operator and
satisfies

n * Bn.BD„=O

as well as

(13)

operator n *.Bn 8 is not very different from the
d'Alembert operator . In momentum space, one indeed
deals with noko —(n k) instead of ko —

~k~ . The solu-
tions corresponding to n* Bn 8 may, therefore, be ob-
tained by inspection from those corresponding to the
d'Alembert operator. Details are given in the Appendix
where the formally covariant odd special function

D„(x)
no

defined by

[A„(x),A, (y)] =[n."(x),~'(y)]„=0, (9a)

[A„(x),m (y)], =i5„5' '(I y),—
D„(0,x)=0, (BOD„)(0,x)= —5' '(I) .

The causal Green's function

(14)

where

m'=Snono =Sno

7T =I' +Sn n0

(10)

d4k —ik x

DF,.=
(2m) n* kn k+i.E

satisfying

(15)

The reader who is not interested by the details of the for-
malism may directly switch to Sec. II E.

B. Solution of the Cauchy problem

The erst step in a free field theory consists in solving
the Cauchy problem associated with Eqs. (6)—(8). The

I

n* i3n BDF.„(x)=5' '(I)

is also needed.
With the help of these functions as well as of those, the

familiar D and DF, corresponding to the d'Alembert
operator, it is easy to write the solution of the Cauchy
problem associated with Eqs. (6)—(8). One gets

S(x)=fd'y[&~„(x —y)S(y) D„(x —y)BP'—(y)],
(B.A )(x)=f d'y[cP(D (x —y)(B A)(y) —D„(x —y)(BO& A)(y)]

+ f d z DF „(x—z)(ES)(z)—f d y d z[dg)„(x y)Di;„(y z) D„(x ——y)BDDF „—(y ——z)](KS)(z),

A (x)=f d y[Bg)(x —y)A (y) D(x —y)BOA (—y)]+ f d zD~(x —z)V (z)

—f d y d z[&+(x y)DF(y z) D(x y—)DF(y —z—)]V—„(—z),

(17)

(18)

(19)

where

V.=a.O-W+n. n .aS

and yo is completely arbitrary.

C. Commutation relations for any time

(20)
[A„(x),S(x')]= B„D„(x—x') .

n,' (21)

In the same way, to get [A„(x),B A (x')], one first
computes the equal-time commutators

[A (x),a A (y)]„
Using Eq. (17) as well as equal-time commutation rela-

tions between A„and S and between A„and BOS, it is
easy to get

+~n~ 5I '(I —y),
no no

L j

(22)
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[Ak(x), B A(y)]

[A, (x),a,a A(y)]. =,

in
5' '(x —y), (23) FF(x —x '

) = f d z D~(x ' z—)E„(x—z)

in 0 d k e(k() )5'(n kn * k )

(2m) k +is
in. B 5()(x—y) —

3
n a5( )(x—y),

no no

—ik (x —x')Xe (33)

where 5' is the derivative of the 6 function. They satisfy

(24)

[Ak(x), B B.A (y)] = + ~n~ ()&5' '(x —y)
no no

+ i()k 5( '(x —y)

ink
2 .

n B5' '(x —y) .
no

(25)

The above commutator will be expressed in terms of the
function

FD =D„, Fz =E„, n * Bn BF~ =0,
n* (3n dFz=FD

as we11 as

FD(O, x)=0, F~(O, x)=0 .

However,

no d 3k ik.x
()0FD(O, x) =

(2vr) (n.k) —
~k~ n 0+i e

=(~ 5'")(x),

(34)

(36)
E„(x—x') =f d z DF „(x' z)D„(x——z)

lno f d k e(k() )5'(n kn * k )
(2m. )

—ik (x —x')Xe

which satisfies

no2

5) '(k)=
(n k) —n0(k~ +i@

In the same way,

(37)

where the operator hj ' is de6ned, in momentum space,
by

BDE„(x)~„0=0 for O~p ~2, (27) a~, (o,x)=, (a 5"))(x) .1

no
(38)

I(. ()DE„(x) i ()
=

IC B()E„(x) i ()
=

+n 5' '(x)
no

2n
n 8' '(x) .

no

(28)

(29)

Straightforward manipulations introducing Eqs.
(31)—(38) into Eq. (19) lead to

[A„(x), A (x')]= ig„,D (x —x—')

Using Eq. (18) as well as Eqs. (21)—(29), one gets, after
some algebra,

[A (x) 8 A(x')]= — 8 E (x —x')iK
p n

i (n„B +()„n )+ "," n* aFD(x —x')
no

a a
+ia " E„(x—x')

no

in„
2

n* BD„(x —x') .
no

(30)
2—i",(n* a)'a„ag,'(x —x ),

no
(39)

One is now in position to compute [ A„(x), A (x')] for
any time. One uses

where the new functions FD and FF are, respectively,

iKB„B
[A (x), V (z)]= E„(x—z)

no

+i (n„B +n, ()„) D„(x —z)
n

no

as well as the new functions

FD(x —x') = f d z D„(x'—z)D„(x —z)

in0 d k e(k0)5(n kn* k)

(2m ) k +ie
—ik (x —x')Xe

(31)

(32)

FD(x)=FD(x)+(b) 'D)(x), (40)

FF(x)=FF(x)+ (b) D)(x) .
no

(41)

Their properties are given in the Appendix.
It should be noted here that the regularization

1/(k2+ie) of the pole at k =0 in the definition of FD
and Fz is obtained as a result of using the causal Green's
function in writing the particular solution of F =G.
Had one chosen another solution a different regulariza-
tion would have been obtained. This is, therefore, just a
matter of convention and has no deep meaning here. An
expression for FD(x) which is independent of this choice
is given by Eq. (A27) of the Appendix.
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D. Momentum-space operators

Let us consider the Fourier expansion

A„(x)=(2m) jd k A„(k)e

X [a„(k)e '" "+b (k)e'"']

(42)

(43)

with

a„(k)=A„(k), b„(k)=A„(—k) .

The operators a„(k) and b„(k) are interpreted, respec-
tively, as linear combinations of creation and annihilation
operators. The explicit form of the linear combinations is
not obvious to write down. Since it is not needed here, it
will be left for another publication. Hermiticity of the
Geld imposes a ~ =b . The commutation relations
satisfied by the operators a„(k) and b„(k) are

[a„(k),a„(k')]=[b„(k),b (k')] =0,

&(ko)[a (k), b, (k')]= —g„5(k')+(n„k +n k„)n*k, +5(n kn' k) 5(k )

n*.kn -k —ie
—ak k 5'(n kn* k)

+n (n*k)k k
5'(n kn' k) 5(k )

k +ie (n* kn k ie)—
(46)

E. The propagator

The propagator is defined by

D„( )x=(OiT[A„( )xA (0)]iO),
where T is the chronological product. It can be obtained
from Eqs. (42)—(46) using careful manipulations in the
framework of distribution theory. However, here we
have

g" d"d n "n — — D z(x)
(n *.B)2

where now

part + z„, is fixed by the requirement of
Becchi-Rouet-Stora (BRS) invariance, i.e., invariance un-
der the transformations

5A„=(D„ri) M, , 5S =0,
(52)

5' =gfp rfri~5A, , 5$ = —S 5A, ,
=i5"5' '(x), a&0, (48)

as can be checked from equal-time commutation relations
and field equations. The propagator may be obtained
directly by inverting the operator of the left-hand side of
Eq. (48) using the causality requirement. It should be
noted that the operator which must be inverted is
n .Bn.B rather than n.B. There is no ambiguity here in
contrast with the pole indeterminacy in the usual axial
gauge. In momentum space, the propagator is

l n„k, +n k„
k +i@ " n-kn'-k+ie

ak n(n' k—)
(n kn* k+ie)

where the +i@arises, as usual, from causality. For a =0,
Eq. (49) is the axial gauge propagator with the
Leibbrandt-Mandelstam pole prescription.

III. THE NQN-ABEI. IAN THEORY

In non-Abelian theory, the Lagrangian becomes

'F g" n*.BS n. A ——'a—S S"+5-
@ cx N 2 A ghost &

where ri is the ghost, g is the antighost, D„ the covariant
derivative, and 5A, a Grassmann number. It reads

X „„,=n*.g' (n Dri) (53)

Ghosts are, therefore, a priori present in the formulation
with a ghost-ghost-gluon vertex in„n *.df—& and a
ghost propagator I/(n* kn k+ie)-

The ghost contribution to a loop with n-external
Yang-Mills legs is proportional to

n nI„= d klan
; —( n'-k, n k, +i@

If one makes the substitution

where k, =k+Q;, Q, =O, Q, =gj,qj, qJ being the
four-momentum of the jth Yang-Mills particle inserted in
the loop. For the loop with two legs, for instance,

n*.k n ' k+q
n 'kn'k+ie n '(k +q)n (k +q)+ie
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n*.k n' (k+q)
n kn*.k+ie n* (k+q)n. (k+q)+is

1 n* k n* (k+q)
n q n' kn k+ie n' (k+q)n (k+q)+is

n*.q 1 1+lE' n.q n*.kn k+ie n* (k+q)n. (k+q)+is
(56)

the theory of distributions tells that the last term does not
contribute' in the limit a~0 in contrast with other regu-
larizations. The introduction of Eq. (56) into I2 and the
change of variables from k to k'= k +q in the second in-
tegral shows that I2 vanishes.

Such a proof can easily be extended to n insertions and
constitutes a rigorous version of the usual proof of ghost
loop vanishing in axial gauges. It must be stressed that
the vanishing of I„ is a consequence of the disappearance
of the last term of Eq. (56) for @~0and does not hold for
an arbitrary regularization. The vanishing of I„ is the
main advantage of the Leibbrandt-Mandelstam regulari-
zation.

IV. THK PLANAR GAUGE

+ S HS + Clg n Dri
1 1

2n n
(57)

Quantization of a Lagrangian with second-order deriva-
tives is not familiar. It can be carried out by following
the Ostrogradski procedure which essentially amounts to
introduce an auxiliary field T=BDS. (Internal-symmetry
indices will be dropped in the remainder of this section. )

Such a choice which is not even formally covariant is far
from being elegant. However, it has the advantage of
leading to the same result as the first-order Lagrangian
differing from (57) by a four-divergence. The n* vector is
not introduced inside the Lagrangian and a strict applica-
tion of the canonical formalism —i.e. , (a) solve the Cau-
chy problem for commutators with equal-time commuta-
tors as initial data, (b) define the vacuum as a state an-
nihilated by annihilation operators, (c) define the propa-
gator as the vacuum expectation value of the time-
ordered product of fields —will lead to the principal-
value prescription for the pole in the propagator.

Instead of setting T=BQS, let us introduce as many
auxiliary fields as needed in order to satisfy BRS invari-
ance and formal covariance as well as to introduce the n *

vector. The procedure amounts to setting

S=n* BS', g=n*.Bg' (58)

Calculations with the Leibbrandt-Mandelstam
prescription were also carried out in the case of the pla-
nar gauge. In this particular case, the application of the
formalism developed here is far from obvious and needs a
deeper understanding of the structure of the Lagrangian
in this gauge.

The main difhculties of the planar gauge come from the
fact that the requirement of BRS invariance in its usual
formulation leads to second-order derivatives in the La-
grangian which reads

'F g" ———n A ClS
1

4 p e CX

n

+ n" dg'nDq d„,u—d"S —un .BS'

—8 gB"u n*—Bg'u .P (59)

The new auxiliary fields S', g', u, and u transform under a
BRS transformation as

5S'=0, 5g'= —S'5l, , 5u = —u5A, , 5u =0 . (60)

In the free field case, the field equations in the gluon sec-
tor are

na"F„— n .Os' =o,
n

n' B(n A —
—,'S+un )=0,

—,
' n *-BS'+Hu =0,
GS —n BS'=0,

from which one obtains

(61)

(6&)

(63)

(64)

n" Bn BS.'=0,
n *.an aa. A =0,

A =8 0 A +n*.Bn S',

(65)

(66)

(67)

which should be compared with Eqs. (6)—(8). They show
that the fields S and u, while having their own dynamics,
are really auxiliary fields. Indeed, they do not occur in
couplings and they do not contribute to the solution of
A„ in the free field case.

By following the same methods as in the previous sec-
tions, one easily gets the propagator

k„n +n„k
k +is " n-kn*. k+ie

by defining it either as the time-ordered product of free
fields or as the causal Green's function. In the latter
case, the Leibbrandt-Mandelstam prescription comes out
because the fundamental operator in the theory is
n* Bn.B instead of the n. B operator in usual formula-
tions of axial or planar gauges.

The ghost loop vanishing holds also here because the
ghost term in (59) has essentially the same structure as in
(53).

V. REMARKS AND CONCLUSIONS

Let us first remark that the Lagrangian (50) involves
exactly the same number of degrees of freedom as the rel-

I

and inserting these equations into the Lagrangian which
finally reads

,'F —F—" n—~ An* BS'+ Sn .BS'1, , 1
4 "~ n' 2n'
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ativistic gauges. It may, therefore, be studied by the
same quantization methods as those used in the relativis-
tic gauges, i.e., BRS quantization. This is in contrast
with the usual realization of axial gauges through the
gauge-fixing term Sn ~ 3, which cannot be treated by BRS
methods since it involves only three degrees of freedom.
In such a case, one has to proceed to a quantization "in
the manner of Dirac, " i.e., to restrict physical states by
imposing that the Gauss law be verified for such states.
In both cases, unphysical states are involved. The struc-
ture of the Fock space in the free field theory as well as
the discussion of Poincare covariance in the physical sub-
space are left for another publication.

Here, physical states are cohomology classes of the
BRS operator as in relativistic gauges. The main
difference with relativistic gauges is the vanishing of
ghost loops, a property which is usually assumed in axial
gauges, although not always true. ' lt strongly depends
on the regularization and, in particular, on the oc-
currence or not of the last term in decomposition of the
type (56). This last term can also give rise to singulari-
ties in gluon loop contribution.

The second remark concerns the question "why must
no and n be kept different from zeros" The answer is
simply that, if no =0 in the starting Lagrangian, ~ =0 is
a constraint and the theory reduces to the ill-defined
spacelike axial gauge. ' If a=0, the theory reduces to
the usual temporal gauge with the principal-value
prescription. Let us note that the limits no~0 or n~0
can be taken at the end of the calculations. For n —+0,
what is obtained is not the pure temporal gauge but the
static temporal gauge BoAo=0 which has some advan-
tages in the case of finite-temperature problems. Of
course, other values of n * can be used provided n *-Bn.8
remains a hyperbolic operator. The choice n*=(no, —n)
is particularly well suited for equal-time quantization but
the final answer is given in a formally covariant way, in-
dependently of any choice for n or n *.

For instance, the choice of Huffel, Landshoff; and Tay-
lor' n =(1,0, 0,0), n*=(0, 1,0, 0) can be recovered in our
formalism by setting1, , 1xo= —(xo xt)» xt= —(xo+xi)2 2

and carrying out the equal-time quantization in the
primed coordinate frame. Various other choices are dis-
cussed in Ref. 20.

One could raise the objection that in our approach the
gauge condition is, for a =0, n' Bn. A =0 rather than
n A =0. However, for a =0, the propagator (49)
satisfies n "D„=O and the solution of n *-Bn 3 =0
which vanishes at infinity is n. A =0. Therefore, with
this familiar additional constraint, the gauge described
here corresponds to the usual axial gauge.

As a last comment, one should note that the
Leibbrandt-Mandelstam prescription is limited to the La-
grangian described here [up to a gauge parameter in the
planar gauge fixing (a /2n )Sn *.BS']. Indeed, if one tries'
to be more general and replaces the ak term by an arbi-
trary function 3 (k) in the propagator (49) and inverts it
by imposing locality of the Lagrangian, there are only

two solutions A(k)=ak and A(k)=an (n' k), which
are the cases discussed here.

The conclusion of this paper is very short. The formal-
ism which is built up here sets the Leibbrandt-
Mandelstam prescription for axial gauges on exactly the
same footing as relativistic gauges but with vanishing
ghost loops. It cures all the previous difhculties encoun-
tered with axial gauges which are not on the same degree
of rigor as relativistic gauges.

APPENDIX: SPECIAL FUNCTIONS
IN THE LEIBBRANDT-MANDELSTAM

REGULARIZED AXIAL GAUGES

1. Usual special functions

The special functions of interest in free covariant field
theory are

b, (x;m )= Jd k e(ko)6(k —m )e(2'�)'
= b, '+ '(x; m )+5' '(x; m ), (Al)

where

b' —'(x;m )=+
(2n. )

X jd k g(+k )g(k~ —m2)e (A2)

are, respectively, positive- and negative-frequency ele-
mentary solutions of the Klein-Gordon equation

( +m )b, ' —'(x;m )=0 .

The function b, (x;m ) is odd and satisfies

a(o, x;m )=0, a a(o, x;m )= —S'3'(x).

(A3)

(A4)

4
d4k 2'

2(2m) k —m +ie (A5)

All these functions have a well-defined limit for m ~0,
which is usually denoted by the corresponding D symbol.

2. The h, „special functions

In some of the equations of this paper, the d'Alembert
operator is replaced by n dn. B. It is interesting to keep
a parameter m, although it cannot be interpreted as a
square mass. In the same way as above, one defines

~no
b, „(x;m )= Jd k e(ko)(2~)'

X5(n kn* k —m )e. (A6)

as well as the corresponding b, '„+'(x;m ) and b,F"—„'(x;m )—
by replacing everywhere k by n kn * k.

We still have

6„(O,x;m )=0, Boh„(O,x;m )= —5' '(x)

as well as

(A7)

The propagator is given by

id~(x;m )=8(xo)b, '+'(x;m ) —8( —xo)b, ' '(x;m )
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(n' Bn ()+m )6(„+—'(x;mz)=0,

( n * (3n. ()+m )h~ „(x;m ) =5' '( x) . (A9) Fz(o, x;m )=0 .

One can easily compute, at least formally,

(A8) It is again an odd function, so that

(A20)

3. The E„special function

When one computes

f d z bz„(x' —z)A„(x —z),
one gets the formal result

& n 2 &(k )e
—ik (x x )

d k 5(n kn* .k —m +ie)
(2m. ) k 'nk 'n m + l E

which is ill defined. The correct definition is

np
2 d3k elk'x

ag, (O, x;m') =
(2m) (n.k) +m Ikl n()+ie

(A21)

which one formally ~rites as

a~ (O, x;m2)=(a+m ) '5' '(x), (A22)

where the operator (b,i+m )
' is symmetric and is

represented in momentum space by

lnp
E (x —x'm )= d k e(k )e

(2m )

n 2

(b,i+m ) '(k)=
(n.k) +m —noIkI +ie (A23)

X5'(n kn* k —m +ie) .

(A 10)

In the commutator, the function F& is replaced by the
function

It obviously satisfies

(n.Bn' ()+m )E„(x;m )=h„(x;m ),
E„(x;m')=—,&„(x;m') .2 a

m

Since E„ is still odd,

E„(o,x;m )=0

while

()OE„(o,x;m )=0

is a consequence of (A7) and (A12).
The corresponding EF „satisfies

(n ()n* ()+m )EF „(x)=DF„(x)
and is given by

ln0 lk x
EF„(x)= d k, 2(2m) (n kn' k —m +i.e)

(A 1 1)

(A12)

(A13)

(A14)

(A15)

(A16)

FI((x;m )=Fz(x;m )+(b.i+m ) 'D(x) .

Its representation by Fourier integral is

ln0
Fz(x)= d k e '" "e(ko)

(2')

X 5(n kn* k —m )

k +lE

5(k )

n* kn-k —m —le

Using

—1 15(x)=
2l 7T X + l E

one can write

npF~(x)= d k e '" "e(ko)
(2m. )

(A24)

(A25)

(A26)

The corresponding E (x;m ) is met in relativistic gauges
of the free Maxwell theory.

1 1

k +is n*.kn k —m +i@

4. The F& and F& speciaL functions

The F& special function is defined by

F(,(x —x', m )= J d z DF(x' z)b, „(x—z;m )—

ln0 —ik.(x —x')
d k e(ko)

(2~) k +le
X5(n kn* k —m +ie) .

k —ie n*.kn k —m —ie

CIFz =b.„, ( n * t3n () +m )F(,
= n 0 b, ,

a~', (o,x) =o .
(A28)

(A27)

where now the +ie are fixed while in (A25) they could be
interchanged. It satisfies

It obviously satisfies

UF~(x;m )=b,„(x;m ),
(n' Bn (3+m )F~(x;m )=0 .

(A17)

(A18)

(A19)

The corresponding Fz F is

ln0 —ik.x
F(, F(x)= d k

(2m) (k +ie)(n* kn k —m +ie)
(A29)
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It satisfies

OF& F = b,F „, (n * tjn t)+ m )Ft, F = n o b.F .

5. The FE and FE special functions

The function I'E is defined by

FF(x —x'; m ) = f d z D~(x' z)E„—(x —y; m )

l7t —ik (x —x')
0 d4k e

(2~)' k +re

(A30)

The function

Fz(x;m )=Fz(x;m )+ (6~+m ) D(x)1

Pf 0

satisfies

a~'(O, x;m')=0.
Its properties are

lnoF' = d ke ' "e(ko)
(2~)

(A36)

(A37)

Xe(ko)5'(n kn* k —m ) .

(A31)

5'(n kn' k —m )X
k +is

It satisfies

FF(x —x';m )=E„(x—x', m ), (A32)

5(k )

(n kn* k —m —ie)
(A38)

(n* dn t)+. m )FE(x —x';m )=Ft,(x —x';m ), (A33)
FF' =E„, (n * t)n c)+m )Fz =FD (A39)

2= a
FE(x 'm ) = Fa(x 'm )

8vl
(A34)

The properties of Fz(O, x;m ) and t)OFz(O, x;m ) are easi-
ly obtained from those of Fa(O, x;m ) using Eq. (A32).
One gets

The corresponding IF F is

Eno
—ik.x

FF F(x)= d k
(2~) (k +ie)(n* kn k —m2+ie)2

(A40)

Fz(O, x;m )=0,

c)OF@(O,x;m )= (b,t+m ) 5' '(x) .2=1
no

(A35)

It satisfies

OFF F(x)=EF„(x), (n* dn t)+m )FF F=F't„F .

(A41)
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