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Radiative corrections and renormalization at finite temperature: A real-time approach
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We analyze the one-loop radiative corrections to finite-temperature decay and scattering rates, us-

ing techniques based on the Niemi-SemenoA time-path formulation of finite-temperature field

theory. Previous work is examined in the context of our general framework. We find that the
finite-temperature part of the self-energy corrections cannot be absorbed into mass and wave-
function renormalization counterterms and argue that finite-temperature renormalization is not a
meaningful concept. We give an explicit algorithm for the calculation of the finite-temperature
self-energy corrections and discuss applications in cosmology and astrophysics.

I. INTRODUCTION

Quantum field theory at finite temperature and density
has become an important tool in the study of elementary
particles in hot and/or dense environments, such as the
early Universe, neutron stars, and heavy-ion collisions. A
comprehensive review of the subject, in particular of the
different approaches to finite-temperature field theory-
the older Euclidean (imaginary-time) Matsubara formal-
ism, the more recent complex-time-path method by
Niemi and Semenoff, and the operator-based thermo field
dynamics of Umezawa and co-workers. An extensive bi-
bliography can be found in Ref. 1.

The time-path method by Niemi and Semenoff offers
certain advantages. Starting from a functional integral in
the complex time plane one arrives at a perturbation
theory for Green s functions in Minkowski space, using
Feynman rules and diagrams very much like the conven-
tional zero-temperature formalism. The characteristic
feature of this real-time approach (and thermo field dy-
namics) is the doubling of the degrees of freedom: that is,
to each physical field a conjugate ghost field has to be in-
troduced. Consequently the propagator assumes a 2X2
matrix structure and for each physical vertex there exists
now a complex-conjugate ghost counterpart. This dou-
bling ensures the cancellation of ill-defined distributions
(pinch singularities) arising from self-energy insertions on
internal lines in multiloop diagrams, but makes perturba-
tive calculations very cumbersome.

For many practical calculations at the one-loop level
an earlier version of the real-time formalism, which in-
volves only the physical fields, is used instead; this as-
sumes of course that the full matrix structure of the
theory is necessary only in higher orders in perturbation
theory. In particular, self-energy corrections on external
fermion lines are treated as at zero temperature and ab-
sorbed into a temperature-dependent mass shift and a
finite-temperature wave-function renormalization con-
stant, obtained from the interacting finite-temperature
fermion propagator (inverse Dirac operator)

i $(p) =
P —m X~(p)+i e—

where X~ is the temperature-dependent part of the fer-
mion self-energy: X=X +X~. However, the lack of
Lorentz invariance at finite temperature obscures the
identification of the renormalization constants from (l)
and leads to such unusual features as momentum-
dependent counterterms, a finite-temperature Dirac equa-
tion, and finite-temperature spinors. ' In Ref. 5 we
have already pointed out some of the problems arising
from this approach.

The problem of absorbing self-energy corrections into
suitable renormalization factors has also been studied in
the full matrix formalism. ' However, the matrix struc-
ture of the theory together with the lack of Lorentz in-
variance leads to considerable complications and makes
the results unsuitable for practical applications.

In this paper we will address these problems and
present a comprehensive analysis of finite-temperature
decay rates with radiative one-loop QED corrections, us-

ing techniques based on the Niemi-Semenoff formalism.
Our approach is based on the method of calculating de-
cay rates from the imaginary part of the self-energy II of
the decaying particle. At T =0 this is completely
equivalent to the standard approach of integrating
squares of transition matrix elements over the available
phase space. At TAO the rates derived from H are a
nontrivial combination of the partial decay and inverse
decay processes in the heat bath and are interpreted as
the physical rate at which a nonequilibrium distribution
of unstable particles approaches thermal equilibrium with
its surroundings. For definiteness and simplicity we ex-
amine the decay of a scalar (Higgs) boson into two fer-
mions: H —+e+e . Although currently of no physical
interest, this system has the advantage of being computa-
tionally rather simple and has already been treated exten-
sively in the literature. ' ' The techniques and results,
however, are quite general and can be applied to physi-
cally more important reactions.

Our results can be summarized as follows. We find
that, at the one-loop level, the ghost vertices and propa-
gators do not give finite contributions to the decay rate.
They are, however, necessary to cancel the pinch singu-
larities arising from the self-energy insertion diagrams.
For the radiative corrections and their interpretation in
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terms of renormalization constants we find that the ver-
tex correction and the photon emission and absorption
contributions are identical to previous results. The fer-
mion self-energy insertion, however, turns out to be prob-
lematic. If we follow the generally accepted philosophy
for renormalizable field theories that renormalization
counterterms should be of the same form as the corre-
sponding terms in the bare Lagrangian, then the
(ultraviolet-finite) temperature-dependent part of the
self-energy contribution does not admit an interpretation
in terms of mass and wave-function renormalization
counterterms, due to the lack of Lorentz invariance. For
this case we give a general algorithm how to compute the
self-energy contribution for a general decay process. For
the special case of two-body decay, viz. , Higgs-boson de-
cay, we are able to define operational analogs of on-shell
renormalization counterterms, but there are still
significant differences to the familiar zero-temperature
procedure. We conclude that finite-temperature renor-
malization is not a useful concept for decay and scatter-
ing rate calculations. Previous work is discussed in our
more general framework. Our results have immediate
applications in cosmology, in particular for radiatively
corrected neutron P decay which determines the abun-
dances of light elements in primordial nucleosynthesis.

The paper is organized as follows. In Sec. II we give a
brief, self-contained summary of the techniques and re-
sults that we are going to use. In particular, we will dis-
cuss the connection between finite-temperature decay
rates and the imaginary part of the self-energy, and sum-
marize the real-time Feynman and Cutkosky rules needed
to calculate the latter. In Sec. III we apply these tech-
niques and calculate the finite-temperature decay rate for
a scalar particle decaying into two fermions, both at the
tree level and with radiative corrections. These results
are used to derive a general framework for finite-
temperature decay rates at the one-loop level, with spe-
cial emphasis on how to absorb fermion self-energy
corrections into appropriate mass and wave-function re-
normalization counterterms. In Sec. IV we extend these
results to general decay processes and discuss the possible
consequences of our results for reactions of cosmological
and astrophysical interest, in particular for neutron P de-
cay at finite temperature. Section V contains a summary
of our results and some of the calculational details can be
found in the Appendix.

II. DECAY RATES AT FIMTE TEMPERATURE

We will begin our discussion by giving a brief summary
of the connection between finite-temperature decay rates
and self-energies. We will also give a brief review of the
Niemi-Semeno8' time-path formalism, in particular the
Feynman and Cutkosky rules needed for perturbative cal-
culations.

The conventional method for the perturbative calcula-
tion of the decay rate I of a particle in vacuum field
theory can be summarized as follows. '

Consider a particle with mass m and four-momentum
p =(co,p), decaying into n different particles with four-
momenta k; =(co;,k,. ), i = I, . . . , n The decay .rate I (co)

is then given by

d k,r(
2co1 2m

d k

2'„(2')

X(2vr) 5 p —g k,

ImH and I are related to the optical theorem and we find

ImII(co) = —col (co) . (2)

The imaginary part of the self-energy graph, or any Feyn-
man graph, can be calculated with the standard Cutkosky
or cutting rules"' which we will discuss later in a more
general form.

At zero temperature these two approaches are com-
pletely equivalent. At finite temperature, however, this
connection is more involved.

It was pointed out by Weldon that (2) has to be
modified at finite temperature. Using the Euclidean
(imaginary-time) Matsubara formalism he calculated, to
lowest order, the imaginary part of the self-energy for a
boson and a fermion undergoing two-body decay in a
heat bath. The results can be summarized as follows.

For a boson field 4 at temperature T with analytically
continued Euclidean self-energy II(co), Eq. (2) is replaced
by

ImII(co) = —co 1 (co),

I (co)=l (~)—I;(~) .
(3)

I d denotes the sum of the thermally suppressed tree-level
decay and scattering rates @~/,$2, 4$,~$2, etc. , that
decrease the number of 4 bosons, and I, is the sum of all
the inverse rates such as P&$2~4&, etc. , that increase the
number of N's.

This agrees with physical intuition. The N boson de-
cays, but the decay products P, and Pz in the heat bath
have a thermal probability to recombine into N, and like-
wise for the scattering processes. For a fermion g with
self-energy X, however, this result has to be modified.

First, we contract the matrix X with the free Dirac spi-
nors u and u (normalized to 2m ) to form the scalar

II(co) =u(co)X(co)u (co) (4)

and obtain

This shows that I is not simply the naive "net decay
rate. " Rather (3) and (5) have to be interpreted as the

The transition amplitude Af, is calculated to any order in
perturbation theory from the relevant Feynman diagrams
and rules. The above formula is valid for bosons and
Dirac fermions, provided we normalize the fermion spi-
nors to 2m.

Alternatively we can use the imaginary part ImII(co) of
the particle self-energy II(co), that is, the discontinuity of
H across the real axis in the complex energy plane

DiscII(co) = limil(co+is) —II(co —iE) =2i ImlI(co) .
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rate which a nonequilibrium distribution f (co, t) of unsta-
ble particles approaches its equilibrium value f0(co).
More specifically, consider the master equation for
f (co, t):

the matrix propagator is given by

i&(p)
tD,b(p) = U(P,p)

0
U(P, p)

f (co, t)= —1"d(co)f (co, t)+1";(co)[1+of (co, t)],8
Bt

(6) where

cosh 8(p) sinh8(p)
sinh8(p) cosh8(p)

1
cosh8(p) =

e
—Plt"If (co, t)=f0(co)+c(co)e

where o. = 1 for bosons and 0.= —1 for fermions as a
consequence of the Pauli exclusion principle

The solution to (6) is given by

where

&;(~)
I (co)=I d(co) —a I (co), f (co)=i ~ 0

so that f(co, t~~)~f„(co), as stated.
We emphasize that I, and not the partial rates I; and

I d, represents the physically measurable decay rate.
Even for t ~ ~ the initial distribution will not go to zero,
but approach thermal equilibrium with its environment.

Strictly speaking, the whole concept of asymptotic
states and S-matrix elements becomes meaningless at
finite temperature. Instead, the appropriate notion is
that of a quasiparticle excitation in a plasma that is "Lan-
dau damping, " i.e., thermalizing with its surrounding.

As an aside, we note that this analysis can be general-
ized to other Green's functions as well. For example, the
discontinuity in the four-point function can be interpret-
ed as the thermal scattering rates with two particles in
the initial state. However, in this case Eq. (6) has to be
generalized; for the time being we will restrict ourselves
to two-point functions.

The above results were confirmed, up to the one-loop
level, in the real-time formalism by Kobes and
Semenoff, ' who developed a finite-temperature and
-density generalization of the standard Cutkosky rules for
the computation of the imaginary part of a Feynman
graph.

We will now turn to the real-time formulation of
finite-temperature field theory and give a brief summary
of the techniques and results, viz. , Feynman and Cutko-
sky rules, that we are going to use. For the derivation
and a discussion we refer to the original papers. ' '

As we already mentioned, the calculation of real-time
Green's functions at finite temperature and density via
Feynman diagrams proceeds as in zero-temperature
quantum field theory, but the degrees of freedom are now
doubled. For each physical "type-1" propagator and ver-
tex there exists a complex conjugate "type-2" ghost coun-
terpart. Consequently the free thermal propagator as-
sumes the form of a 2 X 2 matrix. The 1-1 component
connects the physical type- 1 vertices, the 2-2 component
the type-2 vertices and the off-diagonal elements mix the
two types. We will now list the propagator matrices in
momentum space for the three generic cases, that is, sca-
lar, fermion, and gauge-boson fields.

(1) For a free scalar field P at temperature T=P' with-
Lagrange density

e
—pip I ~2

sinh8(p) =
e Plt" I—

ib, (p) =
p —I +l6

or, in component form,

tD11(p) tD 22(p)

tS(p)
iS.b(p) = V(P,p)

where

0
.S,( )

~(P,P),

cosP(p) e(p )sing(p)&(,p)=
e(p )sing(p) cosP(p)

1
cosP(p) =

1+e
—PI&" I

e
—Plp 1~2

sing(p) =
Q 1+e

—Pli" I

liS(p)=
gf

—m+ie
In component form

iS„(p)= —iS22(p)

m+i e—
iS12(p) = —iS21(p)

2m. (P ™nF(p)5(p m), —

(12)

= —2'(P+m)e(p )n~(p )ePI' I 5(p m), —

(13)

+2mn~(p)5(p —m ),
p —m +ie

iD12(p) = iD2i(p)

=27m (p)ePIP I/5(p

where nil(p) =1/(ePI" I —1)
(2) For a free, massive Dirac fermion g with Lagrange

density

L =g(i8 m)g—

we have
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0
where nF(p)=1/(e~~ +1) and e(p )=—8(p )

—8( —p ) is
the sign function.

(3) For a massless gauge boson with Lagrange density

L = ——'(F ) ——(BA)
a

4 pv

we obtain

iS(p)
i S,b(p) = V(/3, p)

with

liS(p)=
P —m —X(p)+is

0
,S,( )

V(/3, p) (20)

(21)

iD,"b (p) = —g '+ p "p
2 iD,b(p). a

a (14)

0
.~, ( )

U(P,p) (15)

with 2) some complex function or distribution. Dyson's
equation in matrix form

+ b + b++ c( i+ d)+db

with iD,b given by (8) with m =0, and a denotes the
gauge parameter. We will now turn to interacting
theories. Again we consider the scalar-boson case first.

(1) The full propagator for a scalar field in the interact-
ing theory can be written as

i2)(p)
i2)~b(p) = U(P p)

where now

&i i(p) = —&22(p),

and

X,2(p)= —X2,(p)=i@(p )tan2$(p)1m'„(p),

ReX(p) =ReX„(p),

ImX(p) =e(p )coth(Pp/2)lmX»(p) .

and for the self-energy matrix

—iX(p) 0—i X,b(p) = V '(/3, p) . „V '(/3, p),

(22)

(23)

leads to the self-energy matrix
r

(3) For the gauge-boson case the only diff'erence to the
scalar case is again the factor

—II.,(p) = U-'(P, p)
—i II(p)

0
0

.11,( )
U '(/3, p) . a

gpv+ PpPva Qp

This gives, for i2)(p) in (15),

&'2)(p) =
z z

l

p —m —II(p)+l e

(16)

(17)

for the propagators.
We will now summarize the rules for the computation

of imaginary parts of Feynman diagrams at finite temper-
ature in momentum space.

First, we define the "circled" propagators

and for the self-energy matrix one deduces immediately,
from (16),

iD (p)=2ir[8—(+p )+ns(p)]5(p —m ) for bosons,
(24)

iS (p) =2m(p+m. )['8(+p ) nF(p))—5(p m)—
IIii(p) = —II(2(p»

11,~(p) = I12,(p) = i tanh28—(p)ImII„(p),
(18)

for fermions,

which are related to the off-diagonal propagator matrix
elements by

as well as

Rell(p) =ReII»(p),

ImII(p) =e(p )tanh(Pp /2)ImII, (p) .
(19)

iD+(p) =e+» "iD»(p),

iS—(p) = + e +» iS,z—(p),
and hence

(25)

In terms of Feynman graphs II&& is simply the self-energy
diagram with type-1 external vertices, H, 2 the diagram
with one type-1 and one type-2 external vertex, and so
on. We note that ill is the propagator for a quasiparticle
but the full propagator matrix is more complicated. For
example, the propagator for a physical excitation, iX)», is
given by

i2)»(p) =i2)(p)+nii(p)[i2)(p) —iXl*(p)] .

For decay rate calculations, however, the important
quantity is the self-energy function H: its imaginary part
ImH gives the thermal decay rate I discussed before.

(2) The same derivation holds for fermions as well and
we obtain for the interacting propagator

iD (p)=e » iD—+(p), —

iS (p) = —e »— iS (p—) .
(26)

To calculate the imaginary part of a generic Feynman di-
agram with complex vertices and propagators P;J we use
the following generalized Cutkosky rules: (i) draw all
Feynrnan graphs with all possible combinations of physi-
cal and ghost vertices; (ii) in every diagram, circle the
vertices such that the diagram contains both circled and
uncircled vertices in all possible combinations; (iii) re-
verse the sign of a circled vertex; (iv) leave the P,2/P2,
propagators unchanged; (v) for the P»/P2~ propagators
connecting the type-1 and/or -2 vertices (a) leave P» /P22
unchanged if both vertices are uncircled, (b) replace



WERNER KEIL

P»/P22 by Pz2/P» if both vertices are circled, (c) re-
place Pi&/Pz2 by P+/P if the momentum fiows from
an uncircled vertex towards a circled vertex, (d) replace
P&&/P22 by P /P+ if the momentum flows from a cir-
cled vertex towards an uncircled vertex; (vi) the sum of
all these circled diagrams yields minus 2 times the imagi-
nary part of the original diagram.

It is not diflicult to show that, in the zero-temperature
limit, this prescription reduces to the standard Cutkosky
or cutting rules. At T =0 the circled propagators reduce
to forward and backward mass-shell 5 functions. Hence
every diagram that contains an isolated circled vertex,
that is, a vertex not connected to at least another circled
vertex, will vanish due to conflicting 0 functions. Conse-
quently the only contribution comes from diagrams for
which the circled and uncircled vertices form simply con-
nected regions; these areas are linked by circled propaga-
tors, i.e., mass-shell 6 functions. This is, however, pre-
cisely the definition of a cut diagram (see, e.g., Ref. 12).

In general, all contributions of physical and ghost ver-
tices have to be included in the Feynman diagrams.
Needless to say, this leads to a proliferation of terms and
makes actual calculations very cumbersome. A consider-
able simplification occurs if all external lines (vertices) are
physical, as shown by Kobes and Semenoff. They de-
rived the following result: For the calculation of the
imaginary part of Feynman diagrams with physical exter
nal legs and/or vertices, it suffices to include only dia
grams with physical internal Uertices.

This is precisely the result we need: to calculate decay
rates for bosons or fermions we have to determine the
imaginary part of the self-energy function H or X, hence,
by (19) or (23), of II i i or X i i, which are the self-energy di-
agrams with physical external vertices.

Let us finally point out that it is not correct to con-
clude that one can dispense with the ghost vertices entire-
ly. Their existence is crucial for the derivation of the
above result. Furthermore, they are present implicitly in
the finite-temperature Cutkosky rules. Circling a vertex
is the same as replacing it with its complex conjugate,
and they will appear explicitly in intermediate states of
the calculation, as we will show later.

where the bare fermion mass mp is generated by spon-
taneous symmetry breaking from the Yukawa coupling
go and the vacuum expectation value of the Higgs field, v.
In standard notation g/io denotes the fermion field, Ao the
photon field, and eo the electromagnetic coupling; fo is
the dynamical part of the Higgs field. Also in standard
notation we have, for the renormalized fields and parame-
ters,

f0=QZ2$, mo =m —5m,

A 0 QZ3 A go gZg /Z2 eo =eZ, /Z2 QZ3

and the Higgs field remains unrenormalized to this order
in perturbation theory. To O(e ) the bare Lagrangian is
split into renormalized and counterterm parts:

~ten+~et

=g(i 8 m)P—ggPf —
eely gA—"+5Z2$(i 8 m)lit-

+5m gP 5Zg g P—gh 5Z, eg—y„gA",

where 5Z —=Z —1 —0 (e ) and we can read off the (zero-
temperature) Feynman propagators and vertices for the
decay matrix elements, shown in Fig. 1 for future refer-
ence. At nonzero temperature, this represents, of course,
the propagators and vertices given in Sec. II.

a)

III. HIGGS-BOSON DECAY
AT FINITE TEMPERATURE

We will apply this formalism and calculate the finite-
temperature decay rate of a scalar boson decaying into
two fermions. Physically this can be considered as the
decay of a Higgs boson into an electron and a positron.

We will consider Higgs-boson decay at the tree level in
the Higgs-fermion coupling, and with radiative QED
corrections up to second order in the electromagnetic
coupling.

First, let us recall some basic definitions and notation.
The Higgs-fermion sector in the standard electroweak

model is described by the bare Lagrangian

& = 40& W 0 gott040(v +&0 ) eo—fo)'„40A o-
=40(i~ mo WO g04040~0 e0407 POA 0

FIR. 1. Transition matrix elements for H ~e . e with
O(e') radiative corrections: (a) lowest-order vertex; (b) vertex
correction; (c) self-energy correction; (d) photon emission
and/or absorption processes. The counterterm diagrams are
omitted.
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p-k

2 gm

p~q r-q -k

p-k

u-q p-q-k

FIG. 3. Circled diagrams for the imaginary part of the
lowest-order self-energy H».

I (co )=-
q

1
ImII(q)

COq

1
e(co@ )tanh(13coq/2)lmIIii(q) .

COq

n-q

-i $m

The self-energy diagram II», shown in Fig. 2(a), is given

by

d4—iII»(q)= —( ig) —f 4 Tr[iS»(p)iS»(p —q)],

P g

g)
- &d'm

FIG. 2. The Higgs-boson self-energy H»(q) with O(e ) radi-

ative corrections: (a) lowest-order diagram; (b) "vertex correc-
tion" diagram; (c) "self-energy correction" diagram; (d) vertex

counterterm diagram; (e) mass counterterm diagram.

A. The lowest-order decay rate

We will begin our discussion by calculating the Higgs-
boson decay rate to lowest order in the Yukawa coupling.
This will also illustrate the general formalism introduced
in Sec. II with an explicit example.

The decay rate of a Higgs boson with mass mH and
four-momentum q =(co,q), co =(q +mH)'~, is given

by

where S» is the free finite-temperature fermion propaga-
tor (12). Using our finite-temperature Cutkosky rules,
shown in Fig. 3, we obtain, for the imaginary part,

—2 ImIIi, (q)
4= —

( ig)(+i—g) f Tr[iS (p)iS (p —q)
(2n. )

+iS+(p)iS '(p —q)] .

The two terms in the integrand are related by Eq. (26):

iS —(p) = iS+ (p)e —i'—

hence, the decay rate simplifies to

I (co )=—tanh(f3' /2) pq(1+e ) f 5(p —m )5((p —q) —m )
COq (2'�)

X [8(p )
—nF(p)][0( p+q )—nF(p q—)]Tr[(yf+m—)(P —g+m)], (27)

where we used the definition (24) of S—.As discussed in Sec. II, this expression corresponds to the difference between
thermal decay and inverse decay rates, that is, the lowest-order transition amplitudes squared and integrated over
thermal phase space. We will now proceed and evaluate I explicitly. Note, however, that Lorentz invariance is lost at
finite temperature; hence, the decay rate will no longer be invariant, but depend on the reference frame. In the follow-

ing, we will choose the rest of the decaying particle, that is, we set q=O.
First, consider the product of the mass-shell 5 functions. With q =(mH, 0,0,0) the compatible zeros are easily found

to be

p —Q)p
= PLH /2

Hence the 5 functions reduce to

5(p —m )5((p —q) —m )= 5(po —cu )5(co —mH/2)
1

4fPZ~ Q)



1182 STERNER KEII.

and fix the momentum dependence of the integrand completely. The trace is easily evaluated, and with the momenta on
shell we obtain

4mTr[(P+m)(P —g+m)]=4(p —p q+m )= 2—mH2 1—
m&

The thermal factors can be rewritten as hyperbolic functions which reduce on shell to

tanh(pm'/2)(1+e ™~)[8(p) —nF(p )][8(q —p ) —nF(p —
q )]

p sinh(PmH /2)
=(1—e H)[1 —n~(p )][1—nF(p —

q )]= =tanh(pmH/4) .
2 cosh (PmH /4)

Thus, we obtain, for the thermal decay rate, B. Radiative correction at 6nite temperature

3/2

I'"'(mH )= tanh(I3mH /4) mH 1—

=—tanh(PmH/4)1 (mH ), (28)

where I (mH ) denotes the zero-temperature decay rate.
Thus, to lowest order, the temperature dependence is

contained in a simple multiplicative factor. Let us con-
sider the limiting cases of (28).

For T =P '=0 we have tanh(PmH l4) =1 and
I '"'=I, as expected. In the low-temperature regime
Pm~ ))1 expanding the tanh yields

I '"'(mH)=(1 —2e )I (mH),
—Pm„/2

that is, an exponentially small suppression of the T=O
decay rate which is usually neglected. '

At higher temperatures this suppression becomes more
substantial. For /3mH = 1 we have

I'"'(mH ) =0.251 ( mH )

and, in the high-temperature limit pmH && 1,

I '"'(m )~0

This agrees with physical intuition. At higher temper-
atures the recombination rate of electrons in the heat
bath will become more significant; hence, I, the
diQ'erence between decay and inverse decay rates, will de-
crease. The high-temperature limit should not be taken
too seriously, however, since perturbation theory for bo-
sons breaks down at high temperatures.

As an aside, we note that, in order to obtain the correct
result, we had to use the self-energy function ImH, and
not simply ImII&&, which is of course a consequence of
the underlying matrix structure of the theory.

We will now turn to the main topic of the paper and
analyze the radiative corrections to the decay rate, up to
second order in the electromagnetic coupling e. The
corrections to the transition amplitudes are shown in
Figs. 1(b)—1(d) for future reference; for simplicity we
have omitted the counterterm diagrams.

The radiative correction to the self-energy diagram H
& &

are shown in Figs. 2(b) and 2(c). We note that, according
to the discussion in Sec. II, all vertices are understood as
type-l, physical vertices unless stated otherwise. We
work in the Feynman gauge, that is, we choose a = 1 for
the photon propagator (14).

We will now proceed and evaluate the imaginary part
of these diagrams which corresponds to the decay rate
with 0 (e ) radiative corrections. First, consider the
"vertex-correction diagram" Fig. 2(b) which turns out to
be structurally quite simple (the actual computation is of
course quite involved).

1. The vertex-correction diagram

The vertex-correction diagram Fig. 2(b) at finite tem-
perature is given by

—iII„(q)= ( ig) ( ie)——

d4p d4k
X f Tr[iS(p —k)y iS(p)

XiS (p —q)y

X iS(p —
q

—k)iD"'(k)],

where the propagators are understood as the physical 1-1
components of the finite-temperature propagator ma-
trices (10) and (13). For notational simplicity we will
from now on omit the subscript 11.

Applying our finite-temperature circling (cutting) rules,
as shown in Fig. 4, we obtain, for the imaginary part,
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d d k—2 ImII i, (q) = —( —ig )(+ig)( i—e) f (2~)'

XTr[iS(p k )y„iS (p)iS (p —q)y "iS (p —
q k—)iD (k)

i—S (p k—)y„iS'(p)iS*(p q)—y"iS+(p —
q k—)iD*(k)

+iS (p k—)y„iS(p)iS(p q—)y"iS (p —
q k)—iD(k)

iS "—(p k—)y„iS (p)iS (p q—)y"iS*(p —
q k)i—D*(k)

+iS (p k)y—„iS (p)iS (p q)—y"iS(p —
q

—k)iD (k)

+iS(p k)y—„iS (p)iS "(p q)y"—iS+(p —
q

—k)iD+(k)

+iS (p k)y—„iS (p)iS(p q)—y "iS (p —
q k)iD—(k)

+iS+(p k)y„—iS(p)iS (p q)y"i—S*(p —
q

—k)iD+(k)] . (29)

Each of the circled, or cut, diagrams is equivalent to a product of transition matrix elements Fig. 1, integrated over
thermal phase space. This correspondence has already been worked out and is also shown in Fig. 4.

Using this relation we can now simplify the rather unwieldy looking terms in (29} to a more familar form that allows
a direct interpretation. First, we will concentrate on the first four terms which contain the Yukawa vertex correction
diagram:

( ig)G(p,—q)= —( —ig)( ie)—f y iS(p k)iS—(p —
q k)y—"iD(k) .

d4k

Using the cyclicity of the trace and shifting the integration variable we combine the first two terms into

=( —ig)(+ig) f Tr[iS (p)2ReG(p, q)iS+(p —q)]
(2ir )

Likewise we obtain, for the other two terms,

=( —ig)(+ig) f Tr[iS+(p)2ReG(p, q)iS (p —q)]
(2m. )

and as before we can now use the relation (26) to combine the first four terms into

—21mIIG»(mH ) =g (1+e )f Tr[iS+(p)2ReG (p, q)iS (p —q)] .i H d p
(2~)

Thus we obtain a vertex-corrected decay rate

1I (mH ) = — tanh(PmH /2)lmlI»(mH )
mH

2 4
(1—e ™H)f „Tr[(P+m)2ReG(p, q)(P —/+I)]

2mH (2n)"

X [8(p ) —nF(p)][8(q p) nF(p ——q—)]5(p —m )5((p q) —m } . — (3O)

This is of course the standard zero-temperature results
generalized to 6nite temperature. The vertex-correction
diagram Fig. 1(b) modifies the Yukawa coupling to

g ~g ReG (p, q)

and the correction to the decay rate is found by replacing
g in the tree rate (27) by the modified vertex and expand-
ing to O(e ).

It remains to evaluate the vertex function
G (p, q)—:G (p, q)+ G~(p, q) with its external momenta on
mass shell. This is of course more involved and we will
simply quote the results from the literature.

The zero-temperature part ReG has been given in Ref.
16. For the finite-temperature part several approxima-

tions have been considered. The simplest one, including
only the thermal photon distribution and neglecting the
fermion contributions, leads to

(31)

where w =(1—4m /mH)'
We note that G~ is a scalar function with no Dirac in-

dices. Also note that 1/~k~ infrared divergence and the
logarithmic mass singularity for m —+0, i.e., m~1 in
(31).

More recently, the authors of Ref. 9 have improved
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I (mH)=2ReG(mH)I '"'(mH) . (32)

This expression is of course both ultraviolet and infrared
divergent. The ultraviolet divergence arises only from
the zero-temperature part 6 whereas the infrared diver-
gences are contributed both by 6 and G~.

The ultraviolet renormalization is straightforward.
The vertex counterterm —ig6Z~ leads to the two coun-
terterm diagrams Fig. 2(d) whose imaginary part is again
determined by our circling rules. Proceeding as before
we find immediately

—2 Im II,( m H ) = g ( 1+e ™"
)

d'p
X f Tr[iS+(p)2 Re5Zs(2' )

XiS (p —q)] .

Adding this counterterm contribution yields the renor-
malized decay rate

I G„=2 Re(G —5' )I'"'=—2 ReG""I'"',

FIG. 4. Circled diagrams for the vertex-corrected H) &
and

the equivalent products of transition matrix elements.

this result and taken the thermal fermion contributions
into account. The resulting expressions and approxima-
tions are, however, quite complicated and we refer to
Ref. 9 for details. We simply note that G~ remains a sca-
lar and that no additional infrared divergences are intro-
duced.

In summary, the vertex correction to the decay rate at
finite temperature is given by

where 5Z is chosen to subtract off the ultraviolet diver-

gence in 6 plus an finite part of G. Note that, if we
choose to include part of G~ in 6Z and make the cou-

pling temperature dependent, Lorentz invariance of the
Lagrangian wiH be lost. We will discuss this problem in
more detail in the next section.

The infrared divergences (in the unrenormalized rate)
and the mass singularity are canceled by contributions
from the last four terms in (29) which represent part of
the photon emission and/or absorption rate I '. As be-
fore we can combine these four seemingly different terms
into a single expression, using a shift in integration vari-
ables and relation (26) between the circled propagators.

Thus, we obtain, for the (partial) photon emission
and/or absorption rate,

I '(mH ) = — tanh(PmH /2)lmII»(mH ),
Pl~

where

4
ItnII»(mH)=g (

—ie) (1+e ™H)Ref Tr[iS+(p)y iS(p k)iS (—p —k q)y"iS—*(p q)iD (k)]-
(2vr)

and hence, for the transition rate,
2 2 4

I '(mH ) = — (1—e )Ref 5(p —m )5((p —k —q) —m )5(k )
OZH (2'�)

XTr[(P+m)y (P —1+m)(P —k' —g+m)y"(P —g+m)]

X[8(p ) n„(p)][8(q +—k p) n~(p —k——q)]—[9(—k )+n~(k)]

X 2vrnF(p —k)5((p ——k) —m )
(p —k) +m +i@

(p q) m lE
2~nF(p ——q)5((p —q) —m ) (33)
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XTr[(P+m)y&(P —k'+m)(P k' —g+m)y"(P —g+m)]

X[8(p ) —n~(p)][0(q +k —p )
—nF(p —k —q)][0( —k )+n~(k)]

1PP
(p —q) —m

Of course the actual evaluation of the integrals and the demonstration of the cancellation of the infrared divergences is
quite involved and we refer to Refs. 16 and 3 for the calculational details.

So far our results are a straightforward generalization of the zero-temperature results: the vertex-correction matrix
element renormalizes the Higgs-fermion coupling, and the infrared divergences are canceled by contributions from pho-
ton emission and/or absorption processes. This is not surprising since the circled (cut) diagrams correspond directly to
the relevant transition matrix elements.

Things will become more interesting when we consider the fermion self-energy insertion diagram.

(34)

This can be simplified further: splitting the complex 6 distributions into principal part and 6 function and regulating
the infrared divergence at k =0 with a small photon mass A, , it is easy to show that the product of the five four-
momentum-conserving 6 functions vanishes, and we are left with

2 2 d4 d'k
I '(mH)= — (1 —e ™H)Ref 5(p —m )5((p —k —q) —m )5(k —A, )

mH (2~)'

2. The self energy cor-rection diagram

The fermion self-energy correction X to the boson self-energy II is shown in Fig. 2(c). Since the two diagrams are re-

lated by a simple shift in integration variables and a reversal of the external momentum, it suffices to consider only the
diagram with the electron line corrected; the other one will contribute only a factor of 2. The graph is given by

d' d4k—ilI»(q)= —( ig) —( ie) f —
8 Tr[iS(p)y„iS(p k)y,iS—(p)iS(p q)iD" —(k)]

and applying our circling rules as shown in Fig. 5 we obtain, for the imaginary part,

dpd k—2 ImII»(q) =g ( ie) f- (2'.)'

XTr[iS (p)y "iS(p k)y„iS—(p)iS (p q)iD (k)—
iS'(p—)y"iS'(p k)y„iS—+(p)iS (p q)iD*(k—)

+iS'(p)y"iS+(p k)y„iS(p—)iS (p q)iD+(k)—
+iS+(p)y "iS (p k)y„iS+(p—)iS (p q)iD (k)—
+iS(p)y"iS(p —k)y„iS (p)iS (p q)iD(k)—

iS'(p)y"—iS*(p —k)y„iS (p)iS (p q)iD*(k)—
iS(p}y"—iS (p k}y„iS—(p)iS (p q)iD (k)—
iS (p)y "iS+(p— k)y„iS (p—)iS+(p q)iD+(k)] —. (35)

As before, these terms represent the product of transition matrix elements as shown in Fig. 5. Note the circled dia-
grams corresponding to a photon emission and/or absorption diagram with a type-2 vertex. Since these diagrams can-
not be represented by a cut they have to vanish at zero temperature, but at finite temperature they will contribute and,
as we shall see, are indispensible for the well-definedness of the self-energy.

Again not all terms in (35) are independent. Using the by now familiar relation (26) it is trivial to show that the last
p 0

four terms are related to the first four by a factor of e ~~ . Thus (35) is reduced to

Imll
& &(mH ) = —

( 1+e )f Tr{iS (p —q)
g ( —ie) —pm„dpd k

2 (2m )

X [iS+(p)y"iS(p —k)y„iS (p)iD (k)
—iS'(p)y"iS*(p k)y„iS+(p)i—D*(k)

iS*(p)y"—iS,i(p —k)y„iS(p)iD, ~(k)e~~ ~

iS+(p)y"iS, 2(p k—)y„iS+(p)iD,2—(k)e ~~ ~ ]I, (36)
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where we used (25) to rewrite the circled photon propagators in terms of the off-diagonal propagator matrix elements.
Obviously each of the four terms in (36) contains ill-defined distributions (pinch singularities or "squares of 5 func-
tions") which are guaranteed to cancel on general grounds. The actual cancellation procedure, however, requires some
work and is rather instructive, so we will present it here in some detail.

First we use the de6nition of the fermion self-energy matrix elements X,b and write

ImII»(mH)= — (1+e ™")J TrIiS (p —q)(2~)'

X [iS+(p)iXii(p)iS(p) —iS*(p)iX22(p —k)iS+(p)

+iS*(p)iX,z(p k)—iS (p)e~~ ~ + iS+(p)iX,2(p k)—iS+(p)e ~" ~ ]I,
which can be rewritten, using Eq. (22), as

2 p d 4
ImIIz»(mH ) = — (1+e )f Tr(iS (p —q)11 H (2~)

X [iS+(p)iX»(p)iS(p)+iS" (p)iX»(p)iS+(p)
—e(p )tan2$(p)[iS*(p)1m'»(p)iS(p)ep~

+iS (p)1m'»(p)iS+(p)e ~~ ]) ) . (37)

We note that, in terms of matrix elements, the first two
terms arise from the self-energy insertion on an external
fermion line, whereas the last two correspond to squares
of photon emission and/or absorption diagrams.

In order to show the cancellation of the ill-defined dis-
tributions in (37), we recall the basic definition (11)of the
propagator matrix elements and rewrite the finite-
temperature propagators as follows:

iS (p)=2m(gf+—m)[8(p ) —nF(p)]5(p —m ),
iS(p)=(P+m)[cos Pb(p) —sin $5*(p)],
iS'(p)=(P+m)[ —cos (th(p)+sin Pb, *(p)],

h(p) = i /(p m+ i—e), b, '(p) = i /(p m ——ie), —

cos /=1/(e ~'~ ~+ I), sin /=1/(e~'I' +1) .
For the 6 distribution we use the well-known relation

lim =PP +m5(p —m )
l l

op —m +is p —m

from which it is easy to derive the useful identity

2ri5(p —m ) 2 2
p —m +iF

a=im 5(p —m )
Bm

+2~252(p 2 m 2)

where the 5 functions are understood as convenient
shorthand for the sums and squares of the proper @-

regularized 6 distributions.
Consider now the first two terms corresponding to

self-energy insertions on the external fermion lines (from
now on all distributions are understood as properly e reg-
ularized). With the identities just introduced it is
straightforward to show that

FIG. 5. Circled diagrams for the self-energy corrected H, l

and the equivalent products of transition matrix elements.
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iS+(p)iS(p)=(gf+m) [8(p )
—nF(p)] im. 5(p —m )+(cos P —sin tI))2n 5 (p —m )

a
Offal

and likewise

iS+(p)iS*(p)=(g/+m) [9(p ) —n~(p)] im. 5(p —m ) —(cos P —sin P)2m 5 (p —m )
BPl

Thus the first two terms in (37) can be combined into

iS+(p)iX»(p)iS (p)+iS*(p)iX»(p)iS+(p)

2'(P+—m)[0(p ) nF—(p)] ReX»(p) 5(p m—) +I niX„(p)c os2$ 2m 5(p m—) (If+m),8
(38)

that is, a well-defined mass derivative of the mass-shell 6 function proportional to the real part of X, and a pinch singu-
larity proportional to the imaginary part which has to be cancelled by contributions from the two remaining photon
emission and/or absorption terms, that is, the third and fourth term in (37).

For the third term we find

i S'(p)iS(p)=(P +m) [(sin icos P
—

—,')(9+6*) + —,'(b, +b, * )]

=(P+m) (~~sin 2P —
—,')[2m5(p —m )] + [ib, —im5(p —m )]

8P1

and the fourth term is simply a "pure" pinch singularity

[iS+(p)] =(P+m) I[9(p ) —nF(p)]2+5(p —m )J

The cancellation of the 6 terms is now easy to see if we rewrite them in terms of the off-diagonal propagator matrix ele-
ment iS]z. Recalling that

iS+(p)= e~~ ~ iS,2—(p),
Pl 'li2iS»(p)= —e(p )(p'+ m)e

~ nF(p)2m5(p —m2)= —(pe)(0/+ )ms2in$ 5r(rp —2m2)

we obtain, for the last two terms in (37),

e(p )tan2$[iS(p)linX»(p)iS*(p)e~~ +i S+( p)lm X»( p)i S+( p) e ~~ )]

Og2=e(p )e~~ ~ (gf+m)lmX„(p)(gf+m)tan2$ [b(p) ivr5(p —m)]-
f11

+2 tan2$— 1
iS,z(p)lmX»(p)iS, 2(p)sin2$ cos2$

and likewise we have, for the ill-defined term in (38),

(p+m) [0(p ) —nz(p)]cos2$[2m5(p —m )] =2&(p )e~ cot2$[&Si2(p)1

Combining (38) and (39) we obtain, for (37),

IniII, )(q)

(l+e ")I Tr iS (p —q)
—pm~ d p

2 (2~)

(39)

X (gf+m) —[8(p )
—nF(p)]ReX„(p)2m 5(p —m )

—e(p )ImX„(p)e~~ tan2$ [iA(p) i+5(p —m)] (g—f+m)
BP1

+e(po)lmX&&(p)e~i' ~ —cot2$+tan2$ — . [iStz(p)]
cos2$ sin2$

and the ill-defined S&2 term disappears, leaving only well-defined distributions. To simplify the remaining part we use
Eq. (23) for ImX» and obtain
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e(p )e~J' ~ tan2$lmX»(p)=2[8(p ) —nF(p)]ImX(p)

and for the distribution

a
[i b, is—r5(p m—)]=—

8m

1PP
Bm p —m (p2 m 2)2

by definition of the principal part. Thus, the self-energy corrected decay rate is given by

I (mH ) = — tanh(gmH/2)lmil»(mH )
mH

2 —Pm d4
(1—e H

)f 5((p q—) m—)[8(p ) n—F(p)][8(q p—) n—z(p —q)]
m~ (2m )

XTr (gf f+—m)(gf+m) ReX(p)2a 5(p —m )
— (P+m)c} 2 2 2 ImX(p)

Bm (p —m )
(40)

We note that, in order to achieve complete cancellation
of the ill-defined 5 terms it was necessary to include the
circled but noncuttable self-energy graph or, equivalent-
ly, the matrix element with a type-2 vertex in our calcula-
tion. Thus, strictly speaking, the ghost vertices are need-
ed in perturbation theory even at the one-loop level to en-
sure the well-definedness of our results. They do, howev-
er play only a "minimal role" since they do not contrib-
ute to the finite part of the result. It is also obvious from
our derivation that pinch singularities will occur (and
cancel) even at zero temperature. In this case the type-2
contribution vanishes and the cancellation involves only
the regular type-1 terms.

Furthermore, we emphasize that our derivation and
the final result are quite general since we have to consider
only products of distributions that are common to the ra-
diative QED corrections for any decay and scattering
process. Also note that our derivation involves only the
properties of the distributions 1/p m+ie —and hence
holds for boson self-energies as well.

In terms of transition matrix elements the part propor-
tional to ReX in (40) arises from the self-energy insertions
on the external fermion lines Fig. 1(c). The term contain-
ing the imaginary part ImX represents the remaining part
I ' of the photon emission and/or absorption processes
Fig. 1(d). It can be written in a more familiar form analo-

gous to I ' if we use the explicit form of ImX: by
definition

d p—iX„(p)=(—ie) f y„iS(p+k)y„iD" (k)

and, applying our circling rules, it is easy to show that

ImX(p) =e(p )coth(Pp /2)ImX»(p)

O
e' ~ d4k

=e(p ) (1+e @ )f y iS+(p)y"
2 (2~)2 "

XiD (k) .

This yields, for I
2 2 -Om d4 d4k

I '(mH ) = (1—e ™H
)f 5(p —m )5((p —k —q) —m )5(k )

PlH (2'�)
X Tr[(gf —I+m )y „(p +m )y "(P—k'+ m )(P —k —g+ m )]

X[8(p )
—nF(p)][8(q +k —p ) —nF(p —k —q)][8(—k )+nH(k)]

(p —k) —m

2

(41)

As before, this expression contains both zero-temperature and temperature-dependent infrared and mass singularities
which have to cancel against the ones arising from the real part of the electron self-energy. For the problem of mass

and wave-function renormalization, however, I is of no direct interest; hence, we will concentrate in the following on
the ReX part.

3. Mass and wave function ren-ormalization at finite temperature

The mass derivative of the 5 function is best evaluated as

f d p F(p, m, . . . ) 5(p —m )= lim f d p F(p, m, . . . )5(p —m )
2 2

Bm m 2 ~2 Bm

and the contribution of the self-energy correction to the external fermion lines can be written as
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2

I (mH )= —
( I —e ") lim

mH m ~m

d4
X I [8(p ) —nF(p)][8(q —p ) —nF(p —q))5(p —m )5((p —q) —m )

Bm (2'�)

XTr(gf —g+ m )(gf +m ) ReX(p)(P +m )

4
+ [8(p ) n~(—p)][8(q p)—nF(—p —q)]5(p —m )5((p —q) —m )

XTr(P —g+m)(P+m) [ReX(p)(P+m)],a
Bm

(42)

where the above notation is understood as integrating
over the 5 functions before taking the derivative. In the
real-time formalism the fermion self-energy can be split
into a zero-temperature and a finite-temperature part:
ReX=ReX +ReX~. First consider the T =0 part.

Usually ReX is expanded in a formal Taylor series
around the mass-shell point "gf =m" (which as a matrix
equation is of course nonsensical):

ReX (p) =ReX + ReX (gf —m)+a
P=m ~ P=m

=5m+5Z~(gf —m)+ (43)

where the first two coefficients are defined as the
ultraviolet-divergent mass and wave-function renormal-
ization counterterms (the finite higher-order terms can be
set to zero by the mass-shell renormalization condition
and will be neglected). More precisely, Lorentz invari-
ance restricts ReX to the general form

ReX (p) =a, (p')P+a2(p') (44)

and, expanding the coefficients around the propagator
pole p =m, we obtain, to O(p —m ),

ReX (p)=[a i(m )+a2(m )(P+m)](gf —m)+ma, (m )

+a2(m )+
= [a', (m )+2maz(m )](P—m)+mai(m )

+a2(m ),
which justifies the formal Taylor series (43). To renor-
malize the bare mass mo in the free fermion Lagrangian
to its physical on-shell value mphys,

X =/(i8 mo)g~—g(i8 mo ——5m )itj

P(i rl m—h„, )/-,
we have to include the mass counterterm diagrams Fig.
2(e) in our set of self-energy diagrams. Their imaginary
part is easily determined with our circling rules, and add-
ing it to the unrenormalized rate replaces ReX by
ReX:—ReX —5m in the decay rate (40). With this
mass-subtracted self-energy we find immediately, for (42),

lim ReX (gf +m ) =0,
2 2m ~m

lim [ReX (P+m)]=5Zz,a

m m

and thus the ReX contribution to the decay rate reduces
to

2 —Pm d4
I o (mH )=5Z2 ( I —e ) lim f 5(p —m )5((p —q) —m )

m& m ' m' (2~)'

X [8(p )
—nF(p)][8(q —p ) —n~(p —q)]Tr[(g/ —g+ m)(P+ m)]

=25Z, r"-(m„), (45)

which is precisely the result one obtains from multiplica-
tive on-shell renormalization and the Lehmann-
Symanzik-Zimmermann (LSZ) theorem for the transition
matrix elements. This is usually expressed as the follow-
ing Feynman rule self-energy corrections on external
(fermion) lines are replaced by a factor of QZz for each
line, provided the mass counterterm 5m has been includ-
ed.

The remaining ultraviolet divergence in 5Z2 can of
course be eliminated by adding a suitable counterterm
vertex 5Zz'(gf —m) to 5m in the diagram Fig. 2(e).

The crucial property in the derivation of (45) is
Lorentz invariance which permits the formal Taylor ex-
pansion (43) of ReX . For the finite-temperature part
ReX~, however, Lorentz invariance is lost, but we can
still maintain Lorentz covariance of the theory by intro-
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ReX~(p) =A, (p,p )(P —m)+A2(po, p~)

with matrix-valued coefficient functions

A )=a( +a4p

A2=mai+a2+(ai+a4)yo .

(46)

We could now proceed as in the T=0 case and, expand-
ing the coefficients A. ; around p —m, introduce the
matrix-valued mass counterterm

6m~=A, 2
p =m

Thus the physical mass is now defined as the pole in the
finite-temperature propagator

iS(p) =
gf

—m —ReX~(p)

and the finite-temperature wave-function renormalization

ducing the four-velocity u of the heat bath. ' ' The non-
covariant approach described so far corresponds to the
choice u =(1,0,0,0); that is, the heat bath is taken to be at
rest with respect to the laboratory frame. In the follow-
ing u = (1,0,0,0) is always understood, unless stated other-
wise. The requirement of Lorentz covariance restricts
ReX~ to the general form

ReX (p) =a,/+a, +a3$ +a4gg

=a,p+a2+a3y +a4y p,
where the four coefficient functions a; will now depend
on the two available Lorentz scalars p and p.u—:p:
a; =a,.(p,p ). Thus (44) is now generalized to

factor Z~2 might, e.g., be taken as the residue of 4'.
However, this straightforward and popular procedure

presents several problems if we accept the general philo-
sophy that normalization counterterms should be of the
same form as the unrenormalized quantities, that is, the
renormalized Lagrangian should remain Lorentz invari-
ant and of the same functional form as the bare Lagrang-
ian.

Lorentz invariance is obviously lost for any finite-
temperature counterterm defined from ReX~ and the re-
normalized Lagrangian, a dynamical quantity, will now
be temperature dependent. Although one might accept
this, together with the more general y-matrix structure,
as a generalization necessary for finite-temperature field
theory there remains the problem that the renormaliza-
tion point p =m is not sufficient to eliminate the
momentum dependence of the covariant coefficient func-
tions in ReX~. This momentum dependence is nonpoly-
nomial and rather complicated (see, e.g. , Ref. 18 for an
example); thus any counterterm constructed from the a s
will introduce new, nonlocal and nonrenormalizable in-
teractions in the renormalized finite-temperature La-
grangian.

These problems will not arise if we take the conserva-
tive approach and introduce only the zero-temperature
counterterms necessary for the removal of the ultraviolet
diver'gences. This is legitimate since ReX~ is ultraviolet
finite (the thermal distributions act as regulators). Thus
the Lagrangian remains Lorentz invariant and dynami-
cal. The ReX~ contribution will of course not reduce to a
simple multiplicative Z2 factor but requires the evalua-
tion of the integral

2 —n a d4
I & (mH ) = — (1—e ) lim f 5(p m)5((p ——q) —m }[8(p ) n~(p)][8—(q p) nF—(p —q—)]

m~ m '-m' Bm ' (2~)'

X Tr [(gf —g +m )(P +m )ReX~(p )(gf +m ) ]

2

(1—e ™~)f d p 5(p —m ) . . Tr[(P' —g+m)(P+m)Ai(p)]
mH

2

(1—e H) lim f d p Tr[(p —g+m)(p+m)A2(p)(p+m)]
mH rn2 m2 Bm

(47)

and the masses are the physical (renormalized) zero-
temperature parameters.

This approach is the most general one: the decay rates
are evaluated as a function of the known (and measur-
able) zero-temperature parameters and there is no
conflict with the basic requirements of locality and renor-
malizability.

In the case of Higgs-boson decay, or any decay and/or
scattering process with two-body phase space, the prob-
lem of momentum-dependent counterterms does not arise
since the mass-shell 5 functions fix p and p,

5(p —m )5((p —q} —m ) —+p =co~ =mH/2,

and give a natural on-shell renormalization point. Thus
we can proceed and define operational renormalization
constants. Lorentz invariance is of course still lacking, so
the following prescription is heuristic and "natural" only
insofar as it uses the covariant generalization of the fa-
miliar counterterms and, as we shall see, reduces the
self-energy contribution to a scalar Z2 constant analo-
gous to the T =0 renormalization procedure. Moreover,
the covariant finite-temperature counterterms will have
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features that make an interpretation as QED renormal-
ization constants extremely problematic. Thus the fol-
lowing covariant on-shell renormalization scheme should
be regarded only as a convenient procedure to deal with
the momentum dependence of ReX~. Indeed, our discus-
sion will demonstrate that, even without the problem of
momentum dependence, finite-temperature counterterms
are not a physically meaningful concept; thermal transi-
tion rates are hence best evaluated in terms of the (well-
defined) zero-temperature parameters.

From (46) we define the matrix-valued finite-
temperature mass counterterm

5m ~—=A z(p =ai =mH /2), (48)

which replaces ReX~ by ReX ~=ReX~—5m ~ as before.
The matrix structure of 5m~, however, has some unusual
consequences which we will discuss later on.

The first term in (42) is eliminated by 5m~, as at zero
temperature, since

lim ReX ~(P+m) =p
rn ~m

and we define the remaining term as a matrix-valued "Z~z
function:"

5Z)= lim [ReX ~(p)(gf+ m )]
a

m ~m Bw

=A i+ A2 (p+ m)
0vl

Note that we used

Tr[(p —g+m)(iii+m)a4y ]=(2p q—)ma„=p

atp =co =m&/2.
Thus we have, for our present system, an effective sca-

lar finite-temperature wave-function renormalization con-
stant Z~2 given by

=a, +2p (a3+ma4)+2m (ma, +a&)0

()vj Bm

(49)

at the renormalization point p =co~=mH/2, w»c»s
nothing but the covariant generalization of the zero tem-

perature Z2. The self-energy correction to the external

fermion lines is thus reduced to an effective scalar renor-

malization constant

f sE(m )
—25ZPl &ree(m )

as desired for on-shell renormalization.
Let us now return to the finite-temperature mass coun-

terterm. Using the y-matrix-valued 5m~ as a counter-
term in the free fermion Lagrangian

X=P(i 8 m„„,)f—~g(i B mh, —5m ~)g—

= a, +a4y + (ma, +a2) (P+m}
Bm

+ (a3+ma„)y (gf+m)
a 0

Bm

at p =ai~=m~/2, m ~m, which is of course still
momentum dependent. Evaluating the trace with Z~2 we
find

leads to a temperature dependence of the Dirac operator
as can be easily seen in momentum space. Writing
a general matrix-valued mass counterterm as
5m~= bgf~+hm~ —we have, in momentum space, for the
Lagrangian,

X=/(iP —m „„,—5m~)g

=P[(p —hp~) y —(m +b, m)]g

—:f(gf rn )g, —

Tr[(gf —g +m )(p'+ m )5Z~z]

= Tr[(gf —g+m)(P+m)] a, +2p (a3+ma~)0

Bm

a+2m (ma, +a&)
Bm

where we used the tilde notation of Ref. 3. Thus the
mass counterterm 5m~ shifts not only the mass but also
the momentum operator. Rederiving the Feynman rules
for the shifted finite-temperature Dirac operator is
straightforward and amounts to replacing p and m by p
and m in the propagators. Thus all decay rates have to
be reevaluated with tilde quantities. For the tree-level de-
cay rate we obtain

2 4
(l —e ™H)f 45(p —m )5((p —q} —m )

2mB (2')4

X [8(p ) —nF(p )][0(q —p ) —nF(p —q)]Tr[(gf —g+rn )(P+ m )] .
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—I tree+ r™mHW

(50)

to O(e2), where w =(1—4m ImJ)' . The other
contributions —vertex correction, etc.—are already of
O(e ) and do not have to be reevaluated in tilde vari-
ables. Thus the net effect of the mass counterterm 5m~ is
indeed a mass renormalization mphy mphy + Lalkm

In summary the covariant renormalization prescription
gives indeed the operational analog of the zero-
temperature renormalization procedure. The fermion
self-energy correction is absorbed into a multiplicative Z
factor and the physical mass in the tree rate (28) is shifted
by a constant. There are, however, important differences
to the zero-temperature case.

The zero-temperature QED renormalization constants
are well-defined and "universal" in the sense that they are
fixed by the fermion mass-shell condition alone and in-
volve only QED parameters, that is, the fermion mass
and the fermion-photon coupling. The finite-temperature
counterterms 5m ~ and 5Z~2, however, depend not only on
the fermion mass but also on the mass of the Higgs boson
or, more generally, the specific kinematics of the reac-
tion, due to the choice of the renormalization point [it is
of course possible to choose an arbitrary point (p,p )
without reference to the Higgs boson, but this would not
eliminate the 5m~ term in the decay rate and make the
concept of thermal on-shell renormalization ambiguous].
Moreover, consider the Z~2 function from which we de-
rived the covariant wave-function renormalization con-
stant Z~2. If we replace the simple Yukawa Higgs-
fermion vertex by a general coupling (vector, axial, etc. )

the trace in the decay rate will be of the general form
Tr[ (gf +m )ReX~(gf+ m )] and hence we have to con-
sider the trace Tr[ . . (gf+m)5Z~2]. With Z~2 of the gen-
eral form

5Z~i=a, +a,y'+ 8
(ma, +a2) (gf+m)

8pl

8 (a3+ma4)y (p'+m)0

Bm

—= A i+ A2+ As(gf+m)+ A„(gf+m)

and the fermion mass-shell 5 functions this is easily re-

As an aside we note that the terms in the trace can be re-
garded as products of spinors on the external fermion
legs of the transition matrix elements. Here these spinors
would be solutions to the "finite-temperature Dirac equa-
tion" (P —m —5m~)u =0 and are a special case of the
finite-temperature spinors introduced in Ref. 3. It can be
easily shown that the integral is invariant under any
translation by a constant four-vector: p~p=p —Ap~.
Hence we have to replace only m by m =m + Am ~ in (28)
and we have for the mass-renormalized tree rate

2 3/2

I ""~ mH 1 — tanh(PIH /4)tree g' 4m
8m

duced to

Tr[ . (P +I )5Z~~]

=Tr[ . . (P'+m)](A, +2p A +2mA3)

+Tr[ . . (gf+m)A2] .

Obviously the first factor is our Z~2 factor (49) but the
second term will in general depend on the specifics of the
trace (in the case of Higgs-boson decay it vanishes). In
general, the wave-function renormalization factor derived
from Z~z will depend not only on the fermion-photon cou-
pling but on the other fermion couplings as well.

Thus thermal on-shell renormalization leads to the
somewhat paradoxical situation that QED counterterms
depends also on non-QED interactions.

Furthermore, the mass-renorrnalized finite-tempera-
ture Dirac operator

has poles in momentum space given in the dispersion re-
lation

p
2 —m 2 p2 —m 2 —2p. pp~ —2m pm~=O

which has solutions

p =hp~+(co +2mbm~)'

by definition (48) of 5m ~. If we define a finite-
temperature mass as the solution p at some fixed three-
momentum p (see, e.g. , Refs. 19 and 20) it is obvious that
this "dispersion relation mass" will depend on all com-
ponents of 5m~ whereas the "effective decay rate mass"
in (50) involves only a shift by km ~.

It is also obvious that the finite-temperature Dirac-
operator g is not identical to the inverse finite-
temperature propagator iS '=8 —m —ReX~(p =m );
the latter would correspond to a Dirac operator with
momentum-dependent mass counterterm which we re-
jected as incompatible with a local and renormalizable
Lagrangian.

These considerations show that the familiar zero-
temperature concepts of mass and wave-function renor-
malization cannot be extended to finite temperature in a
generic way, not even for the case of two-body decay.
The heuristic covariant finite-temperature counterterms
will in general depend on the specific kinematics and cou-
plings of all particles in a particular decay process and do
not have the physical and model-independent interpreta-
tion of their zero-temperature counterparts. We con-
clude that the notions of finite-temperature parameters in
the Lagrangian, Dirac operators, and spinors are prob-
lematic concepts and of no use for the study of decay pro-
cesses at finite temperature.

Let us now consider an explicit example. The covari-
ant expansion (46) was well suited to discuss the general
momentum dependence of ReX~, but the actual computa-
tion of the coefFicients a; for the full self-energy is rather
cumbersome (see, e.g. , Ref. 21 for a zero-temperature,
finite-density example and' for the massless case). In-
stead we will consider the familiar low-temperature case
treated in Ref. 3.
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where

+E(cop, p ) (51)

In the low-temperature regime T &(m, ReX~ is ap-
proximated on mass shell by '

aE(~„p
ReX~(p)= I„(p'—m)+ (p —m )

8~ 2cop Bc'

given in Refs. 3 and 22 are

DH

2

6Z =— r—1
2 3 A 0

Sm Q)p

77- T
8'Tl 3U cop 1 U

(52)

(53)

I„=4m n~ k

d k kj"

cop k pk

where top ='~/p +m, k = ~k~, and nii(~k~ )=1/
(e~~"~ —1). The explicit form of I(ro, p) is given in the
Appendix.

First we observe that (51) is not a covariant expansion
of the type (46) discussed so far, but an expansion of the
finite-temperature photon contribution in ReX~ at the
mass-shell point p =m . The renormalization constants

where U = lpl/co, . From their explicit form it is obvious
that these noncovariant counterterms have the same
unacceptable momentum dependence that we discussed
for the covariant expansion (46). Moreover, the momen-
tum dependence in 5m is not even fixed by the mass-
shell 5 functions; thus, 5m cannot be used as a heuris-
tic mass counterterm. We will now calculate directly the
decay rate correction due to ReX~ without introducing
any finite-temperature counterterms (the physical value
of the decay rate is of course independent of the renor-
malization scheme used). Thus we have to evaluate Eq.
(47):

2 4
I

& (mH)= — (1—e ) lim
2 I 25(p —m )5((p —q) —m )[8(p ) —nF(p)][/(q —p ) —n~(p —q)]OZH m ~m t)m (2'ir)

X Tr [ (p' —g +m )(I(+m )ReX~(hatt'+ m ) ] .

Let us split ReX~ into

t)E(to, p)I„+ (P+m) (gf —m),
8K 2CO BCO

2

3 E(cop, p),
8m

and hence the decay rate into

I sE I ]+I 2
P

A straightforward calculation, given in the Appendix,
yields

I' t —25ZDHI tree(
2 PlH

2 2T2
IA — » I'"'(m ) (54)4~3 3IH2w 1 w

I '= —
z 2

1+—(1—w )ln I'"'(mH ),e T 1 2 1+w
l7ZH W W 1 w

(55)

where w =(1—4m /mH )'
Thus the Xi part of ReXP reduces to the wave-function

renormalization factor 5Z2 which is not surprising
since Z2 corresponds to the part proportional to
(P —m) in ReX~. Note that 5Z2 contains an infrared
divergence in I„and a mass singularity in I0 for m ~0,

we can define m p„„,(P) as the physical "finite-
temperature mass" and describe the shift by the constant
mass counterterm

8~3 I 12m
(56)

that is, for w~1. However, they both cancel against
similar terms in I as shown explicitly in Ref. 3.

The Xz contribution to I can be regarded as a non-
covariant mass correction since it corresponds to 5m

%2.We note that I ' is infrared finite, and does not contain a
mass singularity but remains finite for w~1. Thus %2
does not introduce any new mass singularities in the de-
cay rate, and there is no need to introduce a momentum-
dependent finite-temperature counterterm in the La-
grangian to eliminate the (potentially troublesome) 5m DH

contribution. This is important since, according to our
discussion, there is no generic way to define finite-
temperature renormalization constants. By comparison,
at zero temperature the Kinoshita-Lee-Nauenberg
theorem guarantees the absence of mass singularities in
the unrenormalized decay rate, but only after mass coun-
terterms have been included (cf. Ref. 16).

In Ref. 5 we pointed out that, since the self-energy (51)
shifts the pole in the fermion propagator by a constant

2
2 T2

2m phys™phys +
6
™phys (t )
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which is independent of the reaction kinematics. If one
insists on a finite-temperature mass for the fermion, then
5m p provides a simple and physically transparent alter-
native to the covariant counterterms discussed before.
On the other hand, this finite renormalization of the
physical mass of course neither changes the value of the
decay rate nor simplifies the calculation: unlike 6m
the counterterm 5m p, does not eliminate the "mass" con-
tribution I ' completely, but instead replaces $2 by

2& T
X~ =%2—5m ~= J—

8~3 3m

The corresponding decay rate is then evaluated as (see
the Appendix)

with I & given in (31) and (32), and with I ', r™,I
given by (54), (58), and (57). The real-photon correction

I real I I+I 2 (60)

was given in general form in (34) and (41). A complete
evaluation is rather dificult; however, in the low-
temperature approximation it suKces to expand (60) in a
power series in T/mII and consider only the terms up to
O(T ). This was done in Ref. 3 and the authors find the
following cancellation between the thermal part of (60)
and (59), to O(T ):

r'-+ r"+r'+ r,"+r"=0+o ( T'),
Thus we obtain, to 0 ( T2), for the total finite-temperature
Higgs-boson decay rate,

2— 1+w
2 ——(1—w )ln I'"'(mH) . (57)

3m~w
I total I tree+ I 2p

p

The mass-shifted tree rate (50) for the mass shift (56) is
easily found to be

e2T2 1 —w 2

ln
3m w

r tree( m

2v2
I Am e T I tree

m wH

and we have

(58)

I

2 I 2+I hm

I virtual I G+ I SE
p = p p

f3 A'

pI G+I &+I Am+I- (59)

as it should be.
We note that the shift in the propagator pole that

defines 5m p is momentum independent only for the ap-
proximation (51) of ReX~, which neglects the thermal fer-
mion contributions. Taking the fermion corrections into
account leads again to a nontrivial momentum depen-
dence of the propagator pole (cf. Ref. 3) and we are faced
with the same problems as before.

Also, our example implies that the definition of on-
shell counterterms is ambiguous in the sense that it de-
pends on the type of expansion (covariant or noncovari-
ant) used for ReX~. This supports our conclusion that
on-shell finite-temperature renormalization cannot be
defined in a generic or unique way, which is of course a
consequence of the lack of Lorentz invariance.

We can now compare our results for the finite-
temperature radiative corrections to the Higgs-boson de-
cay rate in the low-temperature limit to the one given in
Ref. 3. The virtual-photon correction is given by

The finite-temperature correction is nonzero, contrary to
X2the result of Ref. 3 who eliminated I ' with the

momentum-dependent counterterm 6m . This example
shows clearly that, in addition to the consistency prob-
lems discussed before, finite-temperature counterterms do
not even give the correct decay rate at the one-loop level.
Finally, we note that the temperature correction in (61) is
positive, that is, the "thermal mass" correction actually
enhances the decay rate. In particular, in the massless
limit w ~1, Eq. (61) reduces to

I total 1+ 2 I tree (62)p 3PlH2

However, in this case the thermal fermi. on sector can no
longer be neglected and there will be additional contribu-
tions to (62).

IV. GENERALIZATION AND APPLICATIONS

It is straightforward to generalize our results to a gen-
eral thermal decay process with n-body phase space

P —+P, . P„and n )2. An important physical example
is neutron Il-decay n ~pe v with radiative corrections.
The fermion self-energy correction to the self-energy for
such a process is shown in Fig. 6. As already mentioned,
the technique for the cancellation of the pinch singulari-
ties can be applied to any such diagram', hence, the ReX
contribution will be of the generic form

f d Phase sPace $(P2 —m2)Tr[. . . (P+m)Re~(~+
Bm

hm
z

d phase space 5(p —m 2)Tr[ (p+m)Rey(p)(p+m)] .
~m Bm (63)
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FIG. 6. Self-energy correction to H»(q) for a general decay
process P~P,

The Lorentz-invariant zero-temperature part ReX can of
course always be reduced to a 6Z2 factor by including the
zero-temperature mass counterterm. For the finite-
temperature part ReX~ we could use either the covariant
expression (46), expanding around p =m, or a direct,
noncovariant mass-shell expansion of the type (51).
Evaluating the integral (63) we might call the contribu-
tion arising from the coefficient function proportional to
(p —m ) a "wave-function renormalization" correction,
the remainder a generalized "finite-temperature mass"
contribution. Notice, however, that for a decay process
with n-body phase space, n «3, the kinematical con-
straints (mass-shell 5 functions) are not sufhcient to fix
both energy and momentum for the external fermion; for
example, in neutron P decay the electron is emitted with
a continuous energy and momentum spectrum. Conse-
quently the expansion coefticients of ReX~ in the integral
will always be momentum dependent and do no longer
admit an interpretation as mass and wave-function renor-
malization counterterms 5m and 6Zz, not even in the
heuristic sense discussed in the previous section. Thus it
is also no longer possible to eliminate the "mass contribu-
tion" in the integral with an operational constant mass
counterterm, and (63) is indeed the generic expression for
the finite-temperature self-energy correction I ~ to an n-

body decay process. Needless to say, this also confirms
our previous conclusion that finite-temperature renormal-
ization is not a meaningful concept for decay and/or
scattering rate calculations.

If we are willing to give up Lorentz invariance of
the Lagrangian we are of course free to fix some arbi-
trary four-momentum and define operational finite-
temperature counterterms with respect to this renormal-
ization point (as we did for two-body decay), but these
constant counterterms will obviously not eliminate the
momentum-dependent "mass" term in (63) and merely
complicate the interpretation of the rate in terms of phys-
ical parameters. It is also a perfectly well-defined prob-
lem to analyze the quasiparticle propagators (17) for bo-
sons and (21) for fermions and extract physical informa-
tion such as correlation lengths, dispersion relations, etc.
However, as our analysis showed, these quantities will

have no direct relation to the parameters in our decay
rates, which is of course a consequence of the lack of
Lorentz invariance.

For a direct application of these results consider neu-
tron P decay with radiative corrections at finite tempera-
ture. This reaction is important in cosmology since it is a
central ingredient for the nucleosynthesis rates of the
light elements in the early Universe. These rates, in turn,

are measurable and provide an excellent probe of the con-
ditions in the early Universe. Previous calculations
treated the self-energy corrections to the electron in stan-
dard fashion as temperature-dependent mass shift. and
wave-function renormalization correction. The mass
shift was taken into account by replacing the
mass-shell 5 function for the electron by the dispersion
relation det(gf —m —ReX~)—which corresponds to
a momentum-dependent mass counterterm in the
Lagrangian —and the wave-function renormalization
function was defined by 5Z P~

= ( 8/Bir( )ReX~& „. A
rigorous treatment requires the computation of the
phase-space integral (63) for P decay. Since neutron P de-
cay is extremely phase-space sensitive it would be in-
teresting to see how this rigorous result differs numeric@1-

ly from the one in Ref. 23 and if there are any corrections
for the nucleosynthesis rates. The previous calculations
found the corrections to the abundances to be only
0. 1 —0.2%. However, recently a debate has arisen over
the reliability of the standard model of primordial nu-
cleosynthesis and several modifications and alternatives
have been proposed; a rigorous result for the temperature
corrections is thus clearly important.

Finally, let us emphasize that our results apply also to
thermal scattering rates, that is, to transition rates for ini-
tial distributions of two or more particle species. These
thermal cross sections are again related to the discon-
tinuity (imaginary part) of the relevant n-point Green s
functions which in turn can be determined by the finite-
temperature Cutkosky rules, and the self-energy correc-
tions to extract fermions lines will again contribute a
phase-space integral of the form (63). Since the kinemat-
ics of these scattering processes does not fix both energy
and momentum, a11 conclusions for decay processes with
n-body phase space apply as well. Potential applications
for our results are cooling rates for neutron stars, which
are in part determined by neutrino —gauge-boson scatter-
ing at high densities; the techniques described here for
fermion self-energies can of course be extended to gauge
theories.

V. SUMMARY AND CONCLUSIONS

We have analyzed the problem of radiative corrections
to finite-temperature decay rates to first order in pertur-
bation theory, using the decay of a scalar boson into two
fermions as an explicit example. Our treatment was
based on the Niemi-Semenoff real-time formalism of
finite-temperature field theory. The following results
were obtained.

Ghost vertices are necessary even to first order in per-
turbation theory to ensure a well-defined theory (cancel
pinch singularities), but do not contribute to the finite
part of the rate.

For the radiative corrections we found the vertex-
correction and the photon emission and/or absorption
processes to be essentially identical to previous results.
In particular, the vertex diagram renormalizes the cou-
pling constant. However, the finite-temperature part of
the fermion self-energy correction does not, in general,
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admit an interpretation in terms of local and renormaliz-
able mass and wave-function renormalization counter-
terms, due to the lack of Lorentz invariance.

We argued that finite-temperature renormalization is
inherently ambiguous and concluded that it is not a
meaningful concept for decay and/or scattering rate cal-
culations. Instead we derived an explicit algorithm for
the direct computation of the finite-temperature self-
energy corrections to a decay process and generalized it
for processes of cosmological and astrophysical interest.

An important point which we treated only brieAy, is
the cancellation of the infrared divergences and mass
singularities. To our knowledge a finite-temperature ver-
sion of the Kinoshita-Lee-Nauenberg theorem, which
guarantees the absence of these singularities at zero tem-
perature, is still lacking. In the low-temperature limit,
with only the thermal photon distribution taken into ac-
count, the cancellation of the thermal singularities was
shown for the vertex correction, emission and/or absorp-
tion rates, and the "wave-function renormalization part"
of the self-energy. ' Here we extended these results and
showed explicitly that the "finite-temperature mass" does
not introduce any new infrared or mass singularities.

After this work was completed we became aware of
two papers ' on a similar problem (dilepton production
rates in a QCD plasma). The authors employ the same
technique, finite-temperature Cutkosky rules, used in this
paper, but the emphasis is on the cancellation of infrared
and mass singularities, and their analysis includes also
the thermal fermion distributions. Both groups find com-
plete cancellation of the thermal divergences, a result
that supports the infrared reliability of finite-temperature
perturbation theory. We note that the authors of Ref. 27
employ the finite-temperature mass counterterms of Ref.
3 whereas the authors of Ref. 28 show the cancellation of
the singularities also directly without these counterterms.
This supports our assertion that the thermal "mass"
correction is well defined and momentum-dependent
counterterms are not needed to deal with -infrared singu-
larities.
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APPENDIX

We write the noncovariant low-temperature expansion
of ReX~ as

ReX~(p) =X,(p)+%2(co~, p),
where

BE(co,p )
X,(p)= 3 I„(I(—m)+ (p —m )

8& 2cop clcop

and

where k =lkl. I" can be calculated explicitly (cf. Ref.
3).

For I we obtain by direct integration
3 2

m T 1+u.
3UCO 1 UP

where u = Ipl/co, .
For p on the mass shell, that is, p =~, we have

.I= I —I= d k 1

e Pl&l

= 2~'T' ==const
3

and hence, for I,
I= (ro I p.I)—

I pl'

p m. T 1 1+U
Ipl' 3 u 1 —u

It is a pleasure to thank Randy Kobes for his contin-
ued interest and advice on the subject. Thanks are also
due to Gordon Semenoft' for numerous helpful discus- We calculate the decay rates

2 4
I '(mH)= —g (1—e ™H) lim J P 5(p2 —m )5((p q) m)[—8(p —) —nF(p)][8(q —p ) —nz(p —q)]IH - '-m' Bm ' (2')'

XTr[(gf —g+m)(P+m )X;(P+m)] .

Let us first consider I . The trace is easily reduced to

Tr[(gf —g+ m )(I(+m )X,(p +m ) ]

e
Tr[(gf —g +)m(p' +)m] Iq+ p (p —m ) —Tr (p —g+m) (p2 m)—1 BI aj

8m COp

BEBOP

Bc' 2cop

C

Taking the derivative and limit are now trivial and I ' reduces to
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2 2

r '(m„)= —'
(1—e ™H)f 5(p' —m')5((p —q)')[e(p') —nr(p)][e(p' —q') —nF(p —q)]4~3 2mB (2 )

XTr[(P —g+m)(gf+m)] I„+ p.1 BI
COp BC'

8 1I„— I r'"'( m )
4m'

where we used

e

4~

3 24' T
1

1+w r,„„( )
3wmH

1/2
BI p 4m

p ~ = —I and U= 1—
BC' mH

—=w for p =co =mH/2 .

I requires the explicit evaluation of the integral. For the mass-shell 6 functions we have

5(p —m )5((p —q) —m )=
4mH co

where

5(p —p (m ))5(co —co (m )),

O 2 mH m' —m mH
p (m )= +, co~(m )=

mH 2

and we have to evaluate

m —m

2 2r '(mH)= — (1—e ™H) lim f dp dc@ ~p~5(p —po(m ))5(co —co (m ))
4m. 8am H m ~m

X [e(p ) n~(p)]—[e(q p) n—F(p ——q)]

X Tr [(P—g +m )(P +m )I(P'+ m ) ] .

It is easy to show that for m =m, that is, for p =q —p =mH/2,
a„,[e(p') —nF(p")1[e(q' —p') —nF(p' —q')1- =

and therefore

2 2 a ~lpl1 '(mH)= — tanh(PmH/4) lim ~p~ Tr( . I)+ P Tr( I)
4m 8mmH m m Bm

We have for m =m, that is, for co~ =mH /2,

mH afp[=(co' —m')'"= w and /p/
=-

2mHU

1

2mHw

For the trace we And

lim Tr[(P —g+m)(gf+m)I(gf+m)]=4[mHI (p m)+p(m )—.I(m )(p +3m —2mHp )], ,—:—4m~~w~(p I),
m~m

where we recall that p.I=
—,'~ T =const. For the derivative of the trace we obtain

Tr[(P —g+m)(g+m)I(P+m)] p ~=4 mHI mHw [p(m ) I—(m )]
m Bm

=4mH(1 —w )I

m =m
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where we used

A A.

p(m ).I(m ) = co (m )+ I (m ) —p(m )l(m ) =p.I+ I (m ) .P m m

X2 ~ ~

Thus the rate I ' is given by

8 e2 2 f3mH
I '(mH )= — tanh [2mHw(1 —w )I +2mHwp I]=-

4m 8~m H

2 2 2

1+ ln r'""(m )
3m w w 1 —w

where we used the explicit form of I . Note that

lim (1—w )ln =0 .
1+w

m~1 1 w

X2To calculate the rate I ' where

.I
%&=%—5m ~=

8~ m

it remains to compute

~ P ~

Tr (Ii —g +m )(Ii +m ) (If +m )
Bm m

g2
Together with our result for I ' this yields

a=4p I [~p~(3p +m —2mHp )] 2 ~=6mHwp I .
m =m Bm

S2I '(mH)=— tanh [2mHw(1 —w )I 4mHwp I]—
4m 8am~ 4

2T2

3m w

2—2+ ln 1 '""(m )
w 1 —w
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