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We describe the calculation of a P function for the p-adic string o model in a tachyonic back-
ground, and show that the vanishing condition of the P function reproduces the tachyonic field

equation obtained from p-adic amplitude calculations, up to the fifth order in the tachyonic field.

By examining this o. model in the presence of a soliton background, we show that a previously ob-
tained soliton solution of the all-order tachyonic field equation follows from the requirement of
discrete scale invariance.

I. INTRQDUCTIGN

It has been known in string theory that the require-
ment of the world-sheet conformal invariance reproduces
the field eqjuations of the background fields in which the
string is propagating. Initially it was shown that the van-
ishing condition of p functions for conformal transforma-
tions results in the background-field equations. ' Subse-
quently, the above statement was also checked by various
methods, for example, the nilpotency of the Becchi-
Rouet-Stora-Tyutin (BRST) charge, and the unitarity re-
quirement of string propagation for the tachyonic and
massive modes, ' and also at loop orders.

Recently a different approach to string theory has been
originated by considering the world-sheet variables to
take values on a p-adic field. The observation that the
Veneziano amplitude can be written as an infinite product
of p-adic amplitudes suggested that number theory could
play an important role in string theory. One of the in-
teresting features of p-adic string theory is that N-point
amplitudes can be explicitly evaluated and a space-time
effective action for the tachyonic field was obtained to all
orders in the string tension parameter a (Ref. 9). Simi-
larly to the ordinary string case the p-adic string can be
formulated by using functional integration and the
world-sheet action given by a field theory on a p-adic
field. ' ' In particular, in Ref. 11, the O(X) nonlinear o
model on a p-adic field was formulated and it was pointed
out that a discrete scale invariance of the action plays a
similar role to the scale invariance in the ordinary two-
dimensional nonlinear o model. Other aspects of the p-
adic string and p-adic quantum mechanics have also been
investigated. '

In a previous paper, ' we have defined a P function as-
sociated with a discrete scale invariance of a p-adic string
theory with a tachyonic background field. We have
checked that the vanishing condition of the p function,
i.e., the discrete scale invariance of the system at the
quantum level, indeed reproduces the tachyonic field
equation (up to the third order in the tachyonic field),
which had been obtained from amplitude calculations
(Ref. 9).

In this paper, we will go to higher orders in the
tachyonic field. We first give a general form of our

effective action at an arbitrary order, and next show that
the vanishing p-function condition results in a tachyonic
background-field equation, which had been previously
obtained from the amplitude calculations. We perform
essentially a perturbative calculation in the tachyonic
field and the rigorous comparison between the vanishing
p-function condition and the tachyonic field equation is
accomplished up to fifth order. We also consider in the o
model a soliton background, which is an exact solution of
the a/l-order tachyonic field equation, and we see that
this solution follows from the requirement of the scaling
property of a propagator in our o. model, and of the scale
invariance of the world-sheet effective action. It is re-
markable that we can get the exact nontrivial solution by
a discrete scale-invariance requirement of our o model,
instead of solving the classical field equation directly.

This paper is organized as follows. In Sec. II we give
the general structure of our system with relevant nota-
tional arrangements, and give a general formula for the
¹h-order effective action with the vanishing p-function
condition as a formal relationship at an arbitrary order.
In Sec. III we apply these general formulas to the cases
%=1, 2, 3, and 4, in order to show that the vanishing
condition of our p function is in agreement with the ta-
chyonic field equation up to fifth order obtained from am-
plitude calculations. In Sec. IV we put our o model in a
special soliton background, and consider the discrete
scale invariance of the world-sheet effective action with
the right scaling properties of our propagators, and show
how a previously derived soliton solution can be under-
stood from these conditions. We regard this as good evi-
dence of the agreement between the vanishing P-function
condition and the full tachyonic field equation. Section V
is devoted to the conclusion of this paper. Some details
of the calculation to obtain the fourth-order effective ac-
tion are given in the Appendix.

II. GENERAL FORMALISM

In this section we give the basic and general structure
of our model.

Our p-adic string is described by a "world-sheet" o.-

model Lagrangian coupled to a tachyonic background
field C&(X(x)), as we gave in our previous paper
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S= —,' —f dx X"(x)bX„(x)—f dx g@(X(x))
P

exp —f dx W(C&) =f [2)P(x)]e (2.4)

1 p(p —1) 1 X"(x)X„(y)
dx dp

2 p+1 lnp Q

—f dx g+(X(x)),
Qp

(2.1)

where x,y, . . . are elements of a p-adic field Qp, while

p, v, . . . are for the target space-time world indices, and g
is a coupling constant. (For an introduction to the p-adic
analysis, see Ref. 14.) The integral J & is defined over

P
the p-adic field Q . The operator b, is a p-adic analogue
of the Laplacian operator, which is an integral opera-
tor. '0" From now on we omit the subscript Qp for p-
adic integrals, and also the lower indices p for p-adic
norms, just for simplicity.

Notice the existence of scale invariance under

x ~px, X"(x)~X"(x), (2.2)

X~(x)=Xg(x)+P(x), (2.3)

where X]o(x) is the background field and P(x) is a quan-
tum fluctuation. We can define our world-sheet effective
action W(@) by

in the first term in Eq. (2.1), while the second term of
(2.1) breaks this invariance by the canonical dimension of
N(X), like the usual bosonic-string case.

We can adopt the background-field method for the
N(X), starting with

S&= —
—,
' f dx P(x)bg„(x)

1—fdxg $ ('. g "8 8 4(X")n! ~nn=1

(2.5)

Our propagator for g is

(P(x)P(y) ) =g"'G (x —y), (2.6)

where G(x) is essentially proportional to lnlxl (Refs. 10
and 11). In actual calculation we need to regularize the
ultraviolet (UV) and infrared (IR) divergences. For this
purpose we use the regularization

Gx(x) = —ln(mlxl]~)

—ln(mlxl) for Ixl &p
—ln(mp ) for Ixl &p

(2.7)

for some large integer K and an IR cutoff m. Physically,
the E is for the UV cutoff for very small distance of x's.

The effetci ev'action W(@) is now

The Xg(x) can be chosen to be x independent for the pur-
pose of this paper. The g-dependent part of our action S
1s

exp —f dx W(@) =exp f dx gC&(XO) f [2)p'(x)]exp —' f dx pQg

oo
1Xexp gfdx $ g

].. .
g "9 . 8 @(X )n! ~nn=1

—=exp —f dx ( W' "+W' '+ . ) (2.8)

where W' ' denotes the ¹horder in @(Xo),which is evaluated as
r

—f dx W'~](e)= g~ f dx y g"' g""a a„e(X,) (2 9)
n=1

The W'" includes also —g4(XD ). In what follows we omit the suKx 0 for the background X]0. Graphically, this corre-
sponds to the evaluation of those Feynman diagrams in Fig. 1. Figure 1 contains all the connected graphs among exter-
nal backgrounds N(X] ), . . . , @(X]v) which can be given as an integral over Xp-adic variables x], . . . , x&. As an illus-
trative example for W' ], we evaluate the sum of a class of graphs in Fig. 2, with m, n, and p g propagators connecting
three external backgrounds &0(X] ), @(Xz), and @(X3):

m ](m+n)n ](n+p) p](p+m)
g dx]dxpdx33! ' (m +n)!(n +p)! (p +m)!pB, n, p

X(B, 8, ) (B,.B,)"(8, B, )pG (x, —x, )G"(x, —x, )Gg(x, —x, )C](X, )@(X,)4&(X, )

('B] '92) ('B2 'B3) ('B3 8] Y
,'g f dx—]d—xzdx3 g' Gpp(x] —x2)Gg(x2 — 3)Gxf(x3 x])4'(X])0'(X2)C'(X3)m! n! p!

' fdx]dx2dx3(lx]ilx lx231~ lx3]lx )~(X])@(XQ)@(X3) (n'c'g (2.10)
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(P(x, )P(x, ))a,„(l,.=G (x, —x, )(l, .(),—=G (x„)a, a, (2.1 1)

for a pair of derivative operators P&(3„' and +28„. The factors such as m!( +")/(m +n)! take care of all combinatorics
of contractions of m, n, and p g propagators connecting external background fields. After the operations of (3's, we
identify X's: X, =X/ X3:X.

In general cases for 8" ', we can repeat similar calculations to get the general formula

dxi dx g lx; —x, l&
' @(X,) @(XN )

—(n. c.g. )
i(j

(2.12)

As in Fig. 3, the total 8" ' contains also graphs of bubble-type graph insertions at each vertex @(Xi), . . . , N(XN),
which results in a multiplication of the ith vertex W(X; ) by a factor

where (n.c.g.) stands for the contribution of nonconnected graphs and g' „z denotes the summation over all non-
negative integers m, n, and p except for the cases when the three external backgrounds are not connected. The x," is for
x,. —x . The factor 81.82 arises from the contraction

[—,'Gx (0)Cl; ]~=exp[ —(,. l2)ln(mp )]=m '
p

q f 2

where the q=O case corresponds to the case without any bubble insertion. Therefore the 8" ' is

(2.13)

x f dx, dxN g (mix, —x, l~) ' C(X, )
. C(X )

—(n c g. ), (2.14)

where g—:p g has a zero 'p-adic dimension. " In practical calculations, it is convenient to extract all the K depen-
dence in the integral (2.14) by changing variables from x s to

(2.15)

Our integral (2.14) is

1 N
—g; ~U /2 Kg 10 /2dx8 = — g m ' '

pNf

X f dy, dyN Q (mp ly;
—y lo)

' 4(X) ) 4(XN) —(n c g ) (N=2 3, . . . ), (2.16)

where lylo is defined by

(2.17)

In the case of N= 1, it includes also the original action —Jdx g4(X) itself. By choosing yN to be an overall integral
variable, and changing the variables y; to z, =yz —y;, we get

Pr ( N )( q) (X ) )
— —N —cl /2 E ( Cl /2 + I )1-

g pl p
r

N —1xf ydz,
i=1 1(i (j(N —1

N —1

0 I 0
i=1

4(X, ) . N(XN) . (2.18)

The d'Alembertian without any indices denotes the
"total momentum" d'Alembertian:: —((),+ . +BN ) .
Here we have dropped the contribution of nonconnected
graphs, because, as we will see later, it is always zero in
our regularization scheme. [We have checked this explic-
itly up to 0 (@ ). ] It is to be understood that the opera-
tor (3; acts on C&(X;) with respect to X, , and afterwards
we identify all the X's: X1 =Xp = ' ' =X

We can define the renormalization of the "coupling
constant" @(X)by

W")+ W")+ . + W(")+ . = —ge, (X) . (2.19)

(2.20)

Accordingly, all the @'s before Eq. (2.19) are regarded as
the "bare" coupling constant C&i)(X). Our P function for
this coupling constant @~(X)associated with our discrete
scale transformation (2.2) can be defined by a response of
@~(X)under the shift of our cutoff IC:
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FIG. 1. A typical Feynman graph for a general e6'ective ac-
tion W( '. The solid lines are for g propagators, while the
dashed lines are for Xexternal background tachyonic fields.

FIG. 3. A class of graphs for 8' ' with bubble-type inser-
tions to each vertex.

The requirement of discrete scale invariance of our sys-
tem at the quantum level corresponds to the vanishing P-
function condition

P( @ )
—

( q&(K + I ) (I&(K)
) ~

—0 (2.21)

()—(C)(K+ I) C)(K))i

+-—I —Ij/2 (K+ 1)(CI/2+ I )(
—(CI/2+ I) 1 )

x( w")+ w")+ + w(")+ (2.22)

In practical calculations at higher orders in X, the ex-
plicit form of )33((I) ) itself becomes complicated. However,
we can use a simpler condition equivalent to (2.21). No-
tice that since (I1„ is fixed in the variation (2.21), we can
rewrite the condition (2.21) as

where

pr(N)(@ ) I—CI/2 K(CI/2+ I) gr(N)((y ) (2.23)

Our main purpose in this paper is to show that the con-
dition (2.22) reproduces the field equation for the back-
ground tachyonic field P (Ref. 9):

p-~/2 1+ gy = 1+gy (2.24)
P

In Ref. 9, the p-adic string N-point amplitudes were eval-
uated, and it was shown that these amplitudes can be
reproduced by the field equation (2.24) of the effective
theory. It was also noticed that besides the tachyonic
vacuum /=0 there exists a shifted vacuum 1+gp )p=(),
where we have no particle excitation but a soliton solu-
tion. In order to show that our condition (2.22) repro-
duces the field equation (2.24), it is convenient to perform
a perturbation expansion in g of our tachyonic field P:

gP
—gP( 1 ) +@2(tl(2)+g3y(3) +@4'(4)+

Thus the field equation (2.24) is, up to 0 (g ),

(p cl/2 —I
1 )y(1) ()

(p
—I:I/2 —I

1 )y(2) I
( 1 p

—1)y(1)2

(p
—I:I/2 —I

1 )y(3) ( 1
—1)y(1)P(2)

(2.25)

(2.26)

(2.27)

(
—c) /2 —I 1 )y(4)

+ —,'(1 —p ')(1—2p ')(t(", (2.28)

—I (1 p
—1)y(2)2+ I (1 p

—1)(1 2
—1)y(1)2y(2)

+ —,', (1—p ')(1 —2p ')(1 —3p ')P"'

+ ( 1
— )y(1)y(3) (2.29)

FIG. 2. A class of graphs for 8""without bubble-type inser-
tions to each vertex.

In Sec. III, we will examine if these equations are implied
by our vanishing P-function condition (2.22).
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III. VANISHING P FUNCTION UP TO 0 (4 )

In this section, we give explicit forms for
8"",. . . , W( ', using our general formulas (2.14)—(2.18).
We next derive the vanishing l33-function condition (2.22)
up to 0(@ ) terms. In Ref. 12, we have given W") and
W( ', ignoring 0(@ ) terms which should be kept in this
paper.

A. %=I and %=2 cases

We first derive S'" and 8" ', and next derive the van-
ishing P-function conditions up to 0(4 ). The W'" is
given by

Equation (3.2) is now proportional to I' '( —() ) 82)—I' '(0), where the I' '(0) term is for the subtraction of
nonconnected graph contributions. Actually we easily
see that this I' '(0) is just zero, and

r

~(2) &
-2 —G/2 K(CI/2+ 1)

(3.5)

where, in general, 4g—:N~(X, ) . 4&~(X)v). The van-
ishing P-function condition up to 0((I& ) is now, from
(2.22),

~(1) — — /2 K(G/2+ 1)(pB ~

while the 2V= 2 case is given by (2.14) as

(2) ~ 2 (0&+U2)/2 K( &+Up)/2+2K

(3.1) p (
—CI/2 —)

1 ) gq)

x fdx, dx2[(mix) x21«) ' ' 1] (3.6)

X @~(X( )@i)(X2 ) . (3 2) It is advantageous to perform the field redefinition

The subtraction of 1 is to exclude the nonconnected
graph contribution. As we did in (2.14)—(2.18), after
changing variables, we have

(2}— 1 —2 0]+ 2)/2 K( ~+Up)/2+K= —
—,'g ' '

p

x f dx[(mp xl())
' ' —1](I&~(x))c&~(x2) .

g@B=g+B+ 2g p (3.7)

This is because, as we see later at 0(@ ) and 0(@ ), it
simplifies considerable number of terms in the effective
action, and it has a general form to all orders, as we clari-
fy in the Appendix. After this field redefinition, our con-
dition (3.6) is

(3.3) —cl/2 —) 1) g(I&' + g
2

(3.8)

The integral here is easy to evaluate:

I' )(a):f dx(mp lxlo—)

=mp «(1—p ') k+ y (a+ 1)k

We are now ready to check if our condition (3.8) im-
plies the expected tachyonic field Eqs. (2.26) and (2.27) at
0((I2) and 0(@ ). For a systematic calculation, we ex-
pand @B in terms of g,

l

k= —oo Jc =0
g4 =g@'"+g 4' '+g N' '+g N' '+ . (3.9)

(3.4) and insert this into (3.8) in order to compare it with Eqs.
(2.26) and (2.27). We thus get

—1sr
~

—D/2 —1s
Q
—-( —U/2 —( 1 )(I2(1)+ -&

(
—0/2 —)

1 )q)(2) 1 ( 1 p )( 1 p ) (p(1)@(()=gp g p
1 —p

(
—(j/2 —1

1 )q (()+-2[( —cl/2 —)
1 )@(2) )

( 1
—1)(y(1)2]

2

—0/2 —1

+ ( —2 P [( ( 1 )@(()( 2
1 )@())+q)(1)( 2

1 )(P(1)+(y(1)( )
1 )(y(1)] (3 1Q)

1 2

where 4I '—:4( '(X, ), and as usual we identify X(=X2—=X, after the action of 8,. on 4( ). In (3.10) we used relations
such as

( 1
—0/2 —( )(P(1)q&(() ( 1

) 2 + ( 2 — /2 —( )(y(1)q)(1)

—[ 1
) 2+ (

) 2 1 )
—H/2 —1]Q(1)@(1)

The 0 (@ ) corresponds to 0 (g ) in the above perturbative calculation. At 0 (@),our condition (3.10) implies

(p
—cl/2 —)

1 )q)() ) —P

(3.1 1)

(3.12)
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which is nothing else than (2.26) with the identification P"'=Ct"'. The 0 (4 ) terms in (3.10) imply

(
— /2 —1

1 )(y(2) 1
( 1

—1)@(112
2 (3.13)

which means that we can identify P( '= @( ', i.e., up to 0 (Ct ), we get the expected tachyonic field Eqs. (2.26) and (2.27)
with /=&521. Notice that all terms with poles, e.g. , I/( I —p

' ') at 0(4 ) in (3.10) disappear, if we use the 0 (4) Eq.
(3.12), and only polynomial terms corresponding to our expected field equation at 0(@ ) remain. We will perform a
similar calculation when we check the vanishing P-function condition at 0 (@ ) in Sec. III C.

B. Effective action at 0 {@ )

In this subsection we describe the derivation of W' '. According to the general formula (2.18) for %=3, the integral
we have to evaluate is

For each of these subregions, the integrals can be carried out as follows.
Subregion (ia):

I'"(ia)= f «dylxlo+' lyly lx
—ylai= f

lxl & lyl &1 lxl & lyl —1

—1

a+P+ y+2
(1

—1) a+y+1
a+@+1

I"'—= f «dylxlo lylg lx —ylg,

where a —= —i), ()2, p= —(}2.82, y—:—B3 (),. The integration region will be divided into the following subregions:

(1) lxl —1, lyl —I lx —
yl —1 (» lxl & lyl —I (b) lyl & lxl —I (c) lxl = lyl —I lx —

yl —1 '

(ii) lxl ~ 1, lyl & 1, lx —yl ~ 1 (or x~y interchanged);

(iii) lxl = lyl ~ 1, lx —yl & 1;
lx —

yl &1 .

(3.14)

(3.15)

(3.16)

Subregion (ib):

(3) —(3)
l with tt and P interchanged '

Subregion (ic):

I"'(ic)=f «dylxlo lylg lx —
ylai

Ixl = Iyl &1, lx —
yl &1

k=0

(n+P+r+21( f
1& I1 —(I &

where y =xg, lx —
yl =p "l 1 —

gl ~ 1. Hence
oo

I( 1(ic)=( 1 —p 1) y p( +P+1'+ 1" f dpi 1 —gli'+ fk=0

(3.17)

(3.18)

(3.19)

The first integration is performed by putting g:—a +py ( lyl & 1,a =2, . . . ,p —1):
p —1

f „, , dkli —Pl'= g f,
I

-'~l=' a =2 lyl-

while the second integral is, by g= I+p27, p
"+'

l2)l 1,

f . . . dgl I —gl'= f „, di)P

(3.20)

Therefore (3.18) is

0 —y —1—(1 p
—1) —

1
—1 y p(y+ )(—(1

—1) P (1
—(@+1)k)

I= —k+1 1 —p
—y —1

(3.21)
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—1 —1 (1
—1) a+(3+1

I' '(ic)=(l —2p ') +
p a+p+y+2 1 pa+p+y+2 1 p

a+p+1

Subregion (ii):

(3.22)

I' '(ii)= f dx dylxl +r=(1—p ') g p"+' +r'"
lxl~1, lyl&1 k=0

p
a+y+1p

Subregion (iii):

I"'(111)=f dx dylxl lyl~.
lxl = lyl & 1, lx -yl & 1

Notice that lx —yl (1 implies that lxl = lyl. Therefore,

(3.23)

(3.24)

I' '(iii)=(1 —P ') g P' +""I d2),
k =0 lql &1

wherey =x (I+p "21) and lxl =p". Hence,
(X) —1

I(3)( ) ( 1 1) y (a+p+1)k —1 —1 I2

k=0 a+P+ 1

Subregion (iv):

(3.25)

(3.26)

1 p
1 2 2 3 3 1

2-a a -a a -a.a

I' '(iv)= I dx dy =I2 (3.27)
lxl &1, lyl &1

It is easy to see that the contribution of nonconnected graphs to S' ' is just zero, by the observation that
I' '(a, P, y ) =0, if at least two of a, P, y are zero. Thus adding up the subregions (i), . . . , (iv), we obtain

1 B 8 8 'B

+(2 perms)+1 —2p
1 2 2 3

+p
—1

+(2 perms) +p
1 2 2 3

(3.28)

where we have rearranged some terms, and (2 perms) denotes two other terms obtained by the permutations with
respect to 8), 82, and B3 in the preceding term. The C)s always means @s(X,) @2)(X)v). Since (I&2) is symmetric in
the three tachyonic fields, instead of adding (2 perms) we can multiply the preceding term by a factor of 3.

C. Vanishing P-function condition at 0 (@ )

As we did for W' ' in Eq. (3.7), we can perform a field redefinition of C)s, in order to absorb some terms in Eq. (3.28).
In fact, we can arrange terms in W"'(@2))+ + W' '(@2) ) as

W'"(@ )+ W' '(@2) )+ W' '(C&2) ) = —gN ——'g 1 —p + -1@2
1 —a, a,

1 p

1-3 —1

1 2 2 3 3 1
2-a a -a a -a.a

(1
—1) ( 2 2 3

p p
1 —O.a, -a a,1 2 2 3

+(1—2p ')

+p 3 p
—1

3 —2 3
1-a a -a 0

1 2 2 3

2

4

1 p
—1) ('2 2 3

p p
1-a a -a .a1 2 2 3

p
—1

2 8 8 8 '0 c3

1 p 1 2 2 3 3 1

+1—2p ' e~3
1 p

—1

(q) + (gp
—((y2 )2

1 2

J(1) (@~ )+J(2) ((P&2)+J(3) (@&3) (3.29)

neglecting 0 (@ ) terms. Here our field redefinition is
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g@ =g+~+ —,g P C'g+
3, g P @'a

and the operators J"are defined by

(3.30)

—1J(ll. (@~ )
— g@~ J(21.(@~2) 1 g (Pt2

1 21 —p (3.31)

+1—2p

—1 a1 a2 a2 a3
J(3) ((y,3) 1 3 1 p 3(1—p )p

6g
1 2 2 3 3 1

1 1 2 2 3
2-a -a -a a -a .a I-a a -a a

It is worthwhile to note that all the terms in 8' ' which are absorbed into the field redefinitions come from the integral
subregions (ii), (iii), and (iv) where at least one of ~x; ~

or ~x,
—xj. ~

is less than unity.
In terms of J's, our vanishing P-function condition (2.22), ignoring 0 (N ) terms, is

—I
/2 —1 1 ) g@& 1@2

1 2

lg-3 1 p
1 2 2 3 3 1

2 —a .a —a .a -a a

1 a a a 'a
p p

1 2 2 3
I-a a —a a +1—2p ' @~3 (3.32)

We now use the expansion (3.9), and arrange terms in (3.32) in a similar way as we did in Eq. (3.10). The 0(C&) and
0 (4 ) terms are already checked in Sec. III A, so that we examine only purely 0 (4 ) terms here. To avoid complica-
tion, we use at least the 0 (N) field equation (3.12). Now our condition (3.32) implies, at 0 (@ ),

O
—

(p
— /2 —1 1) g3@131+g3

+—g

1 —p q)( i )q)(2)

1 p
—1

1 2 2 3 3 1
2 —a a —a a -a a

i —a, la, +a, l

I —a, (a, +a, )
1 —p

+1—2p-' C"" (3.33)

/2 I
1

—a1 a2 —02/2
1

( 1
—1

)
P q)(llc (2)

( 1
—1

)
P (P(lip&(2)I-a, -a2 1 —a1 a2 1 2

1 2
1

1 2
p

1 —a a —0/2 —1
1 2 2—(1 p

—
)

P P q)( 1 l(g)(2)
1 2I —a a

1 2
p

I —a a
1 2

( I p
—1)@(1)@(2)+( 1 p

—1) p q 1 1 1(
+2/2 1

1 )g 12)

1 p
Similarly, for the third term in (3.33), we have

For the second term in (3.33), using the 0 (N) field equation (2.12), we rewrite

(3.34)

—,'(1 —p ') p
—0/2 —1

1 2 2 3 3 1
2 —a .a -a .a —a .a

( 1
—1

)
1' 2 2' 3

3
I —a, .a, —a, a,

1 p
+1—2p-' e,""

Therefore our condition (3.33) is

(1) (1)2
I-a a ~I ~2

1 2

&
—a.a

1 2—
1)( 1 2p

—1)@(1)3 1
( 1 p

—1)2

1 —p
(3.35)

O g3[(p 1 1/2 1
1 )P)(3) ( 1 p

1 )(P(11@(2) ~1( 1 p
1 )( 1 2p

—1 )Z ( 113]

(3.36)

1 —a, a,
P P @11)[( 2 1)(P(21 1

( 1
—1)q)(1)2]

1 2

At this stage, if we also use the 0 (@ ) field Eq. (3.13), all the pole terms disappear. Thus our condition (3.33) implies

(p
—Cl/2 —1

1 )(g&(31 ( 1 p
—1 )(P(1)q)12)+ 1

( 1 p
—1 )( 1 2p

—1)@(1)3

which is nothing else than our expected field Eq. (2.28) with the identification P"=@"(i = 1,2,3).

(3.37)
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D. EfFective action at 0 (N4) and vanishing P function

The effective action at N=4 is also obtained, but the calculation is rather tedious, so that we quote here only the re-
sult of the vanishing P-function condition at 0 (@ ) (some details of the derivation are given in the Appendix):

O=g [(p ' —1)@' ' ——'(1 —p ')4&' ' ——'(1 —p ')(1 —2p ')4&"' 4' '
2 2

(
( 1 p )( 1 2p

i )( 1 3p
i )(P( i )4

( 1 p
i )g)( i )(P(3 )]

+[terms vanishing after the use of Eqs. (3.12), (3.13), and (3.37)], (3.38)

which is nothing else than our expected Eq. (2.29) with
the identification

gp-'y+ 1 =p "('(~-)))exp ——'X X~
2

(i =1,2, 3,4) . (3.39) p
—1

lnp
(4.1)

To conclude this section, we have checked that
our vanishing P-function condition (2.22) implies the
tachyonic field Eq. (2.24) obtained by amplitude calcu-
lations after the identification g{()=g@+=gN' "
+ . +g 4' '+ . Even though this statement is ex-
plicitly confirmed up to 0(4 ), i.e., up to 0(g ) in the
g-perturbative expansion, we expect that such agreement
between the vanishing P function and the tachyonic field
Eq. (2.24) must persist to all orders; some further support
for this conjecture will be given in Sec. IV.

Here we are using D-dimensional Euclidean space coordi-
nates X" (p = 1, . . . , D). However, in a Minkowskian
space-time, we have a corresponding solution with D re-
placed by D —1. Combining this fact with the above re-
sult, it seems interesting to examine the discrete scale in-
variance of our o. model in the presence of the soliton
background solution, instead of the perturbative ap-
proach we have taken in Secs. II and III.

In order to see how the above solution (4.1) follows
from the requirement of the o.-model scale invariance, we
put our o model (2.1) in a background

IV. o. MODEL IN SOLITON BACKGROUND g4 = —
—,'aX„X"+b, (4.2)

In this section we study our o model (2.1) in the pres-
ence of a soliton background which is an exact solution of
the tachyonic field Eq. (2.24) to all orders.

In Secs. II and III we have examined the equivalence of
the discrete scale . invariance, i.e., the vanishing P-
function condition to the background-field Eq. (2.24), up
to the 0 (4& ) terms by means of perturbative expansions,
and we are convinced that this equivalence is valid to all
orders. On the other hand, we know that the all-order ta-
chyonic field equation is satisfied by a soliton solution,
which was obtained by Brekke, Freund, Olson, and Wit-
ten in Ref. 9:

dx —
—,'X"AX„+—,'ap X„X"—bp

where g =gp as before.
Our world-sheet effective potential V is defined by

(4.4)

where a and b are some constants. We specify the back-
ground N in this form, from the observation that an exact
solution (4.1) has the Gaussian dependence on X". Recall
also the relationship between N and 4':

1+gp '4&'=exp(gp '@),
as in (A12) in the Appendix. Accordingly, our action
(2.1) is

exp — dx V
f [2)X"]exp fdx( —,)X"hX —

—,'ap X„+bp )

f [2)X']exp f dx —,'X"bX
(4.5)

We can perform this path integration explicitly, by using the p-adic "momentum" representation b, „(Ref. 11) of the La-
placian 6 defined in (2.1):

exp —f dx V =exp f dx bp + ,'D f du ln(b, „—ap ) ,'D f du(l—nb, „)——
=exp f dx bp + ,'D f du in[1+a—p Gx(u)] (4.6)

Here we have also used the general formula detJR =exp[tr(lnIR)] and b,„'=—Gz(u) for the p-adic "momentum" rep-
resentation Gz(u) of our propagator Gz(x) defined in (2.7). Since the field redefinition (A12) between @' and N was the



1162 NISHINO, OKADA, AND UBRIACO

result of our special regularization used in (2.7), we have to adopt exactly the same regularization for the propagator
GK(x). The explicit form of GK(u) is easily obtained by performing a p-adic Fourier transformation' of (2.7), as

GK(u) =
—1c —K —1

p for lul p

0 for lul —p

Now the u integration in (4.6) is easily performed:

K K

f du ln 1+ (1—p 'lul) =(1—p ') g p "ln(1 —ac 'p '+ac 'p )

(4.7)

—pK(p 1 ) y p lln( 1 ac lp i+ac lp i+I)
1=1

(4.&)

V = —p b — g p 'ln(1 —ac 'p '+ac 'p ' ')
1=1

(4.9)

Our discrete scale invariance under K ~K + 1 is
recovered, when the term in large parentheses in (4.9)
vanishes. This gives us a condition

b = g p 'ln(1 —ac 'p '+ac 'p ') .
—i+i

l=l

(4.10)

In addition to this condition, we have to consider the
scaling property of the X" propagator. As in the usual
case of massive propagators, we define GK"(u) as the in-
verse of the Lagrangian in Eq. (4.4):

G"(u) —=
1

GK '(u) '+ap

I

logarithmic, so that it has a constant shift under this scal-
ing, like two-dimensional massless bosonic field theory,
while in the case of 5 =0, there is only one single term of
lxl which scales like GK'~'(x) —+p GK'~'(x).

For all values of 6 other than these two special cases,
we see that the integral (4.12) does not scale like
GK'(x)~p "GK'(x) for a fixed ul. This can be easily
confirmed by various methods, e.g., by expanding the in-
tegrand in (4.12} around 5=0, and noticing the appear-
ance of a polynomial of lxl ' with more than a single
term. Only in the special ease 6=0, we can absorb the
scaling of the propagator by appropriate redefinition of
the field X", and hence recouer the scale invariance of the
total Lagrangian.

Therefore we are left with the two conditions

p
—K —

llul

(1—ac 'p ')lul+ac

The corresponding x-space propagator is

(4.11) b = P g p 'ln(1 —ac 'p '+ac 'pl '),D (p —1)
1=1

(4.14)

G(a)( )
—c

—
lp

—K —l

X p i 2~aux

1 —5(1—p 'lul)

(4.12)

where a—:(1—5)cp.
There are two special cases of 5 in (4.12). The first is

when 5=1; this is the massless case, corresponding to
GK(x) of Eq. (2.7). In this case, therefore we know that
the integral of (4.12) gives GK '(x) = —lnlxl for lxl +p
up to an irrelevant infinite constant. Another special case
is 5=0 (or equivalently a =cp); in this case the integra-
tion (4.12) is easily performed to give

—2K
GKl'i'(x) =c (4.13}

1+p
for lxl ~p . In both of these two cases we see that the
propagator GK"(x) has the right scaling property under
x —+px. In fact, when 5=1, the propagator is essentially

These equations imply that

D lnp =
—,'c 'D, a =cp .

2(1 —p ') (4.15)

This means nothing else than the exact soliton solution:
4i.e.,

g += —
—,
' cpX„X"+—,

' c 'D,
(4.16)

'gc"=exp(gp '~') —1

=p 'l' "exp( ——'cX ) —1 .
2 P

V. CONCI, USIONS

In this paper we have established a closed form for the
Xth-order effective action in a tachyonic background as
an integral expression (2.18). Applying this form to the
X= 1, 2, 3, and 4 cases, we gave the vanishing P-function

Here we have identified P with 4', and used the relation-
ship (A12) between @and N'.
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condition (2.22) up to 0(@ ), and we have shown that
this condition actually gives the tachyonic background-
field Eq. (2.24) (obtained from amplitude calculations )

up to 0 (@ ). Therefore, as in ordinary string theory, the
equivalence between the vanishing p-function condition
and the field equation of the effective field theory is also
valid in the p-adic case. In the case of p-adic string
theories, this equivalence is more illustrative than ordi-
nary string theories. This is because we can explicitly get
the effective action at 0 (@ ) by summing up geometric
series. [See, e.g., (3.16)—(3.27).] In ordinary string
theory, because of the infinitely many massive states
present in the theory, we have to take a special on-shell
limit with respect to the physical mode under question, in
order to see the above equivalence. ' In p-adic string
theory, on the other hand, the calculation is carried out
in a more rigorous way, by the use of g expansions both
for the full field equation and the effective action, as in
Eqs. (2.26) —(2.29), and (3.12), (3.13), or (3.37).

In Sec. IV we have checked the discrete scale invari-
ance of our o model in the presence of a soliton solution
which supplies a nontrivial background. We saw that a
previously derived soliton solution can be arrived at by
using the two conditions, i.e., the requirement of the
discrete scale invariance of the effective action, and the
condition for the right scaling property of the X" propa-
gators. The result of this section introduces several new
concepts. First, it supports our claim of the all-order
equivalence between the vanishing P-function condition
and the full tachyonic field equation, because of the soli-
ton solution satisfying the tachyonic equation to al(t or
ders. The second noteworthy concept is that, unlike ordi-
nary string theories, where we use either a weak-field ex-
pansion around "Aat" backgrounds or the cx' expansion,
we can put our 0. model directly in a nontrivial back-
ground, as an exact solution of a full-order field equation.
In addition, this technique can be useful in searching for
new soliton solutions of the tachyonic field equation,
based on path integrals in the O.-model approach to the
p-adic string.

ed in part by the U.S. Department of Energy under
Grant No. DE-FG05-85ER 40219.

APPENDZX

In this appendix we give some details for the derivation
of the W' ' and the vanishing p-function condition at
O(C4).

Using our general formula (2.18) for %=4, we see that
we have to evaluate the integral

I'"=f dx dy «Ixlo lylg Izl(II lx —
ylo ly

—zlo lz —xi) .

(ii) fxf &1, fyf &1, fzf &1;

(iv) Ixl ) lyl ) Izl &1;

I
x

I

= ly I
& lzl & I;

(a) fx —
yf &1, (b) lx —yf &1,

(A2)

(vi) Ixl & lyl = Izl & 1;
(a) fy

—zf & 1, (b) fy
—zf & 1,

(vii) Ixl = lyl = fzl & 1;
(a) lx —

yl &1, ly
—zl &1,

(c) fx —yf &1, fy-zf &1, fz —xf &1.

The total integration region is divided into the following
subregions:

ACKNOWLEDGMENTS

We are grateful to P. H. Frampton for valuable discus-
sion and reading the manuscript. This work was support-

I

We also have other regions associated by the permuta-
tions of x, y, and z.

As a typical example, we perform the integration over
the subregion (iv):

dx dy «Ixlo lylg Izll lx —ylo ly
—zlo lz —xfo

oo k —11—1

(4)(. ) )3 y y y (~+S+q+()k+(p+e+1)l+(y+1)m
k=21=1 m=O

I(4)(iv) = fix) & lyl & lzl 1

= f dx dy «Ixlo+'+" lylg+' Izlg
l~l & lyl & Izl —1

By parametrizing lxl =p", fyl =p', lzl =p, k» & m —o we g«

(A4)

The result of this summation is considerably simplified by the use of identities, such as

b

1 —ab
1 —b

(1—a)(1—ab)
(A5)

After this arrangement, we get the triple-pole expression
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—1 —1) a+(3+s+.+„+2 (1
—1) a+s+~+1p p p p p

a+P+y+5+e+g+3 1 a+P+5+e+g+2 1 a+5+q+1 (A6)

We can similarly perform the integration over other subregions. Like the cases of 8" ' and 8" ' in Secs. III A and
III 8 the contribution of all the nonconnected graphs can be seen to vanish. With the use of the operators J"defined
by (3.31), W' ' can be given by

W(4)( @ )
—J( 1 ) g p 3@4 +J(2) ( I

gp 1@2 )2+2J(2) @ g 2p 2@3 +3J(3)( @ P& 1

gp 1@2 ) ~J(4) (@4 )
1 1

4I 2 B B 3) B B B 2 B B

(A7)

where J' ' is defined by

1 —p" (1—p )(1—p )(1—p ) 1 —p 1 —p

+ (1—p ') (1—2p ')p +4 (1—p ') (1—2p ')p
1 p 1 p

+(1—p ')(1 —2p ')(1 —3p ')

where

~ =—-a, .a, —a, -a, —a, -a, —a, .a, -a, a, -a, a, +3,
a—= —a, a, —a, a, —a, a, —a, a, —a, a, +2,
C—= -a .a —a .a —a .a —a .a —a .a +24 1 4 2 1 2 2 3 3 1

D—= —a, a, —a, a, —a, .a, —a, a, +1,
~—= —a, .a, —a, a, —a, a, +1.

(A9)

Therefore, if we neglect higher-order terms in 4, we have

W'"(e )+ W"'(e )+ W'"(4 )+ W' '(e )

=J"'(C ' )+J"'(4')+J'".(@')

~J(4).(q)'4) (A10)

with the field redefinition
1-

ge'B geB+2g P O'B+ 3~g P O'B+4tg P eB .

(Al 1)

At 0 (N ) and 0 (&0 ), respectively, we saw in Eqs. (3.8)
and (3.31) that the terms —

—,'g p '@2) and —
—,'g p

respectively, in W' '(&bi)) and W' '(@i)) are absorbed
into the field redefinition g @B=g NB
+—'g p '4i)+(1/3!)g p @i). At 0(C& ), we observe a

f

similar phenomenon that the term —
—,', g p 4B arising

in W' ' from the subregion (i) in (A2) is absorbed into the
0((I)") term of the field redefinition (Al 1). In general for
W' ', the term —( I/¹!)g p +'C&i) arises from the in-
tegral subregion, where the p-adic norms of all the vari-
ables are smaller than one, i.e., ~z; ~

( 1 (i = 1, . . . , N —1)
in the integral (2.18), which is absorbed into the 0(4& )

term in the general expression of the field redefinition:

g@B=g'4B+ —g P 4g+ g P

+ —,g p 3e4~+1 -4 -3 4

=p f exp(gp (@~) —I] (A12)

As we can see from (A7), if we substitute the field
redefinition (All) into (A10), we also have contributions
to W' '(4&2)) from J' '((Iii)) and J' '(411). It is easily
shown that those contributions are obtained exactly from
the integral subregions of (A2) in which at least one of
~z; ~

or ~z;
—zj ~

is less than one, just as in the W' '(+~ )

case discussed in Sec. III. From this observation, we ex-
pect that the field redefinition (A12) holds to all orders in

After this field redefinition (All), our vanishing P-
function condition up to 0(4~) is

' —ll[J"'(~' )+J"'(@')+J"'(C')+J('(@' )]

( 1 1) 1 —a1.sq —sq. sq
p p

1 —8 .3 —3
1 2 2 3

p
—1

2-a a -a.a —a aI 2 2 3 3 1

+, ( —p ')'(1 —2p ')p'+, (I —p-')'(1 —2p-')p
pC

+(1—p ')(1 —2p ')(1 —3p-') e,'4

—1

(
—I:)/2 —1 1) -@~ 1-2 P @i2 1 3

1-a, -a2I 2 1 p 1 —p

(1
—1)3(1 A+D) D (1

—1)2 F. (1
—1) 8

(1—p )(1—p )(1—p )

+1—2p

(A13)
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As we already did in Secs. III B and III C we can use the lower-order field equations (3.12), (3.13), and (3.37). After
arranging terms, and eliminating terms vanishing after the use of those lower-order field equations, we are left with the
condition

O g~[(p (-)/2 i
1 )@(&) 1

( 1 p
I )g (2)2 (

( 1
—i

)( 1 2
—1 )@(1)2@,(2)

—
—,', (1—p ')(1 —2p ')(1 —3p ')4&'" —(1 —p ')@"'4' ']

c 8 D C A+D D
4(1 —i)3 2 p 1 +4 p + p —6 p — p p C(i)4

1 —p 1 —p 1 —p 1 —p 1 —p ( 1 —p )( 1 —p )( 1 —p )
(A14)

We see here that the terms in the large parentheses cancel each other completely, and only the square brackets remain.
This implies nothing else than the 0 (@ ) tachyonic field Eq. (2.29) with the identification P( ) = 4&( '.
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