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As is well known, Kaluza-Klein compactification of five-dimensional gravity gives a four-
dimensional theory of a tower of massive spin-2 fields interacting with background gravitational,
electromagnetic, and scalar fields. Working to lowest order in the massive fields, one can obtain a
Lagrangian for a single massive spin-2 field interacting with gravitational and other background
fields which is consistent up to terms of higher order in the massive spin-2 field. This consistency
depends on massive spin-2 gauge invariances which are valid up to terxns of higher order in the
massive field. We explicitly exhibit the four-dimensional Lagrangian and its gauge transformations.
This analysis parallels a similar analysis in string theory carried out elsewhere.

I. INTRODUCTION

The problem of finding consistent interactive Lagrang-
ians for spin-2 massive particles was first formulated in
Ref. 1. As extensively discussed in the literature, at-
tempts to introduce interactions in the free theory by
minimal coupling result in the loss of some of the con-
straint equations necessary to ensure the existence of the
appropriate number of degrees of freedom. The inclusion
of extra terms in the Lagrangian which might allow one
to circumvent this difhculty leads usually to loss of
causality. '

The root of this problem has to do with gauge invari-
ance. Consistency of massless and massive fields of spin
greater than one-half is always achieved by means of
gauge invariance (Yang-Mills invariance, local supersym-
metry, and general covariance for massless particles of
spin 1, —'„or 2; spontaneously broken Yang-Mills invari-
ance or local supersymmetry for massive particles of spin
l or —', ). Likewise, consistent Lagrangians for free mass-
less fields of spin «2 achieve their consistency via gauge
invariances that permit the unphysical modes to be
gauged away or set to zero by constraint equations; and
consistent free Lagrangians for massive fields of spin «2
are best understood as Lagrangians in which an underly-
ing gauge invariance is spontaneously broken, with the
mass terms arising via a Higgs-type mechanism. The
problem with coupling massive fields of high spin to elec-
tromagnetism or gravity is that the coupling ruins the
gauge invariances that, in the free theory, tame the con-
straint equations and decouple the unphysical modes.

A solution to the problem of gravitational couplings of
massive spin-2 fields is offered in principle by Kaluza-
Klein theory. For instance, compactification of five-
dimensional gravity to the product of four-dimensional
space-time and a circle gives, as is well known, a theory
that contains at the massless level a graviton, electromag-
netic field, and dilaton, and in addition an infinite tower
of spin-2 massive fields interacting between themselves
and with the massless modes.

The consistency of five-dimensional Kaluza-Klein
theory depends on the presence of the whole infinite

tower of massive spin-2 modes. If one is not primarily in-
terested in this particular theory, but one wants to ex-
tract general features associated with the attempt at con-
sistent coupling of a massive spin-2 field, then it is natural
to try to extract one massive spin-2 field from the infinite
tower and to try to focus on how gauge invariance is
achieved for that field. This cannot be done exactly
(since the five-dimensional symmetries mix up the various
massive modes), but if one works to all orders in the
four-dimensional massless background and only to first
order in the massive fields, then the different massive
modes can be decoupled. Of course, working only to first
order in the massive fields means that we will not achieve
the massive spin-2 gauge invariance exactly, but only to
lowest nontrivial order. At this order we explicitly work
out the four-dimensional interacting Lagrangian and its
gauge transformations. One of the purposes of this de-
tailed analysis is to compare it with a somewhat parallel
analysis in string theory.

II. REVIE% OF KALUZA-KLEIN THEORY

We start from pure gravity in five dimensions

S=f d'x& —"'

and compactify it in M XS ', the four-dimensional
space-time times a circle S'. We assume the ground state
to be given by the metric

g„+P A„A P A„
$2 A $2 7 (2)gMN

or, in a more compact form, by

gM~dx dx =g„dx"dx +P (d9+A„dx")

gXR
gpv —Ap

—A" P +A A"
)M

In the above, p, v are indices in four dimensions and M, N
are indices in five dimensions, M =(p, g) where 8 is the
coordinate on S'.

The inverse of the above metric is
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Five-dimensional tangent space indices will be denoted as
A, 8, C = 1, . . . , 5; four-dimensional tangent space in-
dices will be denoted as a, b, c =1, . . . , 4. The vierbein
E ~ is given by

E' =e' E' =0, E =PA, E q=P, (4)

where e „ is the four-dimensional vierbein associated
with g„. The inverse vierbein is EA

E,"=e,", E, = —A, = —A„e,",
E ~=0

The fields g~iv =(g„„A„,Q) are periodic in 8 and may be
Fourier expanded in the form

+ (F'bFd, +F'dFb, ),
4

(5)R a — (D y)Fa +D Fa

Fa Da
,'

D,y+ D,&F„,
DdDb4'2

(5) 5 0 cR bsd
——

4
Fb Fcd—

we find

2
' 'R'b, d=' 'R'b, d

— (F'bF d+F', Fbd)C

(13)

gMN(x 8) X gMx(x)e (6)
From (13) we can compute the components of the Ricci
tensor. Setting them to zero gives the background equa-
tions of motion RA& =0 for the massless modes:

We also write gM~=g~~+h~~, where g~~ is the 0-(0) (0)

independent piece of the metric and h~& is the 0-
dependent metric perturbation. If one retains only the
0-independent part in the above expression, one obtains a
theory of massless spin 2, g „' ', massless spin 1, A „' ', and
a massless spin 0, P( '. [From now on we neglect the su-
perscript (0) in the 8-independent piece of (6), whenever
this does not create confusion. ] For convenience and
completeness we rederive here in the vierbein formalism
the well-known results for the massless modes. From the
definitions

E'=E' dX, a, =E aA M

one derives

(s) —(s) a (s)
Rbd R bad + R bsd

DbDdd +-'y'F 'F =0bd
~ 2 b cd

D'D, P(s)R v F Fcd a 0

' 'R = '(D "P)F ———+D F =0

Finally the curvature scalar is

D'D
(s)R =(4)R ——'&2F F b 24w ab

(14)

(15)

E'=e', E =P( A +d8),

(3, =e,"(a,—~„a,), a, =—a, ,
1

which is the well-known action for g„, 3„, and p de-
rived by Kaluza-Klein compactification of the action (1).

III. THE MASSIVE MADES

and

("dE'=de'
(&)

' 'dE =PdA+dgh(A +d8)=+F,be, heb+ AE

where F,b =e,"eb Fp and F„=B„A —B,A„.
By using the definition of spin connection in four and

five dimensions, respectively,

The purpose of this paper is to derive the four-
dimensional action for the massive modes propagating in
a massless background, and its gauge transformations as
well. We will start in five dimensions. Since we will work
in the vierbein formalism, we will derive the action for
the massive 0-dependent modes contained in the Fourier
expansion of the 8-dependent vierbein E M(X, 8). We
are going to treat the 0 dependence as a perturbation:
namely, we will write it as

de'+co' 5 e"=0, dE "+0 5 E =0 E A=EA+- A (16)

a.y Eb ~a =~a —+Fa E5a ab & b b b2
(10)

Now, by using the definition of the Riemann tensor

R =dQ+QAQ,

and the definition of its components

R' =-'R' E'AE"+R' E'R, Eb 2 bcd bc 5

we can compute the five-dimensional connection 0"~ in
terms of the four-dimensional one ~ b.

where E" is the 0-independent vierbein just computed
and 8 is the 0-dependent part

y +A eins

n&0

We will assume ZA to be small and keep only terms linear
1rl 6'A.

Similarly, for the spin connection, we write

n A~ =nA~+ZA~,

where A. z is the 0-dependent part of the spin connec-
tion.

Starting from the definition of 0 "~, namely, from
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dX A+5', n, EB=0, (19) B~B+f, x ~x'=x (27)

one can solve for A, B in the linearized approximation
and derive

A, "B=(DBZ "c D—"
FBC )E

which implies that

~„-~„—ag .

Under this transformation, e'AB transforms as

(28)

ve + c is definedby Z =8 c& &AB =g Act B is
symmetric in its indices, and DB is the covariant deriva-
tive in terms of the "unperturbed" spin connection Q
associated with the massless modes only. Precisely

DA C ~A~ C + EA~+ C (21)

where 0"B=0 B cE . From here we can compute the
correction P "B to the zeroth-order Ricci tensor R "B
and get the full Ricci tensor R "B..

P "=Z" +P" P" =~'D gAB B BP B L B

BCD DC~ B D

and finally

AB ( /AE+~AE )( BCD++ BCD )(

(22)

Assuming that the background metric obeys R AB =0, the
condition that R AB =0 to lowest order in 8 is

D DCZAB —D DBZCA —D DAZCB+DADB=O (23)

and obviously following from the Lagrangian density

X=@*"(D D e DDAecB—
DDB&CA 3—nABD Dc&»——

or equivalently from

(D ceo AB)(D e ) 2(D c~e AB)(D E )

(25)

—
—,'(D e*)(Dce') . (26)

Notice that because of the 0 integration, in the linearized
approximation, the modes in the Fourier expansion of
~AB~

in 0&( n)
&AB ~~ ~AB ~

are decoup'. ed. As is well known, '"*' these modes are
massive, with mass proportional to

~
n ~, and charged, with

charge n. Electromagnetic gauge invariance is automati-
cally built in the covariant derivative DA. Electromag-
netic gauge invariance follows from the five-dimensional
symmetry

where Z is the trace g
Notice that the above equation is nothing but the well-

known linegrized equation for the metric perturbation
hMN (Ref. 10). In fact it reduces to it if
TAB =EA EB h~~. It is convenient to make the change
of variables zAB ~eAB =JAB —

—,'zgAB since then the field
equations (23) become symmetric in A and 8,

DC~AB D DA ~CB D DB CA 3 I ABD DC~C C C C

(24)

IV. THE MASSIVE SPIN-2 FIELD
GAUGE INVARIANCE

It can be shown that, if the background equation of
motion (14) are satisfied, that is, if the massless back-
ground fields are on shell, then (23) is invariant under the
gauge transformation

+ AB +AB DA4 DBkA (29)

where gB is an infinitesimal parameter. Equivalently (24)
is invariant under the gauge transformation

~AB ~AB DAkB DBKA + l ABD kc (30)

obtained by expressing (29) in terms of the new variables
eAB =TAB —

—,'ZgAB. Notice that the invariance (29) is a
"piece" of the general coordinate invariance in five di-
mensions:

gMN gMN MEN +NUM (31)

Here 2)M is difFerent from DM =E MDA, since DM is the
covariant derivative associated with the spin connection
Q"B, i.e., with the 0-independent massless fields only,
while in the equation of general covariance X)M is the full
covariant derivative, i.e., associated with the full metric
gMN =X.gMN«)e'"' (Ref I».

We will take advantage of this gauge invariance to
prove that (23) is the equation for a massive spin-2 parti-
cle interacting with gravitational and electromagnetic
background. Reduction to four dimensions will provide
consistent interacting equations and Lagrangians for
spin-2 massive particles. To this purpose we will make
use of the gauge transformation (30) to reduce the 15
components of eAB down to five propagating com-
ponents. %'e will see that we can impose the usual condi-
tion of vanishing divergence D eAB =0. These are con-
straints that a massive spin-2 field needs to obey in any
dimension. In five dimensions the above constraints
reduce the number of components from 15 down to 10.
Moreover a residual gauge symmetry which follows from
(30) will allow us to impose five more constraints @=0
and e,5=0. These constraints will also imply @~5=0.
Therefore, we are reduced to five propagating com-
ponents only. The e A5 fields have been absorbed into the
surviving spin-2 fields to provide them masses via the

~(n) ~(n) —inf
&AB ~&ABe

The derivative 3, e'AB' =e,"(8„—in A „)E'„"B equals the
usual four-dimensional gauge-covariant derivative for the
charged field e("'. The field e("' also possesses an addi-
tional gauge invariance, whose spontaneous breaking can
be regarded as the origin of the mass of this field our
purpose here is to elucidate this.
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Higgs mechanism.
In more detail, let us first choose a gauge such that

D "e'AB =0; i.e., from (30) let us choose a gA such that

The main ingredient in the above derivation is the fact
that follows from {10)that Q, b is antisymmetric in its
indices a and b. The complete gauge choice is therefore

~AB D ~AB D DA4 D DBkA +DBD kc

(32)

D eA~ =0, @=0, eA5=0 . (37)

Notice that the last two terms cancel by permuting the
order of covariant derivatives of one of the terms and us-
ing the equations of motion for the massless background,
so that (32) is simply

o=D'&'AB =D '&AB D "D—A4 .

Again, the 15 degrees of freedom have been reduced to
five propagating degrees of freedom, as is appropriate for
a spin-2 field in four dimensions. We will now write some
of these relations in four-dimensional terms. To this pur-
pose we express the five-dimensional covariant derivative
in terms of four-dimensional covariant derivatives. For
instance,

Obviously (33) can be satisfied with a residual gauge in-
variance left over such that D DAgB =0. If the massless
background satisfies its equation of motion, this residual
gauge invariance su%ces to impose the tracelessness con-
dition e'=0:

e' =e+ 3D chic =0 .

'"D.kb
=~.4 &'b.—S, &'b.—4
=i }D,g„++F, g

(5}DAg gag +g5g ~a bg IIa 5g II5 ag

4 Db=D'g, +—f5+

(38)

This determines one of the gauge parameters, say, g5,
completely.

Notice that the equation of motion (24) and the con-
straint (33) imply (if the background equation of motion
RA~=0 is satisfied, in which case we can commute co-
variant derivatives), that D DAe=O. This is compatible
with (34) only if the gauge parameter gc obeys the residu-
al gauge condition D "DAgc=0. Moreover, we are now
still free to make additional gauge transformations pro-
vided that D "DAgB =D "gA =0. Indeed, we choose our
last gauge condition to be

cab
——cab Da gb Db ga

—+ Dab
—D'g. + +in g D'itp

e,'5=a, 5
—D, g —+F', g, ——g, +in

(39)

The covariant derivatives on the right are now four-
dimensional covariant derivatives. Proceeding this way,
calling g5=g we write the gauge transformations (30) in
four-dimensional terms

e'ABC =eABC (DAgB+DBgA )C—=0, (35)

DAC~+D~CA =0 . (36)

where C"=CA =(0,0,0, 0,$) is a Killing vector in the
background space

We can also return to space-time indices by using the
four-dimensional vierbein e „by introducing the four-
dimensional tensor e„=e'„e e,b, the four-dimensional
vector B„=e'„e,5, and the scalar g=e55. In terms of
these fields the four-dimensional gauge invariance reads

If we take the divergence of this equation, use the previ-
ous gauge choice D eA~ =0, the fact that C is a Killing
vector, and the equation of motion for the massless back-
ground, we see that the residual gauge conditions
D DAgB =D gB =0 are indeed required by compatibili-
ty. Actually we can use (35) only to solve for the vanish-
ing of four of the quantities, say, e,z C, because we have
already determined g5 completely. This implies e„=O
[since it follows from (2) that P cannot be zero]. Howev-
er, it is easy to see that if e,5=0 and D eA~=O, then
@55=0as well. Indeed

0 D A gA ~C A ~C A~A5 A5 A, C5 5, AC

=8 e =—e =05
55 55

(40)

where D„=V„—in A„and V„ is the ordinary four-
dimensional covariant derivatives for a space with metric
g„. As said, these equations are manifestly invariant
under the electromagnetic gauge transformation~ 2„—Bg, g' —+ge '"f. The transformations {40) are
very similar to the gauge transformations of the spin-2
massive multiplet in the bosonic string. ' ' The gauge



INTERACTING LAGRANGIAN FOR MASSIVE SPIN-TWO FIELD 1099

condition e„5=@=0yields the four-dimensional gauge
conditions B„=O, tP=O, and e=e"„=0 .With these
choices the remaining gauge condition becomes
D "(Pe„,) =0 T. he tensor (t e„has zero trace and vanish-
ing covariant divergence and, hence, corresponds to a
propagating field having five degrees of freedom as re-
quired for a massive spin-2 field.

V. THE LAGRANGIAN

The gauge-invariant Lagrangian density (25) can be
translated in four-dimensional language by expressing the
five-dimensional derivatives in terms of four-dimensional
ones as in (38). A very lengthy calculation gives the fol-
lowing result (to be integrated over V —' 'g Pd x):

X=DPe'"'D e„+2D"B*"D„B+ ', D"Q—*D„f ,'D"—e—'D„e 2D—"e* PD,e„2D—"B*D B„
D P D„P+4 Re(B,D"B* )+4 " Re(B,D B*") ', Re—(D—"E'D„p) 4$F—" Re(eP„DPB,*)

4$F"—Re(B*PD e ) —4 Re(D "g*e ) ——Im(e +"B*)+ Im(B D"P*)4n
& PP y

14&
y P y P

Dp+4 Re[(D"g*)P]+ e*P E —— e*e— — PF ~—F
y2 P4' 3 y2 3 y2

+ 2 +$2F F~l B~&B —2 + + B*&B~+ $2F F, , g*"~g&&
a/3 PV PV

Re(e*g)+ F Im(B*"B )+4D PF PRe(e'" B )
2n, 4n

y2 p
P4' I4 " P

D" DP
+4n Im(e„+'")+4n Im(QB*„)+4D PF""Re(QB*„)+2/F„F Re(f*e"') . (41)

This rather formidable looking Lagrangian can be reduced to Inanageable proportions in the case where the massless
background obeys A„=O, /= 1 (so that we are considering the propagation of a massive spin-2 field in a gravitational
background only). In this case, we get

X=(VPe*" )(V e„)+n e*"'e„2(VP—E"" )(V„e ) ,'(V"e*—)(V—„e)—,'n e"@+2—V"B*'V„B 2V"B*"VQ-„
+ 2V"/*V„g —,'Re(V"e*—V—„Q) 4n Im(e„—V"B* )+4n Im(B„V"P*) 4n g*—P ', n Re(e'g—) . — (42)

By varying this Lagrangian and then imposing the
gauge conditions B„=/=@=0,one gets the equation

(43)

which can be also obtained from a four-dimensional tran-
scription of our earlier equation (24). In the absence of
the gravitational field this equation obviously describes a
free propagating massive spin-2 field. Notice that if there
was no mass term, (43) would be the four-dimensional
equation of linearized gravity in Lorentz gauge and it
would have causal propagation. ' The mass term, of the
right sign, indeed does not alter this property. More gen-
erally, since our theory is obtained by compactifying a
five-dimensional causal .theory, the compactified theory
should be causal as well.

Our results can be reexpressed as follows. We have ex-
plicitly derived a Lagrangian for a massive spin-2 field in-
teracting with an electromagnetic, gravitational, and sca-
lar field. This Lagrangian X is invariant under the gauge
transformations (40) as long as the background fields are
on shell, i.e., if Eqs. (14) are obeyed. This gauge invari-
ance is essential in showing the consistency of the theory.
Of course, this is not a fully consistent formalism, since
Eqs. (14) do not include the back reaction of the massive
fields on the massless ones. This is the price we pay for

working only to lowest nontrivial order in the massive
fields. Working to lowest nontrivial order in the massive
fields has permitted us to write a four-dimensional action
for just one massive field which is probably more or less
as simple as possible and which is consistent in lowest
nontrivial order but not exactly.

The situation can be clarified by modifying the gauge
transformation laws somewhat so as to permit the back-
ground to be off shell. Indeed the invariance (30), the
five-dimensional version of (40), is a piece of the five-
dimensional general coordinate invariance (31) which
holds for the action (1). Therefore, even if the massless
background is oQ' shell, the total five-dimensional action
must be invariant under (30). This total five-dimensional
action includes the action X for the 0-dependent mode
plus the action R' ' built with the 0-independent piece of
the five-dimensional metric gM&. [To avoid confusion, we
have reintroduced here the superscript (0) to indicate the
0-independent modes. ] Of course, we must take g~~ to
obey the appropriate transformation laws derivable from
(31). More explicitly, if we vary the action

I = f d'x& g"'(Z"'+Z)—

under (31), we obtain
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gl —f d5XQ g(o)(~ (o) i (o) ~ (o))fi
MN

+ f d5XQ g (g«(o g o )zMNmx 2gmz

+ f d5x (Q g(o)+ ) figM)v
~g(o)

(45)

~gMN ZMN
(0)— (46)

Then the first two terms in (45) vanish. It can be checked
that the first two terms in (45) are of order g e where g is
the gauge parameter and e is the strength of the massive
field, while the third term is of order g e . The point is
that by supplementing (30) with (46), one has gauge in-
variance o+shell (without requiring the background field
equations to be obeyed) up to terms of order g e . If the
background is on shell, one achieves gauge invariance to
the same order without the need for (46) . This is related
to the fact that the back reaction of the massive fields on
the massless background does not make its appearance at

for some ZM~. The first term comes from varying+—g ' )R ( ' and the last two from varying +—g ' )X.
The ability to write 5% in the above form is a restatement
of the fact that 5X is zero under (30) if the equations of
the massless background are obeyed (as they have been
until this point). If we want to release the request that
the massless fields are on shell, we can supplement the
gauge transformation law (30) with

order g.e.
The question now arises of whether by adding addi-

tional terms to the Lagrangian and/or transformation
laws, one can obtain full off-shell gauge invariance (and
thus consistency) not just to order g.e but exactly.
Kaluza-Klein theory gives one way to do this, and string
theory gives another. Both of these solutions to the prob-
lem involve introducing an infinite tower of additional
fields. One might wish to ask whether the problem has a
solution without introducing such an infinite tower. One
might guess that such a solution does not exist, but this is
not entirely clear. For recent work on the subject we
refer to Refs. 15 and 16 and references therein.

Tote added. In a report motivated by this paper, M. J.
Duff, C. N. Pope, and K. S. Stelle [Report No. CTP-
TAHO-14/89 (unpublished)] restate the arguments why
Kaluza-Klein compactification will necessarily break
massive spin-2 gauge invariance, if the infinite tower of
massive fields is truncated to a finite set. This is true, of
course, but does not settle the question of what happens if
one considers a deviation from straightforwardly truncat-
ed Kaluza-Klein compactification.
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