PHYSICAL REVIEW D

VOLUME 40, NUMBER 4

15 AUGUST 1989

Quantum states of a field partitioned by an accelerated frame

Ulrich H. Gerlach
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
(Received 24 November 1987; revised manuscript received 10 August 1988)

The discrete Minkowski Bessel mode technology is developed. This development includes (i) the
eigenvalue spectrum, (ii) the phase-space integral formulation of the quantized Klein-Gordon (KG)
field in accelerated frames with a finite bottom (b > 0), and (iii) the procedure for making the transi-
tion to bottomless (b =0) frames. This technology is used to show that the Rindler vacuum state of
an acceleration-partitioned real KG field is perpendicular not only to the Minkowski vacuum state,
but also to every quantum state associated with a ‘““detector” accelerating through what initially was
the Minkowski vacuum. In fact, every element of the Hilbert space containing the Rindler vacuum
is perpendicular to the Hilbert space containing the Minkowski vacuum.

I. INTRODUCTION AND MOTIVATION
Unruh,! as well as others,”3 considered elementary
quantum-mechanical processes involving an accelerated
“detector” interacting with a wave field. The “elementa-
ry”’ nature of their processes consisted of the fact that
only a countable number of quanta (in their case one or
two) were involved in each interaction process.

Although the Minkowski vacuum is a thermal state
when viewed relative to a uniformly accelerated frame,
they found that there is no inconsistency’ in the
quantum-mechanical description relative to an inertial
frame as compared to the description relative to the ac-
celerated frame. Their result, when formulated in terms
of transition probabilities, states that the transition prob-
ability for their system (a uniformly accelerated detector
plus wave field) is independent of the frame of reference.

In other words, inertial and accelerated observers
make consistent, i.e., equivalent, predictions. Consider a
system consisting of the ‘“‘detector” interacting with a
wave field, and assume that this system makes a transi-
tion from state |1, ) to state |¢ ,) as described by the
accelerated observer 4. Similarly assume that the same
system makes a transition from state |i/, ) to state |$; ) as
viewed by the inertial observer I. Stated mathematically,
the equivalence of the outcome of the gedanken experi-
ments asserts that the transition probabilities relative to
A and [ satisfy

|<¢A|¢A )|2:|<¢1|¢'1)12 .

It is a theorem due to Wigner* that the correspondence
¥ 4 —; due to the change of observers 4 —I can be ex-
pressed by means of a unitary (or antiunitary) transfor-
mation U:

|¢'A>:U|'//1) .

This transformation is well known.> Its existence implies
that the 4 and I descriptions of an elementary quantum
process can be achieved in Hilbert spaces which are
essentially the same. In fact, one may visualize the two
descriptions of the elementary process in one and the

(1.1)
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same Hilbert space. Then the change in coordinate sys-
tems A —1I is represented by the unitary change of basis
U in that Hilbert space, which in the above-mentioned
gedanken experiments contains the Minkowski vacuum
state.

The purpose of this paper is to point out that the result
obtained by the above-mentioned workers depends in an
essential way on the “elementary’ nature of the processes
considered by them.

Let |0g ) be an element corresponding to the wave field
in its ground state relative to the accelerated coordinate
frame. This state is variously called the “Rindler” vacu-
um, or “condensed” vacuum state, of the acceleration-
partitioned wave field. We shall show that this state has
the property that

(0g|¥,)=0. (1.2)
In other words, the vacuum state, and hence all excited
states obtained from it by letting polynomials of creation
operators act on it, lie outside the set of quantum states
considered by Unruh and others.

Put differently, the Rindler (“condensed”) vacuum of
an accelerated frame determines a Hilbert space of quan-
tum states which is distinct from Hilbert space deter-
mined by the Minkowski vacuum. There is no unitary
transformation which connects elements in these two
spaces.

The orthogonality of two vacuum states can only occur
in the framework of the quantum mechanics of an infinite
system,® such as a Klein-Gordon system in an infinite
volume. By contrast, a system consisting of a finite num-
ber of degrees of freedom, or even a system consisting of
an infinite number confined to a finite box (but having,
say, a finite particle density) does not have orthogonal
vacuum states. In fact, it is the infinite-volume limit, also
called the ‘thermodynamic” limit, which makes possible
the orthogonality of two vacuum states and their corre-
sponding Hilbert spaces. Such an orthogonality is well
known in condensed-matter physics®’ such as super-
fluidity, superconductivity, and so on. We shall show
that the set of quantum states of an acceleration parti-
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tioned Klein-Gordon (KG) field is no exception.

Our objective is to exhibit the condensed (“Rindler”)
vacuum state for a KG field in an accelerated frame with
a finite (b >0) bottom. This is done in Sec. IV. A com-
parison and contrast of (a) this condensed state and its ex-
cited states with (b) the Minkowski vacuum and its excit-
ed states is given in Sec. V. The necessary discrete-mode
technology is developed in Sec. III.

This technology is new. It corresponds to the pro-
cedure by which discrete sums of plane-wave modes in a
finite inertial cavity are changed into phase-space in-
tegrals. Here such integrals are developed for a pair of
symmetrically placed cavity walls accelerating into oppo-
site directions.

Section VI consists of three remarks that place the re-
sults of this paper into the realm of condensed-matter
physics.

II. OBSERVERS AND COORDINATE FRAMES

The set of timelike world lines, with or without ac-
celeration, is partitioned quite naturally into mutually ex-
clusive and jointly exhaustive equivalence classes. Two
timelike world lines lie in the same equivalence class if
and only if the intersection of the causal past and causal
future of one world line equals that of the other.

An equivalence class determines a unique space-time
neighborhood whose boundaries are null surfaces. For
example, the equivalence class determined by a world line
with uniform acceleration is a space-time region which is
bounded by the future and past event horizons of this
world line.

There are many world lines that yield the same space-
time neighborhood but the observers which trace out
these world lines are all equivalent: any one lies in the
causal past or causal future of the other. Thus, one world
line can communicate acquired data to any other. Conse-
quently the equivalence of the world lines extends to the
physical viewpoint of acquiring measured data about the
space-time neighborhood.

One therefore can, and we shall, designate arbitrarily
one of the world lines as that of the “observer,” while the
others as those of his ““assistants.”

A coordinatization of the space-time neighborhood is a
“coordinate frame.” In mathematics it is called a “coor-
dinate chart.” We, however, would like to use the phys-
ics label “coordinate frame” because it conjures up a lat-
tice of meter rods and clocks. They are necessary for the
measurement of the properties of the field in the space-
time neighborhood. A “coordinate frame” is not to be
confused with a “tangent frame,” which is defined only at
an event.

As an example, recall an “inertial coordinate frame.”
Physically it consists of a global lattice of meter rods and
clocks. An “inertial observer”” would be one who is locat-
ed at any one of these lattice sites. The other lattice sites
serve as locations for his assistants. They are his eyes and
ears by which he measures physical quantities at the
space-time events of the lattice. From the viewpoint of
physical measurements it is sufficient that only a single
observer be assigned to some lattice of the given (inertial)
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coordinate frame. Thus one can say that there is a one-
to-one relationship between inertial ‘“‘coordinate frames”
and inertial “observers.”

As another example consider an accelerated coordinate
frame and its accelerated observer. The definition is
analogous. In fact, we shall consider a pair of frames and
the corresponding pair of observers. We shall label each
of these two frames by I and II. Each consists of a lattice
work of accelerated robust clocks whose world lines are
given by

t=+&sinhr, 0<§,

x ==x&coshr, (2.1)

y=y, z=z.

Here + and — refer to the two frames, I and II, re-
spectively. The &, y, and z held constant, characterize a
lattice point. The lattice points trace out a congruence of
hyperbolic world lines. Proper time and space intervals
in each frame are measured by referring to the metric
whose form relative to this coordinate frame is

ds?’=—Edr+dE+dy+dz? . (2.2)

The “accelerated observer” (for coordinate frame I,
say) is assigned to one of the lattice sites, say 0<&=g !,
Y =Yy, Z =2, so that the proper acceleration at this site
is g. The remaining lattice sites of frame I are occupied
by his robust assistants. Their world lines lie in the inter-
section of the causal past and future of the observer.
Their purpose is to make physical measurements whose
results are transmitted along time or null lines to the ob-
server. The intersection of the observer’s past and future
is the space-time of Rindler coordinate chart I (|7| <x).
Rindler chart II (|z] < —x) is associated with the other
hyperbolic world lines in Eq. (2.1), but the metric has the
same form Eq. (2.2). The two charts I and II are causally
disjoint: observer I cannot communicate with observer
I1.

An inertial observer is, however, different from either
accelerated observers. The inertial observer traces out a
straight line (e.g., x,y,z held constant) in space-time. The
intersection of his causal past and future contain those of
I and II. Thus, unlike an accelerated observer, he can
make measurements, i.e., collect measurement data, both
in I and in II.

III. NORMAL MODE EXPANSION FOR
THE PARTITIONED SYSTEM

The unusual feature of a uniformly accelerated frame is
that it induces a relativistic wave field to be partitioned
into two causally disjoint subsystems. The natural har-
monics for the Klein-Gordon (KG) field partitioned in
this way are the two types of Minkowski Bessel (MB)
modes:8

BX(kU,kV)
5—21— [ expl F ik (Ue®+ Ve ~0)/2]e ~“%d0 .
o — o0

(3.1)
Here
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U=t—x, V=t+x,

k=(k}+k}+m?)'?>0,

i(k,y+k,2)

¢(x)=7/% f_wwdw f_ww f_:dzk a B &——

2

This is an expansion corresponding to a continuous mode
spectrum. We also would like to have a discrete mode
sum expansion, very much like a plane-wave mode expan-
sion in a finite volume. This will be done below after this
subsection, and the impatient reader can proceed there
directly. The purpose of the following subsection is to
show how a certain peculiarity of the MB modes leads
directly to the “condensed” (“Rindler”’) vacuum state.

- A. Degenerate expansions

The peculiar property of the MB modes is this— the
Rindler sector 1 (or 1I) coordinate representatives of B
and B form a linearly dependent pair. In other words,
when the domain of definitions B and B is restricted
to accelerated frame I (or II) then the pair of positive and
negative Minkowski frequency functions B become
linearly dependent. This is so despite the fact that BE
are independent on IUII. Compare Figs. 1(a) with 1(b).
Actually such a behavior is not considered unusual in
mathematics. For example, the two functions f (x)=|x]|
and g(x)=x are linearly independent on — o <x < o,

1

¢(x)=7/172 JOI7 [ deak

one obtains by replacing B and B, with
uwBaT_va(: ERwl’ _va;:_‘_uw t: = :)2

the new expansion

¢(x)=—‘/172 J7J7 7 dedk
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and the + and — superscripts refer to positive and nega-
tive Minkowski frequency functions. In terms of these
modes the real KG field has the form

*i(kyy+kzz)

+al, B, :
a vk 7] 2 (3.2)

but they are linearly dependent relative to the restricted
domain 0=<x < o0.

The unusual feature of this linear dependence is that it
prevails throughout the space-time of frame I (or II).
Consequently there is an infinite degeneracy in the
manner that the KG field can be expanded in terms of the
MB modes. This expansion degeneracy is inherited by
the whole quantum state structure of the KG system. In
particular there is a corresponding infinite degeneracy in
the “ground” states associated with each of the respective
MB mode expansions. The resulting task is therefore
this: what criteria does one use to pick out “the” ground
state? Unruh gave one, and it resulted in the ‘“Rindler”
vacuum. We shall give another, and it also yields the
“Rindler” vacuum.

The linear dependence of

e trw/2

. inl,
Kiw(kg)e eTX e?frw/Z

=
B, in IT ,

1 (3.3)
T

when restricted to I or II implies a degeneracy in the ex-
pansion of the KG field in terms of these modes. From
the standard expansion, Eq. (3.2), i.e.,

Here the new expansion coefficients are related to the old ones by

- t to—, t
Aa)k uwawk+uma—w—k’ A—w-k—vmawk+uwa—w~k .

The constants u , and v, are quite arbitrary, except that

ul—v2=

i(kyy+kzz) —i(kyy+kzz)
T p— + €
2 +(aka—w+a—m—kB—w) 21 ’
(3.4)
(3.5)
ilk y+k_ z) —ilk y+k z)
e ” : T * e Y z
I FALRY + A Ry
(3.6)
(3.7)

This guarantees that Egs. (3.4) and (3.6) are equal. To guarantee that the commutation relations and hence the Klein-
Gordon (“Wronskian”) inner product be preserved by the transformations (3.5) and (3.7), we demand without loss of
generality that u, and v, are real. Consequently one parametrizes the coefficients by the parameter a,

u,(a)=cosha, 0<w<w; v, (a)=sinha,,

(3.8)

and one may speak of an a -parametrized collection of degenerate expansions. A typical member is given by
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1 ei(kyy+kzz)
- o0 ) o0 2 e -
p == [T [7 dod’k | 4,lalR

Here the operators

Alal=a cosham+aJr_w_k sinha,, , ( )
3.9
A_, lal=a_, 4 coshaw+a:f,k sinha,,
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FIG. 1. Minkowski Bessel (MB) modes BX (kU,kV) and
their coordinate representatives in the respective Rindler charts
L II, F,and P.
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—i(kyy +k,2)

+A_, 4[a]R, +c.c. (3.92)

2

[

are actually functionals of a because a,=a(w) is actually
a function of . Thus for every function a(w) there is
one and only one expansion given by Egs. (3.9).

The two most important expansions give rise to the
Minkowski vacuum and the Rindler vacuum, respective-
ly. The expansion a(w)=0 is simply the standard expan-
sion equation (3.4). It has operators a,; and a,, which
refer to absorption and emission processes relative to an
inertial frame. The reference state |0(a=0)) of the KG
system for this a(w)=0 expansion is determined by

a,|0(a=0))=0, a_, ,|0(a=0))=0.
It is, of course, the familiar Minkowski vacuum state
[0y ) =10(a=0)) .

The second well-known expansion is characterized by
the condition that, in I,

0=R s

=(—e™ ?sinha,,
+e"m’/zcoshaw)—1— K, (k&e'e
T

w>0. (3.10

What is the meaning of this condition? It is an expres-
sion of the quantum absorption principle. Recall that in
quantum mechanics atoms, detectors, and so on, are
caused to have absorptive transitions only by fields con-
sisting of positive-frequency harmonics (e’“"; »>0).
Negative-frequency harmonics (e'®") do not cause any ab-
sorptive transitions. Consequently quantum mechanics
demands that the field absorption operators have no
negative-frequency harmonics. This is precisely the con-
dition expressed by Eq. (3.10). This quantum-mechanical
absorption principle is the one which allowed Unruh!
to arrive at the fact that the Minkowski vacuum
state viewed relative to an accelerated frame with an
event horizon has a physically relevant character given
by the wuniversal Davies-Unruh temperature 7T
=(1/k)(#i/c)(g/2m). Equation (3.10) yields an expan-
sion for ¢(x) where the function a,=a_;(w):

e™/?/V2sinhro = cosha,=u(a,) ,
(3.11)

e "™’ /V2sinhmo = sinha,=v,(a;,) -

The absorption operators for this expansion are no longer
the Minkowski absorption operators. Instead, the new
operators are those obtained by inserting (3.11) into (3.7).
The corresponding reference state |0(a)) is determined
by

Aa)k[acrit]|0(acrit)> =0,

(3.12)
4 ‘w—k[acrit]lo(acri() > =0 .
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It is variously called the “Killing” vacuum,’ or the

“Rindler” vacuum.’ Its form given in Sec. VI. Actually
it is a type of condensed vacuum state with nonzero and
nonsharp (in fact, infinite) photon number. Macroscopi-
cally this state manifests itself, it turns out, as a photon
superfluid. (Nota bene: The appellation “photon” is our
way of implying that the a, particles are archetypical
and, except for intrinsic spin effects, have the same prop-
erties as the familiar Maxwell wave quanta in Minkowski
space-time.)

Besides Unruh’s there is an alternative criterion for ar-
riving at the second expansion characterized by a(®) in
Eq. (3.11) and hence by the corresponding reference state
(3.12). This criterion is based on a Rayleigh-Ritz varia-
tional principle. Using that principle one finds the quan-
tum state which minimizes the subsystem I (and/or II)
Hamiltonian.>!® That quantum state is also character-
ized by Eq. (3.11).

B. Discrete mode expansion

One of the most direct ways of discussing the quantum
mechanics (QM) of infinite systems is to first discuss the
QM of a system confined to a finite volume and then con-
sider the infinite-volume (“thermodynamic”) limit. This
is a standard procedure for making a transition from a
discrete mode spectrum to its continuum limit. This is a
useful procedure for plane-wave modes, and we shall ex-
tend it to the MB modes of the acceleration-partitioned
KG system. The payoff will be a proof of Eq. (1.2).

Consider a KG field partitioned by a pair of accelerat-
ed frames, one in Rindler chart I, the other in Rindler
chart II. These frames are to be the interior of a pair of
semi-infinite boxes. Let the transverse area be L2, so that

0<y,z=<L ,

and let the bottom of each be located symmetrically at
&E=b >0 in I and II, respectively. Their tops are open.
Thus

b<E<o .

It is the pseudogravitational field of each accelerated
frame that prevents the escape of the wave field toward
E=o. The spectrum of MB modes forms therefore a
discrete set. See Fig. 2. The coordinate representatives®
of these modes satisfy the Sturm-Liouville problem

e-Led vtk

ic K, (k€)=0

g

with the same fixed and given homogeneous boundary
condition at £=b,

alegkby+a2d§ o kb)= (3.13)

in I and in II.

f.
(RINDLER FREQUENCV)

W

TRANSVERSE WAVE#) —

,,.::.:;;iﬁu

FIG. 2. Minkowski Bessel (MB) mode eigenvalue spectrum.
Each solid dot represents a MB mode allowed by a symmetrical-
ly placed pair of accelerated cavity walls (x ==+b sinh7). The
lattice of allowed MB modes is obtained from Egs. (3.17). It is
analogous to the plane-wave lattice of a symmetrically placed
pair of inertial cavity walls. There the modes are arranged in a
cubical lattice and the mode density is uniform. In the MB lat-
tice, by contrast, one has a nonuniform mode density: it has, as
one can see, a maximum along the w axis (k, =k, =0); this max-
imum is infinite for a zero rest mass scalar field. Furthermore
no modes are allowed on (n =0) or outside the double cone
@’/b>=k}2+k2, or outside the two-sheeted hyperboloid
w*/b*=k2+kZ+m?, if the field has mass m. In this picture
m =0. The uniform horizontal k, spacing between the allowed
MB modes is in units of m/(cavity width)=w/L. The units
along the vertical axis are dimensionless. Their natural length is
wb/L. It is determined by the double cone boundary
w=*k,b=+xn,7b/L which separates the region (in w—k,
space) where MB modes are allowed (w® > k?b?) from the region
where their existence is forbidden (w? < kyzb 2). In the limit of a
bottomless (b —0) accelerated cavity, the two sheets of the hy-
perboloid degenerate into the k,-k, plane (here the k, axis), and
the mode density is nonzero everywhere. This limit is the ther-
modynamic limit for an accelerated frame. It corresponds to
the thermodynamic (“infinite volume™) limit of an inertial cavi-

ty.

1. Minkowski Bessel modes: Their WKB form

In the WKB approximation the solution the Sturm-

Liouville equation has the form (for x <w)

172 :
K, (x)= 7
”‘)(X) sinh7w (wz—x2)1/4
dx w
X cos Vl_x28x _ 7T )
cos | [ = (3.14a)

The integration constant in the phase of cos has been
determined by the condition that this solution match at
x = that solution which decays exponentially as x — .

The normalization amplitude has been adjusted by the
requirement that K; (x) agree with the small-x expansion
of the standard definition of the modified Bessel function:



—iw
_— T X S S
™ 2isinhre | |2 INl—iw)
io
x| 1
2 INl+iew)
172
=|—Z — cos |argl'(iw)—wIn x .
o sinh7w 2
(3.14b)

The phase of K, (x) in the WKB approximation in Eq.
(3.14a) is

2__ 2 J——
otVel=x? s 7
x 4

phase(x)=wIn (3.15)

Not surprisingly this is entirely consistent with the phase
in the x <<w approximation, Eq. (3.14b), because there,
by Stirling’s formula,

argI‘(iw)zwlnw—w—g— .

A typical normal mode

—i ik, y ik
W i (T Epz)=e K, (ke e
y z

is the product the longitudinal (i.e., 7- and §-dependent)
eigenfunction e ~'“’K,; (k&) and the transverse (i.e., y-
and z-dependent) eigenfunctions. The boundary condi-
tion, Eq. (3.13), at £=b implies that the functions
e 'K, (k&) have discrete frequencies

0o=w,, n=12,....

For the case of the Dirichlet (@, =0) boundary condi-
tion at the bottom (§=0>5) of the accelerated cavity, these
frequencies are determined by the ‘“Bohr quantization”
conditions

phase(kb)= [ " /] —xziixi—%

=(n+Pm n=12,....

(3.16a)

For the case of the Neumann (a, =0) boundary condition
the Bohr-quantization condition is

©n dx T
f me,—xz————=n17, n=12,....
kb X 4

For the general boundary condition, Eq. (3.13), the
Bohr-quantization condition is intermediate between
these two extreme cases.

The transverse eigenfunctions are also discrete, and
their eigenvalues are

2

(3.16b)

KT
k=2 =0,+1,+
.= T n,, n,,n,=0,%t , 2, ... .
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2. Discrete mode spectrum

Consider the eigenvalue spectrum of the normal modes
of a wave field in an accelerated coordinate frame with a
finite bottom (§=5b >0). This spectrum forms a lattice
inside the cone

(0/bP=k}+k?

in (o, ky,kz) space. For a field with a finite rest mass m
the cone becomes a two-sheeted hyperboloid,

(@/bP=k}+kZ+m? .
Given a triplet of integers (n,n,,n,), the corresponding

lattice point is determined by the Bohr quantum condi-
tion and the transverse eigenvalue conditions: namely,

1 1 o+Ver—kib?
4= TYeo 70 _ 21252
n . wln b o —kb* |,
(3.17a)
1
ny—*z;ka , (3.17b)
1
nfngz , (3.17¢)
with

k=V'k}+kX+m?>.

The normal-mode eigenvalue lattice, exhibited in Fig. 2,
is determined by these triplets of integers. It is analogous
to the familiar plane-wave eigenvalue spectrum for an
inertial frame. There

1 K 1

n,=—VLk

1 -
n,=—Lk ny——z‘;L yr M=o Lk,

o2y

The main difference between these two lattices is this:
in the plane-wave lattice the mode density is uniform
over the whole (k,,k,,k,) space, while in the Minkowski
Bessel wave lattice the mode density [see Eq. (3.18)
below] is highly nonuniform in (@, k,,k,) space. This can
readily be seen from the computer-generated spectral lat-
tice, Fig. 2.

Furthermore, unlike a finite inertial cavity, a pair of
finite accelerated cavities with finite bottom (b >0) has a
spectral lattice that is confined entirely inside each of the
two (w==%|w|) cones

(/b >kl+k],
or inside each of the two hyperboloids,
(@/bP>kl+kl+m?,

if the wave field has rest mass m. This follows directly
from the Bohr-quantization condition, Eq. (3.16).

In the limit of a bottomless (b —0) accelerated frame,
the two hyperboloidal boundaries are spread out flat and
touch each other in the k, —k, plane w=0. Further-
more, as b—0 there are normal modes everywhere in
(w,k,,k,) space.
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3. Mode sums: Their phase volume integrals

The longitudinal and transverse eigenfunction spectra
form a lattice inside the ‘“‘upper” and “lower” cone,
((o/b)z—k -}-kZ*k2 in (w,ky,k ) space. The density of
modes is not uniform. It follows from the eigenvalue for-
mulas, Egs. (3.17), that the mode density p is

__odln,ny,n,) | L 2 dn
P Nk, k) |27 | do
2 —_—
L |1, o+Vw—k??
=27 | = In b , (3.18)
where
kb <w=w, (“interior of the upper cone”) .

A mode sum can thus be approximated by a phase-space
integral inside the semi-infinite upper cone in (w,k,,k,)
space:

n ny nz
b 2 L 2d
© w/ T n
~ [ Tdo ["Tkdk [Tdo, | o= | S50
(3.19)

As a useful example consider the total number of modes
inside the finite upper cone whose height is w=&. Let us
call this number No. (@,L2 b). It is given by

2
— r2.y_ @ /b 27 L dn
No.(@,L2b)= fo do fO k dk fo dop |5= | 5
2
1 L|’'a
— | |= 3.2
2 b | 3 (3.20)

This result was obtained with the help of Eq. (3.18), and
doing the integration over the interior of the finite cone:

kb =0, 0<w<® .
The number equals the total number of all those normal
modes that (a) are permitted to exist in an accelerated
cavity whose transverse area is L2 and whose bottom is at
&=b and (b) have “Rindler frequency” w less than the
maximum value @.

The expression for the number of modes, Eq. (3.20), is
correct only for a massless KG field. If the field is mas-

g*ﬂ,fag*
a7

_. (L2 L/2 b

wr=i 1 e I

Then the discrete modes f; in Eq. (3.22) satisfy
(forf))=8;, (fi,f-i)=

Lg*ff! Lf _poe
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sive, then the corresponding number of modes is the one
found inside the finite upper hyperboloid of revolution

(k}+k2+m?)b =0?,

One must make the replacements k>=k?2+k2—k2=Fk2
+k +m? in the expression for dn /da), Eq. (3.18), so

that the phase-space volume integral, Eq. (3.20), gets re-
placed by

mb <w<® .

No.(@,L?b)
2
. @ w/b 27 }_ ﬂ
:fmbdwfm k dk fo dowp |55 | o
1 L PR K
_| 1 L] |k F51n®
2w | | 3 Tmbt (k—am=y
(3.21)
Here k stands for
E=V&2—m? b2, @>mb .

4. Bottomless frames versus frame with bottom:
Quantum theory

We shall now show how to take what in an inertial
frame corresponds to taking the infinite-volume (“ther-
modynamic”) limit of the real KG field quantized in a
finite box. In the case of our acceleration-partitioned
field, this transition to the limit corresponds to going
from the field defined in a pair of accelerated frames each
with a finite bottom (0 < b) to a pair of bottomless (b =0)
frames.

Consider the KG field partitioned by a pair of bottom-
less accelerated frames I and II. The field has a continu-
ous spectrum mode expansion given by Eq. (3.4). If,
however, the pair of frames have finite bottoms (b >0)
and finite transverse areas L2, then the mode expansion is
necessarily discrete. It is given by

P(x)= Z[a filx)+a_,f_j(x)+ c.c.]. (3.22)

The mode labels i will be specified shortly.
Suppose the absorption and emission operators satisfy

the usual relations

t.1=0

[ai,a;]=6,-j, [al-,a (3.23)

and the KG (“Wronskian”) inner product of two func-
tions f(x) and g (x) is defined by

aé

(3.24)
1 §

(3.25)

Our task is to furnish an asymptotic integral approximation of the discrete sum, Eq. (3.22), which in the limit as
b—0 (“bottomless” accelerated frames) approaches (3.2). This approximation is given by
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wk 1

B(j el(kyy+kzz)
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N a_, p 1 Biw e—t(kyy+kzz)

o w/b 27 a
W)= [Tdo [kdk [Tdop | —5—2
0 0 0 p'? pl? V2

That this integral approaches (3.2), or equivalently (3.4),
as b—0 is obvious by inspection. That this integral is an
asymptotically accurate expression for the discrete sum,
Eq. (3.22), can readily be verified by first using'' Eq.
(3.19),

n

1 ny nz
© /b 2w
= [ do ["Tkdk [Tdop() 5 327)
second, letting
a vk a_y—k
4=y =5, 4T SR 0>0; (3.28)
and finally letting
B g B iy ik
fi:fnnynz_p]/z ‘/5 2r ’
| BT e~i(kyy+kzz) (3.29)
—w

f-i p1/2 v2 2
In all three equations (3.27)-(3.29) the continuous vari-
ables w, k,, and k, are given by their discrete approxima-
tions ®,,k,,k, as determined by Egs. (3.17).

Do the operators a.;, Eq. (3.28), and their discrete
modes, Eq. (3.29), satisfy the correct commutation rela-
tions

1 —
[a""y”z’an’n;nz' ]—6""'8nyn;8nznz' (3.30)

and the correct KG inner products

= , 2
(f""y"z’fn'n;nz') 8n Snyn;ﬁnznz' '

(3.31)

That the answer is “yes” is readily verified. To show Eq.
(3.31), insert Eq. (3.29) into (3.24). Use (3.3), integrate,
and use the identity'?

2
21

L

I T R e —
kb

x 20 sinh7o POy -

The result is Eq. (3.31). Here w=w0,, o' =w,, and p is
given by Eq. (3.18). Note that (f;,f_;)=0.

The commutator relation (3.30) is also easily verified.
Recall that the operators a, satisfy

(@5l 1=8(0—a")8(k, —k})8(k, — k) ,
— oo <w,k,,k, <o .

Use the fact that the Dirac delta functions are asymptoti-
cally related to the Kronecker deltas by the mode density
p, Eq. (3.18),

2 27, 2T 2T,
Blon =wy)8 | 7 mny ==y |8 | Fmn, = en
p8,, 8 &

ri=(n,ny,n,).

+c.c. (3.26)

2 p1/2 pl/Z ‘/E 2T

Then with the help of (3.28) obtain the desired relations
(3.30).

To summarize, we have shown how to replace summa-
tions over discrete mode with phase-space integrals. This
we have done, not for the familiar case of plane waves in
an inertial box, but for Minkowski Bessel modes in an ac-
celerated frame with a finite bottom (b >0). The key re-
sults are Egs. (3.27)-(3.29).

IV. RINDLER GROUND STATE FOR AN
ACCELERATED FRAME WITH A FINITE BOTTOM

A field partitioned by a pair of accelerating frames
with finite bottoms (b >0) can be decomposed into a
discrete sum of modes:

Yx)= 3 [a;fix)+tal f* 0+l filx)va_f_im].

: 4.1)
In the thermodynamic limit (b =0, “no bottom™) this
sum becomes with the help of Egs. (3.27)-(3.29) the mode
integral, Eq. (3.4).

The key idea leading to a ground state different from
the familiar Minkowski vacuum is the expansion degen-
eracy (see Sec. IIT A) of the KG field ¥(x). This field can
be given many different mode integral expansions, Eq.
(3.9). This expansion degeneracy holds not only for bot-
tomless (b =0) accelerated frames but also for accelerated
frames with a finite bottom (b >0). There the expansions
are discrete and the standard Minkowski-Bessel mode ex-
pansion is given by Eq. (4.1).

As Eq. (3.9), the expansion coefficients for each pair of
modes i and —i are arbitrarily interrelated by the trans-
formation
AT_,~=aJr u;,*a; ,

A;=au;+a' v, L 4.2)

with
u?—vi=1.

The degeneracy is expressed by the arbitrariness of each
parameter u;. This arbitrariness is removed by resorting
either to the quantum absorption principle [see com-
ments following Eq. (3.10)] or to a Rayleigh-Ritz-type
minimum principle®!° for the moment of mass energy of
the KG field in I and II. Either of these principles yields

u;=e™’2/V2sinhro ,
— (4.3)
v;=e ™’?/V2sinh7o .

Here o has the discrete value corresponding to the mode
The Rindler ground state is the ground
state for the new set of quantum operators, Eq. (4.2).
This ground state is determined by

0= A0z )=(a;u;+a’ ,v,)0g) ,

+ (4.4)
0=4A4 _;10g)=(a_;u;+a/v))|0g) .



40 QUANTUM STATES OF A FIELD PARTITIONED BY AN ...

It can be expressed as a pure photon state
IOR >=f(a,'T,ati )lOM > .
Using @, ;=03/0a L- one obtains the solution to Eq. (4.4):

v;
aT
u

i

al; 10,

1

|0g>=Z 12 exp
i

n

aln)®|n_;) . 4.5)

=Z-l/zl—l i

—v;
i n,=0 U;
1
Here n;=n_; and

Z 1= Hﬁf:exp [-—ZInui]
; ;

1

is the normalization constant for the normalized ground
J

2

L fow o*Inu,do

27b Ir =

i n;=0

IOR )= exp
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state. The value of this normalization constant can be
obtained with the help of Eq. (3.27). Because u;=u, is
independent of the “polar coordinates” k and 6,,

InZ= 3 Inu}?
i

2
dn

= fo Inu? i

2

fom/bkdk fOZWdek

2
=
f o*Inu’de .
0

L
27 do

=|L||L

The second line is obtained from Egs (3.27) and (3.18).

The content of the square brackets is evaluated by taking

the derivative of Eq. (3.20). This yields the third line.
The Rindler ground state |0, ), Eq. (4.5), is therefore

n

[n;deln_;) . 4.7)

Using the expression, Eq. (4.3), one finds that the value of the integral in exp[ - - - ] is 7/180. Consequently the Rindler

ground state is

2 n
v;
u;

S

7207

|0 ) = exp

L 0
B IT 2
i n;=0

V. RINDLER VACUUM VERSUS THE
MINKOWSKI VACUUM

(1) Consider the Minkowski ground state

0y > =TT l0,)el0_;) .

It is determined by
a;104,)=0, a_;|0,,)=0.

The inner product of |0,,) with the Rindler ground state
|0g ), Eq. (4.8), is

2
1

7207

<0M|0R>=exp (5.1)

b
(2) A related quantity is
(OgINPrn|0 Y =(0g | S (afa; +at ,a_)|0g) ,

i
the expectation value of the total number of photon when
the field is in the Rindler ground state. This value is
<OR |Nphoton|OR > =2 2 le2

2
L ®
- 27b fo a)zvidw
L 2 1
= ? 648.277’ . (5.2)

Indeln_,) .

(4.8)

The first line is obtained by inverting Eq. (4.2) and using
(4.4), the second line is the same reasoning leading to Eq.
(4.6), and the last line is obtained by inserting Eq. (4.3)
into the integral and then evaluating it.

(3) One can also ask the standard question, what is the
expected number of quasiparticles (fulling particles) in
each of the accelerated frames I and II if the field is in the
Minkowski vacuum |0,, >? The answer is

<0M 'N?uasip +N?Iuasipp IOM >
=(0y| S (4}a,+4",4_)0,,)

=23 v}
2
L
b

1
648.27

/
which is obtained in the same way as Eq. (5.2).
(4) In the thermodynamic limit corresponding to each
of the pair of accelerated frames I and II becoming bot-
tomless (b —0), the amplitudes (5.1) and (5.2) become

lim (0,,|0, )= I N 1P 72 I U

P v |0g ) bm})eXp 5 | 720 0, (5.3)
L ? 1

lim (0 7 photon 0 i

b—0 RI | R) blﬁ% b 648.27 ® (5.4
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2
fim COuINF=rl0s = fim |5 55
= . (5.5)

(5) These related results can be strengthened consider-
ably. Let p(a;,a jT) be a polynomial in the Minkowski
quantum operators corresponding to some arbitrary ele-
ment

pla,al)0y)

of the Hilbert space of quantum states generated from the
Minkowski vacuum. One sees that

2imO(OR p(a;a))]0,)=0.

In other words, the Rindler vacuum is perpendicular to
every quantum state involving detectors in Refs. 1-3.

Now consider a polynomial in the Rindler quantum
operators. Such a polynomial can be changed with the
help of Eq. (4.2) into a polynomial of Minkowski quan-
tum operators. It follows that, in the thermodynamic
limit any state in the Hilbert space generated from |0 )
is perpendicular to every state in the Hilbert space gen-
erated from [0, ). Let #; and 7f,, denote these two
respective Hilbert spaces. Our result can be summarized
by the statement that the two Hilbert spaces are orthogo-
nal to each other:

T L Py .

(6) Equations (5.4) and (5.5) can be strengthened in a
corresponding way: (i) Any quantum state in #, has an
infinite number of expected photons. (ii) 4ny quantum
state in #f;, has an infinite number of quasiparticles
(“Fulling particles”) in frame I and in frame II.

VI. CONCLUDING REMARKS

(1) A Rindler vacuum state |0y ) is very different from
the quantum states generally considered in physics. To
prepare a relativistic wave field in this state, place into a
cylindrical pipe of cross-sectional area L? a pair of refri-
gerators and have them accelerate into opposite direc-
tions. Surprisingly the vacuum they produce in each of
their Rindler sectors will not be empty when viewed
jointly by a global inertial reference frame. Instead the
cylindrical pipe will be filled by a nonsharp number of
photons given by

ULRICH H. GERLACH 40

2
L 1
<OR‘Nphoton|OR>= ; ; .

These photons are in the pure quantum state

2
_ L1
b

O =
10g ? = exp 7207

<11

S (=1 i nyeln ) .
=0

n;

(2) That a ground (i.e., “vacuum”) state is character-
ized by a nonzero number of particles is not unfamiliar in
condensed-matter physics. For bosons the most famous
example is superfluid *He. At 7=0° K this system is in
its ground state: there are no quasiparticles, i.e., no
“first” sound quanta. Nevertheless, the system is com-
posed of particles, the helium atoms.

There is, however, an important difference between the
liquid-He system and the KG system considered here. In
the liquid-He system particle number is conserved and
the corresponding gauge symmetry is broken in the ther-
modynamic (volume — o) limit. Here it is the longitudi-
nal linear momentum which is conserved and it is the
corresponding translation symmetry that is broken in the
thermodynamic (b —0) limit. We are led to believe that
the Davies-Unruh temperature (or the Bekenstein-
Hawking temperature for a black hole) is a critical tem-
perature which signals the macroscopic condensation of
linear momentum into a state of correlated MB modes.

The parallelism with liquid He is much more exten-
sive!*!* than one is led to believe from the brevity of
these cursory remarks. In fact, the parallelism is so
striking—it extends from the nature of the quantum
states and the dynamics of the field to the macroscopic
behavior at finite temperature—that one cannot help but
feel that nature is trying to tell us something important.

(3) Many workers consider the infinite thermodynamic
limit, Eq. (5.5), a “difficulty.” Such an attitude, however,
does not take into account that the sets of quantum states
Fr and ¥, are two spaces perpendicular to each other.
This perpendicularity is an example of the central feature
of the quantum mechanics of an infinite system:®7 its
quantum states decompose into unitarily distinct repre-
sentation spaces. The existence of such representations
expresses the key properties (e.g., symmetry breaking,
phase transition, order parameter, and so on) in
condensed-matter physics.
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