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Einstein's evolution equations as a system of balance laws
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The evolution system in the space plus time t,'3+1) decomposition of Einstein's field equations is
explicitly written as a system of balance laws. This is achieved by demanding that the time coordi-
nate be harmonic (harmonic synchronization) and the space coordinate lines be normal to the
constant-time hypersurfaces. No symmetry nor special form of the metric has been assumed, so
that the equations may be used as a part of a three-dimensional numerical code for general relativi-
ty. The particular case of spherical symmetry is also considered and a numerical test of this case is
provided by using a nonstandard form of the Schwarzschild line element.

I. INTRODUCTION

The present work is a step in the design of a three-
dimensional (3D) general-relativistic numerical code. It
is clear that such a code cannot be a straightforward ex-
tension of the existing 1D or 2D ones. This is because
they are strongly adapted to spherically symmetric or ax-
ially symmetric fields, respectively. ' The jump to a code
dealing with generic unsymmetrical systems is at least as
radical as the one needed to go from the 1D code of May
and White to the 2D codes for axisymmetric collapse.
We must remember that in that case the equations were
completely changed and the comoving coordinate system
had to be abandoned.

The interest of accurately studying nonsymmetrical
systems in general relativity resides mainly in the fact
that they are good candidates to act as strong sources of
gravitational waves. One can imagine astrophysical pro-
cesses in which this may actually occur, such as superno-
va collapse, coalescence of a binary system, or accretion
of matter into a black hole. In all these cases, hydro-
dynamic discontinuities (shock waves) may appear. The
shocks are a mere consequence of the balance-law struc-
ture of the hydrodynamic equations and a solution con-
taining them (a "weak" solution ) must be adequately
dealt with in a realistic code.

The Einstein field equations also admit weak solutions.
They may arise when hydrodynamic shocks are present,
but they can also appear as genuine gravitational shock
waves. The analogy with the situation in hydrodynam-
ics suggests that Einstein field equations can be expressed
as a system of balance laws. This would allow one to ap-
ply the same kind of numerical methods to both the field
and hydrodynamic equations. A supplementary advan-
tage of using balance-law methods is that the matching
between numerical and analytic solutions could be per-
formed in a natural way. The interest of such a combined
approach has been recently stressed and matched
analytic-numerical results for simple Aux conservative
relativistic equations have been published. '

%'e shall first show that our goal is attainable. Let us
start by considering the four-dimensional Einstein s field
equations:

where we must remember that

r;„=a„(ln&g ) (3)

and g stands for the absolute value of the determinant of
the metric g„.

The Ricci tensor R„can also be written

z„.= ( I rv'g )a,[&g (r~,—n~r:. ) j

(4)

so that the principal part (the part containing derivatives
of the connection coefficients) is expressed in fiux conser-
vative form and Einstein s equations (1) can be interpret-
ed as a system of balance laws. The right-hand side in
Eqs. (1) contains the source terms of nongravitational ori-
gin. The last two terms in (4) can be interpreted as gravi-
tational source terms rejecting the nonlinear structure of
the equations.

II. THE EVOLUTION SYSTEM

The system of ten equations (1) is not suitable for the
numerical construction of the space-time. This is better
understood if we decompose the metric g„ into its space
and time components:

g„dx "dx"= adt +y, —(dx'+P'dt)(. dx j+/ddt),

where latin indices correspond to spatial components
only (3+ 1 decomposition" ). The subset of equations ob-
tained when taking @=i,v= j in (1) provides six indepen-
dent second-order evolution equations for the induced
metric y;~' it is the so-called evolution system of
Einstein's field equations.

R„=T —
( T/2)g„(p, v=0, 1,2, 3),

where T„ is the stress-energy tensor and we have noted

The Ricci tensor R„of the space-time metric g„ is
defined in terms of the connection coefficients I ~~ (which
depend on the metric and its first derivatives only):

(2)
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The remaining independent equations in (1) provide
only constraints to be satisfied by the initial data, but no
evolution equations for the lapse function a nor the shift
vector p' can be extracted from (1). In fact, one can
choose a and p' at will, and these four gauge degrees of
freedom correspond to the arbitrary choice of coordinate
systems in the space-time.

In what follows we shall express the space components
of Einstein s equations (1) in terms of the quantities ap-
pearing in (5). We shall adopt for simplicity an Eulerian
coordinate system (p'=0), but the relevant results for a
nonzero shift vector are given in the Appendix. Unless
otherwise stated, all geometric operations (such as raising
and lowering indices) and geometric objects (such as con-
nection coefficients) are to be understood as the ones as-

sociated with the three-dimensional metric y,".
Let us begin by listing the values of the relevant con-

nection coefficients of g„:
'"'1 . =8;(lna), ' '1 "=—(1/a)K;
(4)I k Kk (4)I k I k

oi ij ij

where K," is the extrinsic curvature of the t =const slices
and it can be obtained from

B(y;) = 2aIC,J.

Allowing for (4), the first-order form of the evolution sys-
tem of Einstein's field equations is then given (when
P'=0) by the system of balance equations (7) and

—B,(v'yK, )+8k(a"&yr,"")—8;J(a&y)=a&y[ T; —(T/2)y; +1 k;I „J+2K;"Kk&

+8;(lna)BJ(lna) —8;in(a&y)BJln(av'y)] .

I k; =(5;y.„+8 y;k
—Bky; )/2 (9)

which acts as a constraint. For many purposes, however,
one can consider the evolution equation obtained when
taking the time derivative of (9),

B,I k; +B„[a(5,"K.k+5"E;k —5k';. )]=0, (10)

so that (9) is a first integral of (10) to be imposed on the
initial data only.

III. COORDINATE CONDITIONS

Let us note that no evolution equation has been given
for the fiux terms appearing in (8). This is because of the
well-known relationship between the metric and the con-
nection coefficients:

The specification of the lapse function o. is much more
important because it is related with the time slicing of the
space-time. It is well known that this choice must avoid
the so-called crushing singularities' and this forbids the
trivial choice ca=1. The standard alternative is the maxi-
mal slicing'

y'~K; =0

which is known to avoid these singularities. The trouble
with this condition is that its compatibility with Eq. (8)
leads to a second-order elliptic differential equation in the
spatial derivatives of the lapse function' which must be
solved anew at each time step.

A simpler alternative is to demand the time coordinate
to be harmonic (harmonic synchronization). In the Eu-
lerian gauge it simply reads

&,(&y/a) =0 (12)
As stated in the preceding section, the evolution sys-

tem must be supplemented with four conditions to com-
pute a and p'. We have imposed three of these conditions
by fixing p'=0 when writing Eqs. (7) and (8). This is the
so-called Eulerian gauge and it amounts to taking the
time coordinate lines to be normal to the slices t =const.
In that way, we ensure that for a regular time slicing of
the space-time the congruence of time coordinate lines
will not become singular. We must remember, however,
that p' is related only with the choice of spatial coordi-
nates at every time slice. We think that one must not be
dogmatic about that point.

which is trivially integrated allowing an algebraic
specification of the lapse function

a(t, x')=C(x')&y .

Condition (13) was introduced as an "algebraic gauge" to
show the hyperbolic character of the (appropriately writ-
ten) evolution system of Einstein's equations. ' The abili-
ty of this condition to avoid crushing singularities has
been shown recently. '

If we substitute (13) into our system (7) and (8), we get

a, y,, = —2c(eyz, , ),
—a, (&yz„)+a„[cy(r,", —5,"r"„,—5,"r„)]=yc„+cy[r,", r„, 31"„;1,'+2K. ;"K.—„,+ T; —(T/2)y, "],

(14a)

(14b)
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where C; stands for i); C. The system (14) has the
balance-law structure. This has the further advantage of
treating both space and time derivatives on an equal foot-
ing and, therefore, is closer to the spirit of general rela-
tivity. Let us only note that if we supplement (14) with
the "constraint" (9), the system is not of first order. In
order to get a first-order system, we must supplement (14)
with (10) [with a defined by (13)] and (9) is to be imposed
on the initial data only.

IV. SPHERICALLY SYMMETRIC SPACE-TIMES

Let us restrict ourselves to the case of space-times with
spherical symmetry:

where one must choose the lapse function a(t, r) accord-
ing to (13). A natural choice for the parameter C(x') is

C =a (r) /sin8

so that the lapse function is given by

a(t, r) =a (r)XY (17)

and it is not affected by the coordinate singularity on the
polar axis.

The evolution equations (14a) for the relevant com-
ponents of the metric (15) are

t),X = —2a(r)(XY K„„), t), Y = —2a(r)(XY Ktttt)

(18)
ds = a(t, r—)dt +X (t, r)dr

+ Y (t, r)(d8 +sin Odg ), (15)
and we need only two evolution equations for the com-
ponents of K:

B,(X—Y K„„)—B„[aX Y (1 "„„+41tt„)]=X Y' a„„+aX Y I
—2(I "„„) —10(1 tt„) —12(I'"„„Itt„)+2(K„„/X)

+[T„„—(T/2)X ]I,
—t), (XY Kes)+B„(aX Y 1 tt&)=aX Y I

—1+2(I'e&I tt„)+2(Ktttt/Y) +[Ttttt —(T/2)Y' ]I,
(19)

where we have used 1 „= I ~&„.

The connection coefficients appearing in (19) are given
by

where Y(t, r) is given by the implicit equation

r =t+2m [( Y/2m) /3+(Y/2m) /2

1 „„„=B„(X)/2, I gtt„= —I „gg=B„(Y )/2 (20) + Y/2m +ln( Y/2m)] (23)

and their evolution equations (10) can be written as fol-
lows:

and the coefficient a (r) in (17) is

a(r)=(2m) =const . (24)

Btl"„„„+t)„(aXYK„„)=0,
Btl ett„+B„(aXYKstt) =0 .

(21)

V. A NUMERICAL TEST

At this point, it may be convenient to verify the system
(18) and (19) by means of the numerical construction of a
previously known analytic solution of Einstein's field
equations. We will choose a vacuum metric: this means
that our spherically symmetric solution will be in fact the
Schwarzschild line element in some coordinate system.
To get a real test, one must avoid choosing the standard
system in which the metric coefficients X and Y in (15)
are independent of the time coordinate. We have chosen
instead

We are not claiming that (18) and (19) are the simplest
way of writing the evolution system for the spherically
symmetric line element (15). The interest of Eqs. (18) and
(19) arises from the fact that they are obtained directly
from the form (14) of the full three-dimensional evolution
system.

u =
—,'(&y /2m)e Y 4m[e tl4m+(1 2m/Y)e tl4m]

v
—t (Q Y /2m)e Y/4m[et/4m (1 2m /Y)e

—tl4m]
(26)

The standard form of the Schwarzschild line element is
recovered from (22) —(24) in two steps. One can use first
(23) to go from the (t, r) to the (t, Y) coordinate system
and then perform the transformation of the time coordi-
nate,

t =~+2m lnl1 —2m/1'I,

to get the standard (~, Y) Schwarzschild form. Note that
the form (22)—(24) of the metric is regular for Y)0; the
well-known singularity of the (r, Y) coordinate system at
the horizon ( Y =2m) arises from the fact that the trans-
formation (25) becomes singular there. '

The slicing given by the t =const hypersurfaces can be
easily represented in a Kruskal diagram (see Fig. 1). For
a given value of our time coordinate t, we can substitute
the Schwarzschild time v from (25) into the well-known
definition of the Kruskal coordinates (u, v) to obtain the
equation for every hypersurface in terms of the parameter
F:

X =(2m/Y) (1—2m/Y)[1 —(2m/1') ] (22) which is valid in the whole Y&0 space-time domain.



EINSTEIN'S EVOLUTION EQUATIONS AS A SYSTEM OF. . . 1025

V Y/2m
t=2m

2.0- t=4m

t=6m

1 0--

Y 2m„I
0.0 1.0 2.0

FIG. 1. Kruskal diagram showing the evolution of the space-
like slices t =const. It provides a clear demonstration of the
singularity-avoiding properties of the harmonic synchroniza-
tion. The slice t =6m is not shown because it gets too close to
the Y =0 singularity (without actually reaching it: see Fig. 2) to
be represented on the same scale.

The values of the Schwarzschild coordinate Y in terms of
our radial coordinate r can be computed for every Axed
value of t from Eq. (23).

We have used our Eqs. (18)—(20) with a(r) given by
(24) to compute the values of the metric coefficients X, Y
in the domain given by 2m & r & 8m, 0 & t & 6m (see Fig.
1). The analytic expressions (22) and (23) have been used
to provide both the initial and boundary conditions. We
have chosen the well-known "staggered leapfrog"
method' to obtain a Anite-differenced version of our
equations. The numerical results for the canonical coor-
dinate Y after 200, 400, and 600 iterations are shown in
Fig. 2. The agreement with the values computed from
the analytic expressions (22) and (23) is excellent (errors
are of the order 10 ) and this confirms the correctness of
the spherically symmetric balance-law system (18) and
(19).

At this point, we can check whether or not our numer-
ical results actually verify the constraint equations in (1).
Analytically, the constraints are propagated by the evolu-
tion equations, but a Anite-differenced version of the evo-
lution system does not necessarily do this. We must note
that one needs a finite-differenced version of the con-
straint equations to perform this check. This is also a

r/2m

FIG. 2. The numerical values of the Schwarzschild coordi-
nate Y are plotted after 200, 400, and 600 iterations. Only 25 of
the 50 computed points are shown for clarity. The continuous
line is the one obtained from the analytical solution [Eq. (23) in
the text].

source of errors which can be estimated by using the ana-
lytic expressions (22) and (23) to compute the constraints.
We have found in that way that the order of magnitude
of the finite-difFerencing errors in the energy constraint is
10 and it is 10 in the momentum constraint. As far
as the typical errors in our numerical results are of the
order 10, we see that only the momentum constraint
will provide a meaningful check. We have then evaluated
the momentum constraint by using our numerical results
and we have found that the errors remain of the same or-
der (10 ) as in the evolution system.
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APPENDIX

In the generic case (nonzero shift vector p') it is very
hard to proceed directly from the four-dimensional form
(4). A more convenient starting point is provided by the
standard form of the evolution system in the 3+ 1 decom-
position. " The balance-law form of this system [the ana-
log of Eqs. (7) and (8) in the text] is

(Al)a, y,, a„(5,"P, +5,"P, )=—2aK„2I .kP„,— —

a, (v'yK, , ) a, (&yp"K„+—av'yI-, ", ) a.,
',(av'y). — .

yv( Kak.p +Kka;p") —av'y[T, —(T/2)y, +I I„.I "„+2K;"Kk +a;(lna)a (lna) —a,.(lnavy)a (1nav'y)]

and the supplementary equation (10) reads now

a, I „;.+a„[5,"(aK „+I 'k p, )+5"(aK k + I',kp, ) —5k (aK; + I ';.p., ) —5,"(a pk ) ]=0 . (A3)
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The coordinate condition (12) (harmonic synchronization) becomes

a, (&yea) —a„(p"&) ra) =O

and one must provide three supplementary conditions to determine P'.

(A4)
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