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We investigate numerically the spacetime geometry in the presence of an infinitely long, straight,
static, U(1)-gauge cosmic string formed during phase transitions at energy scales larger than the
grand-unified-theory scale. As the energy scale of symmetry breaking increases, we find that at radi-
al infinity the geometry around a string changes from Minkowskian minus a wedge to an analog of a
Kasner spacetime. The geometry transition occurs at A¢ =21, where the deficit angle A¢ is defined
in the sense of comparison with flat spacetime in the absence of the string. Phase transitions pro-
ducing such supermassive strings should occur before inflation to avoid contradictions with current

observations.

The main importance of cosmic strings inheres in their
ability to produce the desired density perturbations in a
galaxy formation scenario.! It is understandable then
that most of the work in this field has been focused pri-
marily on the astrophysical consequences of cosmic
strings. However, ever since Vilenkin? pointed out that
the geometry around a cosmic string of linear energy den-
sity p is that of Minkowski spacetime minus a wedge of
angular size A¢=28mpu, relativists have not been able to
resist the temptation of analyzing in more detail the na-
ture of spacetimes in the presence of cosmic strings.?~4

Under the cosmic-string scenario of galaxy formation,
strings of astrophysical relevance were formed during
phase transitions at the grand-unified-theory (GUT) scale
(10'> GeV). They have linear energy u~7* of the order
107, where 7 is the energy scale of the symmetry break-
ing that produces the strings. (We use units where
#i=¢ =G =1.) One should then recognize that the linear
energy density of these strings justifies the weak-field ap-
proximation used by Vilenkin? for the purpose of analyz-
ing gravitational effects of the strings. Nevertheless, the
Universe may have undergone phase transitions at energy
scales higher than the 10'5-GeV GUT scale which may
produce more massive strings, 7 >>1073. If these strings
were formed, they would most likely be stretched away
during the inflationary era, and therefore they would not
contradict current observations. On the other hand, be-
cause of their large masses, pu >> 1078, this type of string
can no longer be treated by means of the weak-field ap-
proximation.

The geometry of astrophysically relevant cosmic
strings has been extensively investigated for global,’!%!3
local,>~%® and bosonic superconducting!!"!? strings. We
emphasize “astrophysically relevant” because most of the
work has been done only for values of & <1079, in agree-
ment with current observational constraints.' Recently,7
studies of strings with p~ 10~ 2 have shown that although
the structure of spacetime inside the string is not flat, the
geometry at radial infinity remains Minkowskian minus a
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wedge. It is for these strings that the corrections to the
weak-field approximation formula for the deficit angle,
A¢p=8mu, due to gravitational self-interaction play a
significant role. On the other hand, for the case of boson-
ic superconducting strings,'""!? the spacetime approaches
instead a version of the Kasner metric due to the elec-
tromagnetic current of the string.

The purpose of this paper is then to extend the analysis
of the spacetime in the presence of a static cylindrically
symmetric string formed during phase transitions above
the GUT scale. In particular we want to find if there ex-
ists a maximum value for the energy scale of the symme-
try breaking, such that above this maximum value the
geometry at radial infinity is no longer Minkowskian
minus a wedge. Although it is likely that quantum effects
(including those of quantum gravity) become important
for the most massive of these strings, our treatment will
be completely classical.

The analysis consists of numerically solving the static
coupled FEinstein-scalar-gauge field equations for an
infinitely long, straight, U(1)-gauge cosmic string. We
use the model'® of a cosmic string that consists of a U(1)-
gauge vector field A4, coupled to a complex scalar field
®=Re¥. The Lagrangian for these ficlds reads

L=—1V,RV'R—1R*V, p+ed,N(Vyh+ed®)
——28‘~(R2——7]2)2—§F,,,,F“”, (1)

where F,,=V,A4,—V, A, and e, A, and 7 are positive
constants which constitute the parameter space. The
spacetime metric is assumed to be static and cylindrically
symmetric, that is,

ds2=-—-e"‘dtz-i—edez-i-eCd(ﬁz-%-dp2 , (2)
where A, B, and C are functions of only the radial coor-

dinate p. The coordinates ¢t and z are chosen so that the
metric functions satisfy the boundary conditions
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A(0)=B(0)=0, and regularity of the metric at the axis
requires that lim, _,e€/p*=1. It can be shown® that for
the given boundary conditions the string is Lorentz in-
variant in the z direction, i.e., B= A everywhere. Furth-
ermore, consistent coupled solutions for the scalar and
gauge field are found to have the form R =R (p), Yy=nd,
and A,=(n/e)[P(p)—1]V, 4, where n represents the
winding or circulation number. The winding number n
gives a measure of the wrapping of the scalar field phase
around the string. Since the qualitative features of the
fields do not depend strongly on the winding number n,
we will restrict ourselves to the case n =1.

Following Ref. 17, the dimension of the parameter
space is reduced by introducing the gauge-to-scalar mass
ratio a=m 4 /mgy, where the masses of the vector and
scalar fields are m ,=en and mg =V A7, respectively.
Since the radii of the fields are of order 1/m, the parame-
ter a measures not only the relative strength of the gauge
and scalar fields but also the comparison between the ra-
dii of the core false vacuum and the magnetic field tube.
Strings with a>1 (a<1) behave like type-I, attractive
(type-II, repulsive) flux tubes in superconductors. The
energy scale of symmetry breaking 7 and the mass ratio a
then constitute the free parameters of the string model.
As is usually done,!” we introduce the fol-
lowing rescaled functions: r =V Anp, X=R /7, and
K =V'Ane 4 7€/, Thus the functions that determine the
metric, scalar, and gauge fields are 4, K, X, and P. The
coupled Einstein-scalar-gauge equations reduce to the fol-
lowing ordinary nonlinear differential equations for these
functions:’

(KA'Y —4m’[—1K(X*—1)*+2a 72K “le?4(P')’]=0,
3)
K" —4mn*[—2K ~'e?P2X*— 3K (X*—1)
+a K 7' 4(P)?]=0, (4
K(KX')—X[1K*X*>—1)+e?*P?]=0, (5
e 2K (e**KT'P') —a’X*P=0. ©)

Here a prime denotes d /dr. The boundary conditions
that a solution of these equations must satisfy to repre-
sent a regular isolated string are X(0)= A4(0)=K(0)
=P'(0)=0; P(0)=K'(0)=1; lim X=1 and
lim,_, P =0.

To solve Egs. (3)-(6), we used a numerical technique
that iterates between two sectors of the code: a string
sector and a gravitational sector. In the string sector the
metric functions 4 and K are fixed and Egs. (5) and (6)
are solved for the scalar and gauge functions X and Pas a
two-point boundary problem using a relaxation method.
In the gravitational sector the values of 4 and K are up-
dated by integrating Egs. (3) and (4) using a fourth-order
Runge-Kutta method. In the code the variable r takes on
values in the interval [0,r ] where r is chosen to be
twenty times the radius of the scalar field X. As a con-
sistency check, the components of the string energy-
momentum tensor at r, were found to be <107 ° relative
to their maximum values which occur at the string axis,

¥ —> o0

showing that indeed the integrations were carried out to
points far outside the string.

Following Ref. 5, we examine the properties of the
spacetime at large r by using the expression

KA'(K'—3KA')=8mn’K?P, , [

where P, is the radial component of the energy-
momentum tensor of the string in units of An* and is
given by

Prz%[(X’)z_%(X2_1)2]+-;—K —ZeZA[a—Z(Pﬂ)Z_X2P2] .
(8)

One can derive Eq. (7) as follows: use the field equations
(3)-(6) and expression (8) to evaluate 87n*(K2P,)" and
show that it is the derivative of the left-hand side of Eq.
(7); the boundary conditions then yield Eq. (7). In Ref. 5
it is shown that with the assumption that f o Ko dr con-
verges (where o is the energy density of the string in units
of An* then K’ and KA' reach constant asymptotic
values (K'), and (KA4'), as r— o. It was also shown
that under the assumption that lim,_  K20=0 the
right-hand side of Eq. (7) also vanishes in that limit.
Thus we find

KA(K'—3KA4')|,=0. 9)

From Eq. (9) one can then conclude that as r— o the
string must approach either a vacuum metric which has
(KA'),=0 or one which has (K'),—3(K4'"),=0. If
we denote by K, and A _ the values of the metric fields
far from the string, one obtains that for (K4'),=0 in-
tegration yields 4, =a, and K =a,r+a; where a;’s
are constants.
Thus the metric outside the string approaches

ds?=e"\(—dt?+dz?)
+A_1n—2[dr2+e_2a'(a2r+03)2d¢2] . (10)

It is straightforward to check’® that Eq. (10) represents
the metric of flat spacetime minus a wedge. On the other
hand, for (K'),—2(KA4'),=0 one gets K ,=b,;r+b,
and 4, =%In(b,r+b,)+b; with b;’s constants of in-
tegration. The spacetime metric for this case is

ds2=eb3(b1r +b,)*3(—dt*+dz?)
AT dr2 e byr+by) 2] . (11)

This metric is an analog of a Kasner metric (here r and ¢
are reversed from the usual Kasner cosmology situation)
and has the property that as r increases the circumfer-
ence of circles (r=const) asymptotically approaches
zero; the spacetime becomes effectively three dimension-
al.

If when increasing the energy scale of symmetry break-
ing a continuous transition occurs from a spacetime with
flat metric (10) to one given by (11), one would have to go
in a continuous way from a stage where (K A4')_ =0 (flat)
to one with (K'), —3(KA4'),=0. Hence the transition
point must be when (K A4'),=(K"'),=0. Thus, K, =c,
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and A4 =c,. For this case the metric outside the string

would read
ds?=e (—dt?+dz2)+ A"~ Adri+cle 2d4?) .
(12)

This metric is essentially that of flat spacetime with one
compact dimension.

In order to examine the changes of the spacetime
metric as one increases the energy scale of symmetry
breaking, it is useful to define the quantity D , by

D,

1____

2

i

e”"(K’——%KA’)Lao . (13)
One can then show that D is given by
D.=8mu.+T [ “dre=1K(4"?, (14)

where p ., is the mass per unit length of that part of the
string with r <r and is given by

Lo =11'772f0 “dre  AK[(X')*+K “224X?P2+ L(X2—1)
+a 2K "224(P')] . (15)

In our case the stress energy of the string falls off
sufficiently quickly that p is essentially equal to u the
mass per unit length of the string. One can derive Eq.
(14) as follows: evaluate [e ~*(K'—1K A')]" using Egs.
(3), (4), (7), and (8) and then integrate from O to r, to ob-
tain Eq. (14).

We find numerically that the behavior of the metric
outside the string depends on D . When D <27 the
metric outside the string has the form given in Eq. (10),
i.e., flat space minus a wedge. When D _ > 2 the asymp-
totic form of the metric is given in Eq. (11) and is the
analog of Kasner spacetime. The metric takes the form
in Eq. (12) when D, =27. We consider each of these
cases in turn.

First consider the case where D, <27 and the metric
far from the string is flat space minus a wedge. We now
demonstrate that in this case D, is equal to A¢ where
A¢ is the deficit angle. First note that A¢ is given by>

. dl
2r—A¢ ran:o dp (16)
where [ is defined to be the length of an orbit of the angu-
lar Killing field (3/9d¢)°. By the definition of / one has

IZfOZW\/g—qub

which in our case becomes
2T

I=—=e 4K . 17
\/kne K a7
Substitution of (17) into (16) yields
I—A—=e_A(K'—KA’)|w . (18)
21

However, since the spacetime approaches flat space
minus a wedge, it follows that (KA4'),=0. Then using
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FIG. 1. Solutions for the metric fields (a) e# and (b) K as
functions of the radial coordinate r, in the case a=1/v2. The
dash patterns ( ), (—-—-), and (—--—) correspond to
D, =, 2m, and 3, respectively.

Egs. (13) and (18) we find that
A¢=D_ . (19)

Now we consider the case where D >27 and the
spacetime outside of the string is the analog of Kasner
spacetime. We demonstrate that the spacetime becomes
singular at some finite value of » which we denote r,,,.
First note that smoothness of the metric requires that
K >0. Hence the metric becomes singular at r,, if
K(r . )=0. Since (K'—3K A4'),=0 it follows from Eq.
(13) that K', =3e "=(1—D, /21r) <0. Therefore, in the
expression K , =b,r+b, for the metric function (11), the
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constants b; and b, satisfy b; <0, b, >0. Clearly the
singular point K(r_,.)=0 occurs at r, =—b,/b;. A
calculation of the Riemann tensor for the metric in Eq.
(11) shows that the curvature scalar R %R , , diverges
like (r — 7, )" * as r—r,,.. Thus the string spacetime
contains a curvature singularity at »r =r,,.

In the case where D , =27 it follows from Eq. (13) that
(K'—31KA4'),,=0. Since KA'(K'—3KA")|,=0, it then
follows that K, =K A’ =0 and the metric far from the
string has the form given in Eq. (12).

We now present some results of the numerical analysis.
Throughout the simulations the scalar and gauge fields of
the string, which are solved for as a two-point boundary-
value problem, did not exhibit qualitative changes other
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than those previously’ analyzed for u <1072, Therefore
we will fix our attention on the metric functions e 4 and
K.

Figures 1(a) and 1(b) show the gravitational fields for a
U(1)-gauge cosmic string in the case a=1/v'2 when D
takes on the values 7, 27, and 37. This corresponds to
values for  of 0.2, 0.255, and 0.26, respectively. At
D, =7 one notifies that the asymptotic values (e 4)_, and
K, closely resemble the flat metric functions of Eq. (9).
That is, (e 1), becomes constant, and K , grows linearly
with the radial coordinate ». The quantity (K4'), was
found to satisfy the flat metric condition (KA4'),=0to a
relative accuracy of <10™% At D_ =2 both (e ) and
K, are constant. Thus the metric asymptotically has the
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FIG. 2. Plots of the asymptotic values (a) (K').,, (b) (KA4'),, and (c) (K'),— 2(K 4"),, as functions of D, in units of 7.
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form given in Eq. (11). For D =37 the quantity K
again depends linearly on the radial coordinate r but now
with a negative slope. In order to verify that the metric
is that of the analog of Kasner spacetime, we computed
the quantity (K'),—3(KA4'),, and found that it van-
ishes to a relative accuracy of <1074

To have a complete picture of the Minkowski-Kasner
transition, we plotted in Figs. 2(a)-2(c) the behavior of
the asymptotic quantities (K'),, (KA4'),, and
(K" —3(KA'),, respectively, as a function of D . For
values of D, smaller than 27, one notices that
(KA"),=0, while (K’),, and (K'),—3(K A4'),, decrease
approximately linearly with D . The spacetime is Min-
kowskian. As mentioned before, at D =27 both
(KA'),=0 and (K'),=0, thus also (K'),
—3(KA'),=0. The spacetime has the metric given in
Eq. (11). Finally, for values of D, greater than 2,
(KA'), and (K’'), have nonvanishing negative values
that satisfy the Kasner spacetime condition
(K'),—3(KA4"),=0.

Figures 3(a) and 3(b) show how the Minkowski-Kasner
(D, =2m) transition values of the linear energy density
and the energy scale of symmetry breaking 7, respective-
ly, depend on the gauge-to-scalar mass ratio a. In partic-
ular one observes from Fig. 3(a) that the transition occurs
near =14} for most values of @. This means that the
second term on the right-hand side of Eq. (14) is not as
important as the first term. Finally from Fig. 3(b) one
sees that the transition point D, =2w occurs at larger
values of 77 when the strength of the scalar field dom-
inates than in the opposite case when the gauge field
strength is dominant. To understand this effect, let us for
the moment neglect the effect of gravity on the internal
structure of the string and recall”!®!? that for nongravi-
tating strings g is well approximated by u=~mn’a” %%
Since the transition takes place near =, we then find
that the transition value of 7 is well approximated by
n=(1/2V7)a’2.

In summary, we have found that, for supermassive
cosmic strings p >> 1076 formed during phase transitions
above the GUT scale, the spacetime geometry far from
the string remains Minkowskian minus a wedge as long
as the relation D <2 is satisfied. Above the limiting
value of D , the geometry becomes an analog of a Kasner
spacetime and has a curvature singularity at a finite dis-
tance from the string. Strings with D >27 are thus
somewhat pathological. Since surviving cosmic strings
with p>> 107% are inconsistent with present observations,
such supermassive strings (if they exist) would have to be
formed before an inflationary era and subsequently
inflated away.
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FIG. 3. Plots of (a) the linear energy density u and (b) the
symmetry-breaking energy scale 7 as functions of the gauge-to
scalar mass ratio a for the Minkowski-Kasner transition value
D =2m.
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